toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Snoeckx, R.; Van Wesenbeeck, K.; Lenaerts, S.; Cha, M.S.; Bogaerts, A. pdf  url
doi  openurl
  Title Suppressing the formation of NOxand N2O in CO2/N2dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work Type A1 Journal article
  Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal (down) Sustainable Energy Fuels  
  Volume 3 Issue 6 Pages 1388-1395  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The need for carbon negative technologies led to the development of a wide array of novel CO<sub>2</sub>conversion techniques. Most of them either rely on high temperatures or generate highly reactive O species, which can lead to the undesirable formation of NO<sub>x</sub>and N<sub>2</sub>O when the CO<sub>2</sub>feeds contain N<sub>2</sub>. Here, we show that, for plasma-based CO<sub>2</sub>conversion, adding a hydrogen source, as a chemical oxygen scavenger, can suppress their formation,<italic>in situ</italic>. This allows the use of low-cost N<sub>2</sub>containing (industrial and direct air capture) feeds, rather than expensive purified CO<sub>2</sub>. To demonstrate this, we add CH<sub>4</sub>to a dielectric barrier discharge plasma used for converting impure CO<sub>2</sub>. We find that when adding a stoichiometric amount of CH<sub>4</sub>, 82% less NO<sub>2</sub>and 51% less NO are formed. An even higher reduction (96 and 63%) can be obtained when doubling this amount. However, in that case the excess radicals promote the formation of by-products, such as HCN, NH<sub>3</sub>and CH<sub>3</sub>OH. Thus, we believe that by using an appropriate amount of chemical scavengers, we can use impure CO<sub>2</sub>feeds, which would bring us closer to ‘real world’ conditions and implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469258600021 Publication Date 2019-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0F9618N ; Universiteit Antwerpen; King Abdullah University of Science and Technology, BAS/1/1384-01-01 ;The research reported in this publication was supported by funding from the “Excellence of Science Program” (Fund for Scientic Research Flanders (FWO): grant no. G0F9618N; EOS ID: 30505023). The authors R. S. and M. S. C. acknowledge nancial support from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1384-01-01. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160268 Serial 5188  
Permanent link to this record
 

 
Author Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
  Year 2021 Publication Sustainable energy & fuels Abbreviated Journal (down) Sustainable Energy Fuels  
  Volume 5 Issue 6 Pages 1786-1800  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631643300013 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177540 Serial 6745  
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Rodríguez, V.D.; Méndez-Ramos, J.; del- Castillo, J.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Optimizing Er/Yb ratio and content in Er-Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence Type A1 Journal article
  Year 2012 Publication Solar energy materials and solar cells Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 100 Issue Pages 209-215  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Er3+Yb3+ co-doped transparent glass-ceramics with varying Er/Yb content and ratio have been prepared. High quantum yields for up- and down-conversion luminescence by energy transfer from Yb3+ to Er3+ and from Er3+ to Yb3+, respectively, have been detected and optimized with respect to the Er/Yb content and ratio, and proposed in particular for up- and down-conversion of solar spectrum for enhancement of the efficiency of solar cells. The rise and decay kinetics for the population of the excited levels of Er3+ and Yb3+ have been studied and fit. Based on these experimental data, the mechanisms for the energy transfers have been suggested with emphasis on the optimized Er/Yb content and ratio for enhancement of the efficiency of the Er3+↔Yb3+ energy transfers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000303034700030 Publication Date 2012-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 66 Open Access  
  Notes Fwo Approved Most recent IF: 4.784; 2012 IF: 4.630  
  Call Number UA @ lucian @ c:irua:97392 Serial 2493  
Permanent link to this record
 

