
This item is the archived peer-reviewed author-version of:

Power outages and bill savings : a choice experiment on residential demand response acceptability in

Delhi

Reference:
Srivastava Aman, Van Passel Steven, Valkering P., Laes E.J.W..- Power outages and bill savings : a choice experiment on residential demand response

acceptability in Delhi

Renewable and sustainable energy reviews - ISSN 1364-0321 - 143(2021), 110904 

Full text (Publisher's DOI): https://doi.org/10.1016/J.RSER.2021.110904 

To cite this reference: https://hdl.handle.net/10067/1781880151162165141

Institutional repository IRUA



Page 1 of 52 

 

Power outages and bill savings: 

A choice experiment on residential demand response acceptability in Delhi 

 

Srivastava, A. ab 1 
Van Passel, S. a 
Valkering, P. b  
Laes, E.J.W. bc  

 
 

a = Faculty of Business and Economics, University of Antwerp, Prinsstraat 13, Antwerp, Belgium 
b = Smart Energy & Built Environment Unit, VITO-Energyville, Thor Park, Poort Genk 8310, Belgium 

c = Department of Industrial Engineering & Innovation Sciences, Philosophy and Ethics, Eindhoven University 
of Technology, De Zaale, Eindhoven, The Netherlands 

 

 

Declarations of interest: None 

 

 

Abstract 

This paper conducts a discrete choice experiment among 167 households in the Delhi region 

in India, to study the acceptability of demand response (DR) programs among upper-income 

households. Attributes include rate types, rate bands, reductions in power outages, and 

expected monthly savings. Results indicate a preference for time-of-use pricing over real-time 

pricing, and a preference for three rate slabs per day over two. Respondents prioritize 

reductions in power outages and minimizing potential expenses, reflecting the financial 

sensitivity and energy poverty relative to other countries. Respondents’ ages and incomes 

further affect the value that they attach to reductions in power outages. The paper proposes 

various structures of DR programs that could achieve high predicted enrollment and concludes 

by estimating the potential benefits of implementing such programs. Overall, the analysis 

indicates that a DR program could be feasible in a developing country context, particularly if 

it is designed keeping in mind local socio-economic considerations. This may be supported 

through further confirmatory research. 
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Highlights 

 We conduct a choice experiment to design a demand response program in Delhi 

 Results indicate a preference for time-of-use pricing over real-time pricing 

 People care about the reductions in power outages and the potential expenses 

 Ages and incomes affect the value that respondents attach to reducing power outages 

 90% of the sample can be predicted to enroll for savings of under $10 per month 
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1. Introduction 

 

The global electricity sector is faced with two significant challenges. First, it is a significant 

contributor to climate change, with nearly 30% of total greenhouse gas emissions coming from 

electricity production [1]. Second, electricity consumption is increasing [2] which, coupled 

with the ongoing transition to renewable sources [3] that are variable in generation, presents a 

challenge for the security of energy supply. 

 

Moderating electricity demand through demand response (DR) programs is a potential solution 

to these challenges. By shifting demand from peak to off-peak times and flattening demand 

curves through price signals, the automation of appliances, or direct control of electrical loads, 

DR programs can aid with the energy transition and grid integration of renewables [4], while 

increasing energy security [5] and reducing the overall costs of generation [6]. 

 

With significant response potentials [7], regions such as Europe and the US have introduced 

several policies and initiatives in support of demand response [8][9][10][11], and consequently 

DR programs are being increasingly tested in their residential sectors [12][13][14], aside from 

industrial and commercial sectors [15][16]. 

 

Literature on residential DR in these countries finds that results in many instances of DR 

implementation have been positive [17][18][19][20]. However, a growing body of research 

finds that varying consumer attitudes have led to a lack of responsiveness to such programs. 

Gyamfi et al [21] stated that a high fraction of households did not respond to price signals. 

Consumers were found to be less price-sensitive when they were more concerned about 

inconvenience or privacy [22][23][24]. Hall et al [25] identified that households want more 
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information to understand the potential benefits of DR, while Brent et al [26] stated that 

knowledge about consumption can maximize the effectiveness of time-varying pricing. 