 
Author Gaouyat, L.; He, Z.; Colomer, J.-F.; Lambin, P.; Mirabella, F.; Schryvers, D.; Deparis, O. pdf  doi
openurl 
  Title Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets Type A1 Journal article
  Year 2014 Publication Solar energy materials and solar cells Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 122 Issue Pages 303-308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conversion of solar energy into thermal energy helps reducing consumption of non-renewable energies. Cermets (ceramicmetal composites) are versatile materials suitable, amongst other applications, for solar selective absorbers. Although the presence of metallic Ni particles in the dielectric matrix is a prerequisite for efficient solar selective absorption in NiCrOx cermets, no clear evidence of such particles is reported so far. By combining comprehensive chemical and structural analyses, we reveal the presumed nanostructure which is at the origin of the remarkable optical properties of this cermet material. Using sputtered NiCrOx layers in a solar absorber multilayer stack on aluminium substrate allows us to achieve solar absorptance as high as α=96.1% while keeping thermal emissivity as low as ε=2.2%, both values being comparable to best values recorded so far. With the nanostructure of sputtered NiCrOx cermets eventually revealed, further optimization of solar absorbers can be anticipated and technological exploitation of cermet materials in other applications can be foreseen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000331494200040 Publication Date 2013-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.784; 2014 IF: 5.337  
  Call Number UA @ lucian @ c:irua:113086 Serial 2902  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Madjet, M.E.; El-Mellouhi, F.; Peeters, F.M. pdf  doi
openurl 
  Title Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3 Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 60-66  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of the crystal lattice structure of organometallic perovskite CH3NH3PbI3 on its electronic transport properties. Both dispersive interactions and spin-orbit coupling are taken into account in describing structural and electronic properties of the system. We consider two different phases of the material, namely the orthorhombic and cubic lattice structures, which are energetically stable at low (< 160 K) and high (> 330 K) temperatures, respectively. The sizable geometrical differences between the two structures in term of lattice parameters, PbI6 octahedral tilts, rotation and deformations, have considerable impact on the transport properties of the material. For example, at zero bias and for all considered electron energies, the cubic phase has a larger transmission than the orthorhombic one, although both show similar electronic densities of states. Depending on the applied voltage, the current in the cubic system can be several orders of magnitude larger as compared to the one obtained for the orthorhombic sample. We attribute this enhancement in the transmission to the presence of extended states in the cubic phase due to the symmetrically shaped and ordered PbI6 octaherdra. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500011 Publication Date 2015-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 16 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133151 Serial 4163  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; El-Mellouhi, F.; Madjet, M.E.; Alharbi, F.H.; Peeters, F.M.; Kais, S. pdf  doi
openurl 
  Title Effect of halide-mixing on the electronic transport properties of organometallic perovskites Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 2-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of iodide/chloride and iodide/bromide mixing on the electronic transport in lead based organometallic perovskite CH3NH3PbI3, which is known to be an effective tool to tune the electronic and optical properties of such materials. We found that depending on the level and position of the halide mixing, the electronic transport can be increased by more than a factor of 4 for a given voltage biasing. The largest current is observed for small concentration of bromide substitutions located at the equatorial sites. However, full halide substitution has a negative effect on the transport properties of this material: the current drops by an order of magnitude for both CH3NH3PbCl3 and CH3NH3PbBr3 samples. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500002 Publication Date 2015-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133150 Serial 4165  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Warwick, M.E.A.; Sada, C.; Turner, S.; Bazzo, A.; Andreu, T.; Pliekhova, O.; Korte, D.; Lavrenčič Štangar, U.; Van Tendeloo, G.; Morante, J.R.; Barreca, D. pdf  doi
openurl 
  Title Hematite-based nanocomposites for light-activated applications: Synergistic role of TiO2 and Au introduction Type A1 Journal article
  Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 456-466  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Photo-activated processes have been widely recognized as cost-effective and environmentally friendly routes for both renewable energy generation and purification/cleaning technologies. We report herein on a plasma- assisted approach for the synthesis of Fe 2 O 3 -TiO 2 nanosystems functionalized with Au nanoparticles. Fe 2 O 3 nanostructures were grown by plasma enhanced-chemical vapor deposition, followed by the sequential sputtering of titanium and gold under controlled conditions, and final annealing in air. The target nanosystems were subjected to a thorough multi-technique characterization, in order to elucidate the interrelations between their chemico-physical properties and the processing conditions. Finally, the functional performances were preliminarily investigated in both sunlight-assisted H 2 O splitting and photocatalytic activity tests in view of self- cleaning applications. The obtained results highlight the possibility of tailoring the system behaviour and candidate the present Fe 2 O 3 -TiO 2 -Au nanosystems as possible multi-functional low-cost platforms for light-activated processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388053600053 Publication Date 2016-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 15 Open Access Not_Open_Access  
  Notes The research leading to these results has received funding from the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as from Padova University ex-60% 2013-2016 projects, grant no. CPDR132937/13 (SOLLEONE) and the post-doc fellowship ACTION. INFINITY project in the framework of the EU Erasmus Mundus Action 2 is also acknowledged to provide a Ph.D. financial support as well as Slovenian Research Agency (program P2-0377). The authors are grateful to Dr. E. Toniato (Department of Chemistry, Padova University, Italy) for synthetic assistance and to Prof. E. Bontempi and Dr. M. Brisotto (Chemistry for Technologies Laboratory, Brescia University, Italy) for XRD analyses. Approved Most recent IF: 4.784  
  Call Number EMAT @ emat @ c:irua:135833 Serial 4284  
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A. pdf  url
doi  openurl
  Title Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
  Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 179-188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000388053600021 Publication Date 2016-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 32 Open Access OpenAccess  
  Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450  
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Vranken, L. doi  openurl
  Title The future of organic photovoltaic solar cells as a direct power source for consumer electronics Type A1 Journal article
  Year 2012 Publication Solar Energy Materials And Solar Cells Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 103 Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract As the search for marketable photovoltaic solar cells continues, organic photovoltaic (OPV) solar cells have been identified as a technology with many attractive features for commercialization. Most photovoltaic technologies on the market today were improved in the consumer electronics market segment. A similar evolution has been envisioned for OPV. Hence this paper investigates consumer preferences for solar cells directly powering consumer electronics. Choice experiments were designed and responses were collected using a random sample of 300 individuals from the Flemish region (northern part of Belgium). Results allow for computation of attribute importance, willingness to pay (WTP), and simulation of theoretical market share. These measures point towards OPV being able to reach considerable market share in the long run, bearing in mind that efforts are first needed in elevating OPV's efficiency and lifetime as they most determine consumers' preferences. Price is found to be the least important product characteristic for OPV solar cells to be incorporated in consumer electronics devices. We therefore warn against generalizing attributes' importance across the boundaries of market segments. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306044300001 Publication Date 2012-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 25 Open Access  
  Notes ; The authors would kindly want to express their gratitude towards every survey respondent and participant for their preliminary work. Also the authors are much obliged to INTERREG and the ORGANEXT project for their financial support, without which it would have been impossible to conduct this research. Last but not least, we would like to thank the reviewers for their insightful comments which allowed for fine tuning our work. ; Approved Most recent IF: 4.784; 2012 IF: 4.630  
  Call Number UA @ admin @ c:irua:127556 Serial 6267  
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; Vranken, L. pdf  doi
openurl 
  Title Heterogeneity in the solar-powered consumer electronics market : a discrete choice experiments study Type A1 Journal article
  Year 2016 Publication Solar Energy Materials And Solar Cells Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 156 Issue Pages 140-146  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Solar-powered consumer electronics are a likely starting point for organic photovoltaic (OPV) market development. Therefore, a generic discrete choice experiments study can determine how Flemish consumers value solar-cell characteristics for solar-poweied consumer electronics. Such characteristics include efficiency, lifetime, aesthetics, integratability, and price. We contribute to the literature by investigating preference heterogeneity in a solar-power niche market with an experimental design with a fixed reference alternative. The error components random parameter logit (ECRPL) with interactions provides a better fit than the latent class (LC) model for our choice data. The main effects had the expected signs. Consequently, aesthetics and integratability are OPV's assets. Nevertheless, heterogeneity puts the results that are valid for the average consumer into perspective. Based on our findings, OPV commercialization efforts should target the experienced, impatient user who highly values design and functionality. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383304100015 Publication Date 2016-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 2 Open Access  
  Notes ; Sebastien Lizin thanks the Research Foundation Flanders (FWO) for funding his postdoctoral mandate with Grant number 12G5415N, without which it would have been impossible to revise this work. ; Approved Most recent IF: 4.784  
  Call Number UA @ admin @ c:irua:137107 Serial 6207  
Permanent link to this record
 

 
Author Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R. url  doi
openurl 
  Title Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
  Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 206 Issue Pages 110300  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519653800038 Publication Date 2019-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.9 Times cited 5 Open Access OpenAccess  
  Notes ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved Most recent IF: 6.9; 2020 IF: 4.784  
  Call Number UA @ admin @ c:irua:168668 Serial 6544  
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J. pdf  url
doi  openurl
  Title The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
  Year 2021 Publication Solar Energy Materials And Solar Cells Abbreviated Journal (down) Sol Energ Mat Sol C  
  Volume 219 Issue Pages 110824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000591683500002 Publication Date 2020-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited Open Access OpenAccess  
  Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved Most recent IF: 4.784  
  Call Number EMAT @ emat @c:irua:174337 Serial 6706  
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Springael, J.; Van Passel, S. pdf  doi
openurl 
  Title Win-win possibilities through capacity tariffs and battery storage in microgrids Type A1 Journal article
  Year 2019 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 113 Issue 113 Pages 109238  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This paper investigates the impact of capacity tariff design on microgrids. While the possible benefits for utilities of capacity tariffs are well researched, comparatively little work has been done investigating the effects of capacity pricing on prosumers. Through simulating a grid connected microgrid and solving the day-ahead dispatch problem for a calendar year, we show that a well-designed capacity tariff will not only smooth out demand profiles, but could also lead to less erratic charge/discharge cycles in a real-time pricing scenario, lessening battery degradation. These results show that a properly designed capacity tariff has the potential to be beneficial for both the utilities as well as the battery-owning prosumer. Furthermore, we propose a new, heuristic approach to solve the day-ahead economic dispatch problem, which we prove to be effective and efficient. Additionally, we demonstrate that our novel approach does not impose mathematical restrictions such as continuous differentiability of the objective function. We show that the proposed capacity tariff achieves the stated aim of promoting battery storage uptake and that our novel method allows for compression and shorter run times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000483422600019 Publication Date 2019-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.05 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:160566 Serial 6279  
Permanent link to this record
 