 

In view of these heterogenous household preferences, Parrish et al [27] reaffirmed that findings 

can be complex and inconsistent, and that more research is needed on dynamic pricing. Gyamfi 

et al [21] suggested greater use of behavior-based approaches to address the challenges to 

achieving voluntary demand reductions, while Gambardella and Pahle [28] showed that 

customer heterogeneity affects the welfare gains from DR. 

 

On the other hand, residential DR has not been greatly implemented in developing countries, 

possibly owing to the constraints on their electricity sectors, coupled with a lack of regular 

access to electricity by large proportions of the populations. A meta-analysis by Srivastava et 

al [29] found only two instances in developing countries and suggested that DR design should 

take local socioeconomic and political contexts into account.  

 

There is a scope for such programs – developing countries are witnessing high levels of 

urbanization [30][31] and urbanization has been found to have the largest effect on non-

renewable energy demand, compared with factors such as GDP or oil prices [32]. There is also 

an ongoing global debate on how developing countries can bypass traditional fossil fuel-

intensive infrastructure [33][34][35] – India’s coal production has grown at an average annual 

rate of 3.23% from 2009-2018 [36] – and move straight to renewables for their energy access 

and development objectives. 

 

Among developing countries, the feasibility of DR has been most explored in China 

[37][38][39]. Energy management systems have been proposed for optimal DR scheduling in 
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South Africa [40], while scenario modeling has been used to guide industrial DR in Nigeria 

[41]. Surveys were used to assess customer willingness to participate in DR in Kuwait, which 

has a subsidized electricity market [42]. In India, the regulations and political economy of the 

electricity market have been studied for a DR introduction [43], and dynamic pricing has been 

studied specifically in the context of solar micro-grids [44]. However, to our knowledge, there 

are no concrete designs proposed for household DR implementation in any developing country. 

 

This paper aims to address these two gaps, (1) the need for using more behavior-oriented 

approaches to design improved DR programs, and (2) the opportunity for considering DR in a 

developing country context. To do this, it uses a discrete choice experiment (DCE) to 

understand the acceptability of dynamic pricing-based DR programs in India, specifically in 

the National Capital Region (NCR) of Delhi, a region with conditions – high urbanization, high 

growth, ambitious renewable energy policies – suggested as ideal for DR implementation [29].  

 

Existing research into DR programs has made limited use of the choice experiment approach. 

In developed countries, Ericson [45] estimated a discrete choice model using existing data from 

a residential critical peak pricing (CPP) experiment, to understand the bases on which 

consumers choose between tariffs. Pepermans [46] used a DCE to assess the extent to which 

consumers would use smart meters. Srivastava el al [47] estimated the acceptability of load 

control programs in Belgium, while Buryk et al [48] determined whether disclosing the 

environmental and system benefits of dynamic tariffs could increase customer adoption. Other 

studies [49][50][51][52] have also used choice models to understand preferences for other 

facets of electricity generation and provision. Existing choice experiment-based research has 

not greatly focused however on the actual structuring of DR programs. In this paper, we use 
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this approach to obtain a valuation of the different attributes of DR programs specific to the 

local population, thereby helping better design such a program in the future. 

 

The paper is set up as follows. Section 2 provides an overview of trends in the Indian electricity 

sector and consumer economy. Section 3 details the research method and design. Section 4 lists 

the results of the choice experiment study. Section 5 offers a discussion, with a cluster analysis 

of the sample, some policy implications of the results, and rough potential benefits of DR 

implementation. Section 6 concludes. 

 

2. The Domestic Context 

 

2.1 India’s Electricity Situation 

 

India’s per capita electricity consumption is about 1100 kilowatt-hours (kWh) per year, or 8% 

of the US average [53]. This number conceals large disparities as, for instance, nearly 150 

million people still had no access to regular electricity as of 2018 [54].  

 

India’s current generating capacity of 346 gigawatts (GW)2 is expected to reach 600 GW by 

2025 [55]. It is targeting a generation capacity of 175 GW from renewable sources by 2022 

[56] – solar power contributed 40% to capacity additions in 2017 [57] – and it is likely to 

overachieve on this. However, power outages are frequent due to network problems – 

transmission and distribution losses are at 21.8%, and last-mile connectivity is inadequate [58].  