 
Author Moretti, M.; Njakou Djomo, S.; Azadi, H.; May, K.; De Vos, K.; Van Passel, S.; Witters, N. pdf  url
doi  openurl
  Title A systematic review of environmental and economic impacts of smart grids Type A1 Journal article
  Year 2017 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 68 Issue 2 Pages 888-898  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Smart grids (SGs) have a central role in the development of the global power sector. Cost-benefit analyses and environmental impact assessments are used to support policy on the deployment of SG systems and technologies. However, the conflicting and widely varying estimates of costs, benefits, greenhouse gas (GHG) emission reduction, and energy savings in literature leave policy makers struggling with how to advise regarding SG deployment. Identifying the causes for the wide variation of individual estimates in the literature is crucial if evaluations are to be used in decision-making. This paper (i) summarizes and compares the methodologies used for economic and environmental evaluation of SGs (ii) identifies the sources of variation in estimates across studies, and (iii) point to gap in research on economic and environmental analyses of SG systems. Seventeen studies (nine articles and eight reports published between 2000 and 2015) addressing the economic costs versus benefits, energy efficiency, and GHG emissions of SGs were systematically searched, located, selected, and reviewed. Their methods and data were subsequently extracted and analysed. The results show that no standardized method currently exists for assessing the economic and environmental impacts of SG systems. The costs varied between 0.03 and 1143 M/yr, while the benefits ranged from 0.04 to 804 M/yr, suggesting that SG systems do not result in cost savings The primary energy savings ranged from 0.03 to 0.95 MJ/kWh, whereas the GHG emission reduction ranged from 10 to 180 gCO2/kWh, depending on the country grid mix and the system boundary of the SG system considered. The findings demonstrate that although SG systems are energy efficient and reduce GHG emissions, investments in SG systems may not yield any benefits. Standardizing some methodologies and assumptions such as discount rates, time horizon and scrutinizing some key input data will result in more consistent estimates of costs and benefits, GHG emission reduction, and energy savings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391899400006 Publication Date 2016-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 27 Open Access  
  Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. This research paper has been implemented within the GREAT (Growing Renewable Energy Applications and Technologies) project funded by the European INTERREG IVB North-Western Europe Programme. Nele Witters was financed by FWO (Research Foundation Flanders). ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:139036 Serial 6260  
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S. pdf  url
doi  openurl
  Title Steering the adoption of battery storage through electricity tariff design Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 98 Issue 98 Pages 125-139  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The economic viability of electricity storage using batteries, under different tariff structures and system configurations, is investigated. The economic outcomes of the different combinations of tariff design and system configuration are evaluated. Based on a discussion of the relevant literature, the following tariff designs are used in the study: (i) fixed energy prices, (ii) real-time energy pricing, (iii) fixed rate capacity tariffs, and (iv) capacity dependent capacity tariffs. Next, the different simulated system configurations are outlined: (i) no battery storage, (ii) battery storage only, and (iii) battery storage and decentralized renewable energy production with PV. Our study provides insights for policy makers, showing that capacity block pricing only incentivises storage as part of an (existing) PV installation, while the combination of real time energy pricing and capacity block pricing promotes a wider adoption of battery storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450559100010 Publication Date 2018-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:153327 Serial 6252  
Permanent link to this record
 

 
Author Rafiaani, P.; Kuppens, T.; Van Dael, M.; Azadi, H.; Lebailly, P.; Van Passel, S. pdf  url
doi  openurl
  Title Social sustainability assessments in the biobased economy : towards a systemic approach Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 82 Issue 2 Pages 1839-1853  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The majority of impact assessments for the biobased economy are primarily focused on the environmental and (techno-)economic aspects, while social aspects are rarely considered. This study proposes a modified systemic approach for a social sustainability impact assessment of the biobased economy, based on a review on the common methodologies for assessing social impacts. Accordingly, the proposed approach follows the four general iterative steps of social life cycle analysis (SLCA) as it considers all life cycle phases of the biobased economy. The systemic approach considers the potential social impacts on local communities, workers, and consumers as the main three groups of the stakeholders. The review showed that the most common social indicators for inventory analysis within the biobased economy include health and safety, food security, income, employment, land- and worker-related concerns, energy security, profitability, and gender issues. Multi-criteria decision analysis (MCDA) was also highlighted as the broadly utilized methodology for aggregating the results of impact assessments within the biobased economy. Taking a life cycle perspective, this study provides a holistic view of the full sustainability of research, design, and innovation in the biobased economy by suggesting the integration of the social aspects with techno-economic and an environmental life cycle assessment. Our proposed systemic approach makes possible to integrate the social impacts that are highly valued by the affected stakeholders into the existing sustainability models that focus only on environmental and techno-economic aspects. We discuss the steps of the proposed systemic approach in order to identify the challenges of applying them within the biobased economy. These challenges refer mainly to the definition of the functional unit and system boundaries, the selection and the analysis of social indicators (inventory analysis), the aggregation of the inventory to impact categories, and the uncertainties associated with the social sustainability evaluation. The result of this review and the proposed systemic approach serve as a foundation for industry and policy makers to gain a better insight into the importance of social sustainability impacts assessment within the biobased economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423371300014 Publication Date 2017-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 28 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:149031 Serial 6250  
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Lemmens, B.; Van Passel, S. pdf  url
doi  openurl
  Title A review of the sustainability of algal-based biorefineries : towards an integrated assessment framework Type A1 Journal article
  Year 2017 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 68 Issue 2 Pages 876-887  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Algal-based bioenergy products have faced multiple economic and environmental problems. To counter these problems, algal-based biorefineries have been proposed as a promising solution. Multiple environmental and economic assessments have analyzed this concept. However, a wide variation in results was reported. This study performs a review to evaluate the methodological reasons behind this variation. Based on this review, four main challenges for a sustainability assessment were identified: 1) the use of a clear framework; 2) the adaptation of the methodology to all stages of technological maturity; 3) the use of harmonized assumptions; 4) the integration of the technological process. A generic methodology, based on the integration of a techno-economic assessment methodology and a streamlined life cycle assessment was proposed. This environmental techno-economic assessment can be performed following an iterative approach during each stage of technology development. In this way, crucial technological parameters can be directly identified and evaluated during the maturation of the technology. The use of this assessment methodology can therefore act as guidance to decrease the time-to-market for innovative and sustainable technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391899400005 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:139038 Serial 6245  
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Van Dael, M.; Van Passel, S.; Malina, R. pdf  doi
openurl 
  Title A review of sustainability indicators for biobased chemicals Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 94 Issue 94 Pages 115-126  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Companies dealing with chemical products have to cope with large amounts of waste and environmental risk due to the use and production of toxic substances. Against this background, increasing attention is being paid to green chemistry and the translation of this concept into biobased chemicals. Given the multitude of economic, environmental and societal impacts that the production and use of biobased chemicals have on sustainability, assessment approaches need to be developed that allow for measurement and comparison of these impacts. To evaluate sustainability in the context of policy and decision-making, indicators are generally accepted means. However, sustainability indicators currently predominantly exist for low-value applications in the bioeconomy, like bioenergy and biofuels. In this paper, a review of the state-of-the-art sustainability indicators for biobased chemicals is conducted and a gap analysis is performed to identify indicator development needs. Based on the analysis, a clear hierarchy within the concept of sustainability is found where the environmental aspect dominates over economic and social indicators. All one-dimensional indicator-sets account for environmental impacts (50%), whereas two-dimensional sets complement the environmental issues with economic indicators (34%). Moreover, even the sets encompassing all three sustainability dimensions (16%) do not account for the dynamics and interlinkages between the environment, economy and society. Using results from the literature review, an indicator list is presented that captures all indicators currently used within sustainability assessment of biobased chemicals. Finally, a framework is proposed for future indicator selection using a stakeholder survey to obtain a prioritized list of sustainability indicators for biobased chemicals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000446310000008 Publication Date 2018-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 17 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:154140 Serial 6244  
Permanent link to this record
 

 
Author Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H. pdf  doi
openurl 
  Title Renewable energy development in rural areas of Iran Type A1 Journal article
  Year 2016 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 65 Issue Pages 743-755  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Iran's energy system is extremely dependent on fossil fuels which, in turn, have led to problems such as fossil fuels depletion, social, economic and environmental damage and territorial imbalance. The country should therefore design a sustainable energy system based on clean energy as well as renewable energy. Accordingly, and given that Iran's rural areas suffer from the unsustainable energy system, it is necessary to integrate renewable energy into comprehensive development programs in general, and into rural development programs, specifically. This review paper answers the following questions: Why is renewable energy important for Iran at national and rural levels? How is renewable energy related to sustainable rural development? and What are the challenges in the promotion of renewable energy technologies in Iran? The paper concludes that although renewable energy has potential for development in Iran's rural areas due to environmental, social and economic advantages, it could face some infrastructural, managerial, socio-cultural and economic challenges. Accordingly, aggressive and innovative policy making is required to meet these challenges. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383293800053 Publication Date 2016-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 41 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:137105 Serial 6243  
Permanent link to this record
 

 
Author Milis, K.; Peremans, H.; Van Passel, S. pdf  url
doi  openurl
  Title The impact of policy on microgrid economics : a review Type A1 Journal article
  Year 2018 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 81 Issue 2 Pages 3111-3119  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This paper investigates the impact of government policy on the optimal design of microgrid systems from an economic cost minimisation perspective, and provides both an overview of the current state of the art of the field, as well as highlighting possible avenues of future research. Integer programming, to select microgrid components and to economically dispatch these components, is the optimisation method of choice in the literature. Using this methodology, a broad range of policy topics is investigated: impact of carbon taxation, economic incentives and mandatory emissions reduction or mandatory minimum percentage participation of renewables in local generation. However, the impact of alternative tariff systems, such as capacity tariffs are still unexplored. Additionally, the investigated possible benefits of microgrids are confined to emissions reduction and a possible decrease in total energy procurement costs. Possible benefits such as increased security of supply, increased power quality or energy independence are not investigated yet. Under the expected policy measures the optimal design of a microgrid will be based on a CHP-unit to provide both heat and electricity, owning to the lower capital costs associated with CHP-units when compared to those associated with renewable technologies. This means that current economic analyses indicate that the adoption of renewable energy sources within microgrids is not economically rational.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417078200117 Publication Date 2017-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:145397 Serial 6213  
Permanent link to this record
 