 

                                                           
2 Of which 72 GW is from renewable energy sources [55] 
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The electricity sector has a system of cross-subsidies in its tariff structures, whereby the 

agricultural and residential sectors pay lower electricity tariffs that are subsidized by the 

industrial and commercial (I&C) sectors. The residential sector consumes 24% of the country’s 

electricity [59] and has block tariffs that are determined by the individual states [60].  

 

2.2 Trends in Delhi 

 

The average monthly household electricity consumption in Delhi3 is 181 kWh [62]. Though 

Delhi’s bulk power rate is 60% more expensive than the national average, its retail tariffs are 

among the lowest [63]. Partly due to this, Delhi’s peak electricity demand has grown by 64% 

between 2006 and 20184, and its 2018 peak of 7000 MW was more than the peaks for Mumbai 

and Chennai combined [65]. Despite this, the Delhi government offers subsidies that cost the 

government ₹16 billion ($230 million) in 20175 [66]. Analysis of these subsidies [66] has found 

them to be poorly designed: up to 96% of residents benefit from the subsidies – far more than 

the target lower income populations. The sector would thus benefit from a restructuring of these 

subsidies, or from broader tariff reform. 

 

In Delhi, summer demand peaks tend to be twice as high as winter peaks [67]. During the 

summer months, the daily peaks typically occur around 3pm, when the day temperatures are 

highest, and then at night when people run their air conditioning units (ACs)6 while sleeping. 

This trend in the planned and actual consumption of electricity is shown in Figure 1. 

                                                           
3 Delhi’s core population is about 19 million, while the region under study has 26 million people [61]  
4 In early 2018, Delhi’s electricity regulator cut tariffs across categories by up to 32%, though fixed charges 

were increased, further removing incentives to save on electricity consumption [64]  
5 One US dollar ($) is approximately 70 Indian rupees (₹)  
6 Unlike the centralized systems in more developed regions, each AC unit in India has its own individual 

thermostat controls and compressors 
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Figure 1: Planned (Schedule) and Actual (Drawal) Consumption in Delhi, June 21 2018 

Source: Northern Regional Load Dispatch Center [68] 

 

Against this, wholesale daytime electricity prices are cheaper than night prices, which are in 

turn cheaper than evening prices – Figure 2 shows the day-ahead wholesale pricing structure 

for Delhi. This creates a mismatch between pricing and consumption. However, electricity 

providers are penalized for over-drawing electricity from the spot markets above their stated 

expectations, and consumers are also to be compensated for unscheduled power outages [69]. 

 

 

Figure 2: Average Day Ahead Prices for N2 Zone, June 20-22 2018 

Source: Indian Energy Exchange [70] 
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2.3 Potential for Demand Response 

 

With a high projected growth in electricity demand, and in light of access and grid reliability 

issues, there is an overall national focus on energy efficiency [71]. But demand response has 

not received significant attention yet, aside from limited initiatives in the I&C sectors, 

including in Delhi. One DR pilot among large consumers realized 17 MW in savings and is 

being more widely rolled out [72]. Another trial – using smart meters and load curtailment – 

found that customers can shed 10% of peak demand at the 75th percentile, although the results 

suggested that there is much more shed potential to explore [73]. 

 

To explore this shed potential, DR can be enabled through the ongoing shift in metering 

infrastructure that is accompanying the national government’s smart grid and smart cities 

missions [74][75]. 130 million smart meters are expected to be installed across the country by 

2021 [76] – Delhi alone is expected to have 1.6 million smart meters by 2025 [77], and its 

neighbors in the NCR are also rolling them out among customers [78]. DR implementation can 

be challenging because of the lower levels of electricity access, high rates of power theft and 

T&D losses, inefficient billing, and the poor financial health of the country’s distribution 

system operators (DSOs). The Union Budget of 2021-22 announced an INR 3 trillion package 

to bail out DSOs by upgrading their technology and infrastructure, including rolling out smart 

metering and taking measures to reduce power theft [79]. 