 
Author Thomassen, G.; Van Passel, S.; Dewulf, J. url  doi
openurl 
  Title A review on learning effects in prospective technology assessment Type A1 journal article
  Year 2020 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 130 Issue Pages 109937  
  Keywords A1 journal article; Learning effects; Life cycle assessment; Techno-economic assessment; Prospective technology assessment; Learning-by-doing; Learning curve; Progress rate; Experience curve; Engineering Management (ENM) ;  
  Abstract Global environmental problems have urged the need for developing sustainable technologies. However, new technologies that enter the market have often higher economic costs and potentially higher environmental impacts than conventional technologies. This can be explained by learning effects: a production process that is performed for the first time runs less smooth than a production process that has been in operation for years. To obtain a fair estimation of the potential of a new technology, learning effects need to be included. A review on the current literature on learning effects was conducted in order to provide guidelines on how to include learning effects in prospective technology assessment. Based on the results of this review, five recommendations have been formulated and an integration of learning effects in the structure of prospective technology assessment has been proposed. These five recommendations include the combined use of learning effects on the component level and on the end product level; the combined use of learning effects on the technical, economic and environmental level; the combined use of extrapolated values and expert estimates; the combined use of learning-by-doing and learning-by-searching effects and; a tier-based method, including quality criteria, to calculate the learning effect. These five complementary strategies could lead to a clearer perspective on the environmental impact and cost structure of the new technology and a fairer comparison base with conventional technologies, potentially resulting in a faster adoption and a shorter time-to-market for sustainable technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000548790900008 Publication Date 2020-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.9 Times cited Open Access  
  Notes The authors acknowledge the full financial support received from the Flemish administration via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy). We would also like to thank the SDEWES conference for the best paper award which was granted to the current paper. The authors declare no competing financial interests. This publication contains the opinions of the authors, not that of the Flemish administration. The Flemish administration will not carry any liability with respect to the use that can be made of the produced data or conclusions. Approved Most recent IF: 15.9; 2020 IF: 8.05  
  Call Number ENM @ enm @c:irua:170076 Serial 6389  
Permanent link to this record
 

 
Author Buchmayr, A.; Verhofstadt, E.; Van Ootegem, L.; Sanjuan Delmás, D.; Thomassen, G.; Dewulf, J. url  doi
openurl 
  Title The path to sustainable energy supply systems: Proposal of an integrative sustainability assessment framework Type A1 Journal Article
  Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 138 Issue Pages 110666  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Energy supply is essential for the functioning and well-being of a society. Decision-makers are faced with the challenge to balance burdens and benefits of energy supply practices with the aim to achieve environmental, economic, and social sustainability. Literature exhibits a broad variety of sustainability assessment frameworks for energy supply technologies. However, there is no consensus on which aspects need to be covered for a comprehensive assessment of sustainability. While some aspects, such as environmental emission damage, receive predominant attention, there is a lack of coverage and adequate quantification for others. This led in the past to an unbalanced basis for decision-making.

Based on an analysis of literature, 12 impact categories were identified for the assessment of energy technologies. The analysis included the judgement of quantification approaches regarding their significance for describing the impact categories and their maturity resulting in the proposal of 12 concrete indicators. A framework is proposed to manage and integrate the assessment of single impact categories. The framework produces normalized and weighted output indicators to use in the form of a dashboard or alternatively a single sustainability index for informed decision-making.

Finally, the proposed sustainability assessment framework relies on life cycle, local impact, and supply chain risks assessment. It consists of both well-established assessment methods as well as suggestions for new indicators in order to allow a full assessment of all impact categories. It thereby goes beyond the isolated assessment of impacts and offers the basis for comparison of complete energy supply mixes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321 ISBN Additional Links  
  Impact Factor 8.05 Times cited Open Access Not_Open_Access  
  Notes The authors acknowledge the financial support received from the Special Research Fund (Bijzonder Onderzoeksfonds – BOF) of Ghent University under grant agreement number BOF.24Y.2018.003. Approved Most recent IF: 8.05  
  Call Number ENM @ enm @ Serial 6680  
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Valkering, P.; Laes, E.J.W. pdf  url
doi  openurl
  Title Power outages and bill savings : a choice experiment on residential demand response acceptability in Delhi Type A1 Journal article
  Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 143 Issue Pages 110904  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This paper conducts a discrete choice experiment among 167 households in the Delhi region in India, to study the acceptability of demand response (DR) programs among upper-income households. Attributes include rate types, rate bands, reductions in power outages, and expected monthly savings. Results indicate a preference for time-of-use pricing over real-time pricing, and a preference for three rate slabs per day over two. Respondents prioritize reductions in power outages and minimizing potential expenses, reflecting the financial sensitivity and energy poverty relative to other countries. Respondents' ages and incomes further affect the value that they attach to reductions in power outages. The paper proposes various structures of DR programs that could achieve high predicted enrollment and concludes by estimating the potential benefits of implementing such programs. Overall, the analysis indicates that a DR program could be feasible in a developing country context, particularly if it is designed keeping in mind local socio-economic considerations. This may be supported through further confirmatory research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000637710200016 Publication Date 2021-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.05 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:178188 Serial 6938  
Permanent link to this record
 

 
Author Dingenen, F.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Tapping hydrogen fuel from the ocean : a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater Type A1 Journal article
  Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal (down) Renew Sust Energ Rev  
  Volume 142 Issue Pages 110866  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO− formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632316600003 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:175701 Serial 8642  
Permanent link to this record
 

 
Author Van Dael, M.; Lizin, S.; Swinnen, G.; Van Passel, S. pdf  url
doi  openurl
  Title Young people's acceptance of bioenergy and the influence of attitude strength on information provision Type A1 Journal article
  Year 2017 Publication Renewable Energy Abbreviated Journal (down) Renew Energ  
  Volume 107 Issue Pages 417-430  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This study investigated the effects of using a standardized PowerPoint lecture to provide young people with nuanced information about bioenergy. The studys aim was to understand the relationship between knowledge and participants perception of bioenergy, and the relationship of the latter to participants attitude strength and intention to use and learn about bioenergy. Data were collected from 715 participants using a survey instrument that contained mainly Likert-scale questions. Data were then processed using partial least squares structural equation modelling. Results show that providing such information increases knowledge about bioenergy, but does relatively little to create a more positive perception of bioenergy. In turn, having a more positive view about bioenergy would lead to a higher intention to use bioenergy. Attitude strength was found to mediate the previous relationship and decreases the strength of the relationship between perception and intention to use. Results also show that the lecture weakly contributed to building attitude strength, rendering opinion change less likely in the future. We conclude that listening to a lecture on bioenergy slightly improves peoples perception of bioenergy, makes it more likely that people maintain such a disposition, and translates into a slightly higher intention to use bioenergy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396946900036 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 4.357 Times cited 10 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO; grant number 12G5415N). The authors gratefully acknowledge Sara Leroi-Werelds (Hasselt University) for her valuable comments. ; Approved Most recent IF: 4.357  
  Call Number UA @ admin @ c:irua:140683 Serial 6280  
Permanent link to this record
 

 
Author De Schepper, E.; Van Passel, S.; Manca, J.; Thewys, T. doi  openurl
  Title Combining photovoltaics and sound barriers : a feasibility study Type A1 Journal article
  Year 2012 Publication Renewable Energy Abbreviated Journal (down) Renew Energ  
  Volume 46 Issue Pages 297-303  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract In the light of global warming, renewables such as solar photovoltaics (PV) are important to decrease greenhouse gas emissions. An important issue regarding implementation of solar panels on large scale, is the limited available area. Therefore, it can be interesting to combine PV with alternative applications, as a ways of not requiring “additional” space. One example is a photovoltaic noise barrier (PVNB), where a noise barrier located along a highway or railway is used as substructure for PV modules. Even though a PVNB is not a novel concept, the absence of economic assessments in literature can be a barrier to their wider implementation. In this paper, a feasibility study of a PVNB in Belgium is conducted, using a cost benefit analysis including a Monte Carlo sensitivity analysis. Besides purely economic aspects, also ecological benefits are monetized. The sensitivity analysis indicates that the ecological benefit of noise reduction, which is valuated using a noise sensitivity depreciation index applied to real estate prices, is of major importance in determining the net present value of the case study. On the contrary, the impact of reducing CO2 emissions seems to be negligible when expressed in monetary terms. The results suggest that the PVNB as a whole and also its separate components -.e. the PV array and the noise barrier can be profitable projects, when ecological benefits are included. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305169400036 Publication Date 2012-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.357 Times cited 12 Open Access  
  Notes ; ; Approved Most recent IF: 4.357; 2012 IF: 2.989  
  Call Number UA @ admin @ c:irua:127555 Serial 6170  
Permanent link to this record
 

 
Author Lizin, S.; Leroy, J.; Delvenne, C.; Dijk, M.; De Schepper, E.; Van Passel, S. doi  openurl
  Title A patent landscape analysis for organic photovoltaic solar cells : identifying the technology's development phase Type A1 Journal article
  Year 2013 Publication Renewable Energy Abbreviated Journal (down) Renew Energ  
  Volume 57 Issue Pages 5-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Organic photovoltaics (OPV) have developed into a vast research area. Progress in various directions has made it difficult to monitor the technology's precise development state. We offer a patent landscape analysis over all OPV devices, their substrates and encapsulation materials to provide an overview of patenting activity from a historical, organizational, geographical and technological point of view. Such an exercise is instrumental for private companies and research institutes aiming at both internal or external technology creation. We discuss our findings in the context of the Industrial Life Cycle model and find OPV still residing in the fluid technology development phase. Technology development is still following an exponential growth path, with the majority of patents coming from the Asian continent and in general private companies. For devices, the main technological focus can be traced back to the “H01L-031” international patent classification (IPC) main group. For the queried substrates, the most attention has gone to glass, but paper and textile have drawn significant interest too. Finally, encapsulation is found to be a less mature research field given the smaller number of patent families. The latter shows that the technology has not matured to the level where processing is carried out on a commercial scale. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319025000002 Publication Date 2013-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-1481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.357 Times cited 18 Open Access  
  Notes ; The authors are much obliged to INTERREG for their financial support of the ORGANEXT project (www.organext.org), without which it would have been impossible to conduct this research. ; Approved Most recent IF: 4.357; 2013 IF: 3.361  
  Call Number UA @ admin @ c:irua:127551 Serial 6143  
Permanent link to this record
 