 

The potential benefits of DR in India include reduced power outages, reduced electricity costs, 

offsetting the need to add capacity, and an ability to integrate electric vehicles and renewable 

energy sources [80]. 
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Thus, the design of this study is informed by India’s increasing electricity consumption and 

frequent power outages, its focus on renewables-based generation, the political sensitivities of 

tariff design and subsidies, and the rollout of DR-enabling infrastructure in line with a growing 

recognition of its potential. 

 

3. Research Method and Design 

 

3.1 Research Method: Discrete Choice Experiment   

 

DCEs are a stated preference method – used to derive valuations where pricing cannot be 

determined by market mechanisms – that are based on the assumption that a choice between 

alternative options reflects the difference in utility derived from those options. A DCE design 

offers respondents several choice sets, with a number of alternatives within each choice set. 

Each alternative is described by various attributes and each attribute has a number of possible 

levels. The most statistically efficient design – that minimizes the confidence intervals around 

parameter estimates [81] – is determined using the D-efficiency7. The D-efficiency of a design 

is a function of the number of choice tasks, the number of attributes, and the number of levels 

per attribute [83].  

 

Choice data from a DCE are analyzed using a logit model, which is consistent with random 

utility theory [84]. This theory assumes that individuals choose the alternative that maximizes 

                                                           
7 D-efficiency is the geometric mean of the variances of the parameter estimates. The most efficient design is one 

that minimizes this mean [82]   
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their utility. It states that the utility Uk associated with an alternative k is a sum of its systematic 

and random components, as shown below. 

 

Uk = Vk + εk = xʹkβ + εk            (1) 

 

Where V is an indirect linear utility function, xk are vectors describing the attributes of the 

alternatives, β are the preference parameters for changes in utility arising from changes in 

attribute levels, and εk is the stochastic term, which allows probabilistic statements about choice 

behavior. 

 

The basic method used to analyze data generated by this type of experiment is the multinomial 

logit (MNL). Given a DCE design with J alternatives, the probability that a user, i, chooses 

alternative k in a standard MNL model is defined as: 

 

Pik(MNL) = exp (xʹikβ) / ΣJ

j=1 [ exp (xʹijβ)]           (2) 

 

MNL models however are restricted in that the preferences are assumed to be homogenous 

across responses, i.e. βs are same for everyone. Unlike MNL, which estimates only the mean 

preference effects of the attribute levels, the mixed logit accounts for heterogeneous 

preferences across respondents and correlation across repeated choices from the same 

respondent. It yields both a mean effect and a standard deviation of effects, i.e. it explicitly 

assumes that there is a distribution of preference weights across the sample [84]. Mixed logit 

probabilities are the integrals of standard logit probabilities over a density of parameters. Thus, 

in a mixed logit model, the choice probability for an alternative is given by  
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Pik(Mixed) = ∫ Pik(MNL).f(β).dβ           (3) 

 

Where f(β) is a density function. To estimate the random parameters, we use the hierarchical 

Bayes (HB) technique under the assumption of normally distributed preference parameters 

without correlation between attributes. These estimated random parameters model the 

unobserved heterogeneity in the respondents’ preferences [85]. If there is heterogeneity among 

individuals, HB can significantly improve a mixed logit model [86]. We rely on this mixed 

logit method for our model estimation.  

 

The parameter estimates β are estimated through maximum likelihood methods. The log 

likelihood (LL) of a model can thus serve as an indicator of the goodness of fit and explanatory 

power of the model, where lower values of [-2 * LL] indicate a better model fit.  

 

Lastly, the marginal willingness to accept (WTA) a compensation for an attribute A, if utility 

is linear in the preference parameters, is measured as its preference weight divided by the 

marginal utility of money M, where the latter is the negative of the preference weight of the 

payment attribute.  

 

WTAA = βA / (-βM)      (4) 

 

3.2 Research Design 

 

We focused our choice experiment study on the Delhi NCR, since it is a large consumer of 

electricity with a higher percentage of higher-income – and potentially flexible – households 

[87]. This region has a total population of about 46 million people [88]. We limited our focus 
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to Delhi and its neighboring towns of Gurgaon, Faridabad, Noida, and Ghaziabad, which 

cumulatively account for 26 million people. We expected that electricity savings from this 

region could be substantial enough to help meet future demand growth or support underserved 

areas. Additionally, by making the supply of energy more secure, DR can reduce the need for 

costly and polluting sources of captive power8.  

 

In determining the type of DR to use in our choice experiment, we noted that control-based 

programs may be more difficult for utilities to implement, given the infrastructure and resource 

requirements, and may have less acceptability in an energy-poor country like India. With this 

in mind, and considering the electricity sector’s initial familiarity with time-based tariffs in the 

I&C space, we designed our experiment around real time pricing (RTP)9 and ToU pricing, in 

which the peak and off-peak rates were designed considering average tariffs in the current 

upper blocks.  

 

Given the higher summertime electricity consumption, we focused our survey and experiment 

on the months from April through September, when the day temperatures consistently exceed 

35 degrees Celsius. We targeted upper middle-class households and above10, namely those with 

a minimum monthly summer consumption of 300 kWh, which do not need to be subsidized11. 

To limit our sample to this demographic, at the outset of the survey we asked respondents to 

indicate their average summer monthly electricity billing amounts, and only accepted responses 

from those who owned at least 1 AC and whose monthly bills had been above ₹2500 ($36) at 

                                                           
8 More than 10 million households in the country use battery storage UPS, and diesel generation sets across the 

country have a cumulative capacity of 90,000 MW [89][90]  
9 RTP rates are riskiest from the customer’s viewpoint, but they will most likely be associated with the lowest 
average price [91]  
10 The top 20% of households earn 45% of India’s income, and 87% of people living in metros belong to the top 
2 income quintiles [92]  
11 This would address equity concerns and also mitigate the impacts of the skewed subsidy structure 
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least once. We expected that such households would be more willing to pay for an uninterrupted 

power supply. We further assumed that some of these households might be less price-elastic 

and could generate added revenues for the utilities, while others would be more price-elastic 

and could be the main source of peak shifts, as has been noted in previous studies [93].  

 

We used JMP 14 to create a Bayesian D-optimal design of 12 choice sets which we divided 

into two surveys – thus each respondent was presented with 6 choice sets of two alternatives. 

The designs are D-optimal because they guarantee that all parameters can be estimated with 

maximal precision. They are Bayesian because they include prior knowledge about the 

parameters in the form of a parameter distribution in the design process [94]. 

 

We assigned these prior values to our parameter distribution based on desk research and expert 

consultations, and allowed for a large amount of uncertainty around our expectations by 

specifying large prior variances. We then generated the designs in JMP 14. The attributes and 

levels used in the choice sets are captured in Table 1. In designing these, we also pre-tested the 

survey among 6 respondents and took their feedback into consideration. 

 

Table 1: Choice Set Attributes and Levels 

Attribute Levels 

Rate structure  RTP hourly  ToU, three levels per day 

18.00 – 00.00 High 

00.00 – 07.00 Current  

07.00 – 18.00 Low 
 

ToU, two levels per day 

 

14.00 – 00.00 High 

00.00 – 14.00 Low 
 

High rate  50% above current rate 35% above current rate 20% above current rate 

Low rate  20% below current rate 35% below current rate 50% below current rate 

Reduction in 

power outages 

25% lower than present 50% lower than present 100% lower than present 

Expected 

savings 

₹400 per month ₹750 per month ₹1000 per month 
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A sample choice set is shown in Figure 3. The ordering of the 6 choice sets within each survey 

was randomized to reduce order effects. Besides the two alternative programs, each choice set 

also included a ‘no-choice option’ allowing respondents to opt out from any of the offered DR 

programs and stay with their current consumption pattern.   

 

 

 

Figure 3: Sample Choice Set 

 

The survey was designed in English; since most respondents in our target segments are 

comfortable with the language, this did not significantly increase the risk of selection bias12. 

                                                           
12 12% of Indians were English speakers in 2011 and the overall English-speaking population was expected to 
quadruple in a decade. The percentage of English speakers increases significantly among urban regions and higher 
income populations [95]  
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The questionnaire consisted of 30 questions and was split into 4 parts. Part one listed questions 

about the respondent’s electricity profile, such as appliance ownership, average power outages 

witnessed, availability of power backups, and average summertime monthly bills. Part two 

presented respondents with psychological profile questions, with scaled responses, to gauge 

their attitudes towards data privacy, convenience, technology, the environment, and their 

political affiliations. The order of these questions within part two was randomized. Part three 

included the choice exercise, and was randomly presented before or after part two, to further 

minimize order effects. In part three, we first listed the respondents’ existing block tariff 

structures as a reminder, customized to the town in which they lived. Since the average rate in 

the highest blocks across all the 5 towns is roughly ₹6.50 ($0.09) per kWh, we then reiterated 

this figure as the marginal tariff across towns, for simplicity and comparability. We further 

explained the structure of the choice set exercise, as well as the potential for savings through 

DR13. We clarified that these savings could be realized if respondents chose to manually adjust 

their usage of electricity, and reiterated this through the language used in the choice set. Part 

four concluded with demographic questions. All questions were phrased in neutral language to 

minimize respondent manipulation, and we attempted to reduce potential hypothetical bias by 

explaining the real-life potential for such programs.  

 

We conducted the survey through December 2018 and January 2019. Although these are winter 

months, we focused the questionnaire on summertime electricity characteristics to capture 

seasonal effects. To obtain these responses, the survey was disseminated online through 

Qualtrics. We used the following channels of distribution: (1) personal contacts as well as their 

contacts; (2) customers registered with a distribution utility – BSES – through one of its 

                                                           
13 The average peak demand savings, across DR trials, has been about 10%, complementing energy efficiency 

initiatives [96], and when avoided generation costs and over-drawing penalties are passed through to customers, 

the savings can be significant [97]  
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employees; (3) Facebook groups for residents of Delhi, Gurgaon, and Noida; (4) local alumni 

chapters of two academic institutions in Delhi; and (5) other public posts on social media such 

as LinkedIn, Twitter, and Reddit. This may be viewed as a blend of convenience sampling and 

snowball sampling. 

 

4. Results 

 

4.1 Sample Statistics 

 

Respondent data was anonymous and confidential. Although we do not have information about 

the non-response rates due to the nature of survey distribution, a total of 360 people filled out 

the survey. Of these, 278 were living in one of the five regions of the NCR under study. From 

these 278, 21 did not own any ACs, 32 had never had an electricity bill amount of above ₹2500, 

and 11 fell under both these categories. These 42 were thus ineligible for the choice set exercise. 

Of the remaining 236 eligible respondents, 167 (70.76%) completed the choice set exercise, 

clearly above the minimum sample size requirements for developing initial hypotheses [98]. 

The demographic details of these final 167 respondents are captured in Table 2 below.  

 

Most respondents were between 25 and 55 years in age, and the sample was skewed towards 

male respondents, typically the main income earners and decisionmakers in a household14. 

Given the targeted nature of our survey, the sample was expectedly highly educated and fell 

under the higher income brackets, compared to the Delhi per capita of ₹27,400 ($390) per 

month [100].   

 

                                                           
14 The total unemployment rate (female to male ratio) in India in 2018 was 1.56 [99] 
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Table 2: Respondent Demographics (N = 167) 

Characteristic Level Respondents Percentage 

Age (in years) [1] 18-24 

[2] 25-39 

[3] 40-54 

[4] 55-64 

[5] 65 and above 

11 

74 

35 

20 

17 

7.01% 

47.13% 

22.29% 

12.74% 

10.83% 

Gender [1] Female 

[2] Male 

43 

112 

27.74% 

72.26% 

Net monthly household income [1] <₹40,000 

[2] ₹40,001-₹60,000 

[3] ₹60,001-₹90,000 

[4] ₹90,001-₹150,000 

[5] ₹150,001-₹250,000 

[6] >₹250,000 

15 

5 

19 

26 

26 

37 

11.72% 

3.91% 

14.84% 

20.31% 

20.31% 

28.91% 

Educational degree attained [1] High school 

[2] Bachelor’s 

[3] Master’s or higher 

5 

41 

103 

3.36% 

27.52% 

69.13% 

Car ownership [1] None 

[2] One car 

[3] Two