 
Author Perez, A.J.; Jacquet, Q.; Batuk, D.; Iadecola, A.; Saubanere, M.; Rousse, G.; Larcher, D.; Vezin, H.; Doublet, M.-L.; Tarascon, J.-M. doi  openurl
  Title Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4 Type A1 Journal article
  Year 2017 Publication Nature energy Abbreviated Journal (down) Nat Energy  
  Volume 2 Issue 12 Pages 954-962  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g(-1) thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material's instability against O-2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material's maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430218300001 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 55 Open Access Not_Open_Access  
  Notes ; We thank P. Pearce for providing the beta-Li<INF>2</INF>IrO<INF>3</INF> and L. Lemarquis for helping in the DEMS experiment. We are particularly grateful to S. Belin, V. Briois and L. Stievano for helpful discussions on XAS analysis and synchrotron SOLEIL (France) for providing beamtime at the ROCK beamline (financed by the French National Research Agency (ANR) as part of the 'Investissements d'Avenir' programme, reference: ANR-10-EQPX-45). A.J.P and A. I. acknowledge the GdR C(RS) 2 for the workshop organized on a chemometric approach for XAS data analysis. V. Nassif is acknowledged for her help during neutron diffraction experiments performed at Institut Laue Langevin on D1B. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is gratefully acknowledged. This work has been performed with the support of the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116 ARPEMA. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150926 Serial 4962  
Permanent link to this record
 

 
Author Zheng, Y.-R.; Vernieres, J.; Wang, Z.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T.-W.; Presel, F.; Altantzis, T.; Fatermans, J.; Scott, S.B.; Secher, N.M.; Moon, C.; Liu, P.; Bals, S.; Van Aert, S.; Cao, A.; Anand, M.; Nørskov, J.K.; Kibsgaard, J.; Chorkendorff, I. url  doi
openurl 
  Title Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts Type A1 Journal article
  Year 2021 Publication Nature Energy Abbreviated Journal (down) Nat Energy  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Development of low-cost and high-performance oxygen evolution reaction catalysts is key to implementing polymer electrolyte membrane water electrolyzers for hydrogen production. Iridium-based oxides are the state-of-the-art acidic oxygen evolution reactio catalysts but still suffer from inadequate activity and stability, and iridium's scarcity motivates the discovery of catalysts with lower iridium loadings. Here we report a mass-selected iridium-tantalum oxide catalyst prepared by a magnetron-based cluster source with considerably reduced noble-metal loadings beyond a commercial IrO2 catalyst. A sensitive electrochemistry/mass-spectrometry instrument coupled with isotope labelling was employed to investigate the oxygen production rate under dynamic operating conditions to account for the occurrence of side reactions and quantify the number of surface active sites. Iridium-tantalum oxide nanoparticles smaller than 2 nm exhibit a mass activity of 1.2 ± 0.5 kA “g” _“Ir” ^“-1” and a turnover frequency of 2.3 ± 0.9 s-1 at 320 mV overpotential, which are two and four times higher than those of mass-selected IrO2, respectively. Density functional theory calculations reveal that special iridium coordinations and the lowered aqueous decomposition free energy might be responsible for the enhanced performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728458000001 Publication Date 2021-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 95 Open Access OpenAccess  
  Notes Y.-R.Z. and Z.W acknowledge funding from the Toyota Research Institute. This project has received funding from VILLUM FONDEN (grant no. 9455) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grants no. 741860-CLUNATRA, no. 815128−REALNANO and no. 770887−PICOMETRICS). S.B. and S.V.A. acknowledge funding from the Research Foundation Flanders (FWO, G026718N and G050218N). T.A. acknowledges the University of Antwerp Research Fund (BOF). STEM measurements were supported by the European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3.; sygmaSB Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:184794 Serial 6903  
Permanent link to this record
 

 
Author Paolella, A.; Bertoni, G.; Hovington, P.; Feng, Z.; Flacau, R.; Prato, M.; Colombo, M.; Marras, S.; Manna, L.; Turner, S.; Van Tendeloo, G.; Guerfi, A.; Demopoulos, G.P.; Zaghib, K.; pdf  url
doi  openurl
  Title Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4 Type A1 Journal article
  Year 2015 Publication Nano energy Abbreviated Journal (down) Nano Energy  
  Volume 16 Issue 16 Pages 256-267  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work we elucidate the elimination of mechanism Fe-antisite defects in lithium iron phosphate (LiFePO4) during the hydrothermal synthesis. Compelling evidence of this effect is provided by combining Neutron Powder Diffraction (NPD), High Resolution (Scanning) Transmission Electron Microscopy (HR-(S)TEM), Electron Energy Loss Spectroscopy (EELS), X-Ray Photoelectron Spectroscopy (XPS) and calculations. We found: i) the first intermediate vivianite inevitably creates Fe-antisite defects in LiFePO4; ii) the removal of these antisite defects by cation exchange is assisted by a nanometer-thick amorphous layer, rich in Li, that enwraps the LiFePO4 crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000364579300027 Publication Date 2015-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 27 Open Access  
  Notes The authorswanttoacknowledgeVincentGariepy,Cathe- rine Gagnon,JulieTrottier,DanielClement,Dr.CyrilFaure of IREQ,Dr.GaiaTomaselloofInstitutfürTheoretische PhysikFreieUniversitätBerlinandProf.MichelArmandof CICenergigune forhelpfuldiscussionsandtechnical supports. Approved Most recent IF: 12.343; 2015 IF: 10.325  
  Call Number c:irua:127688 Serial 296  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: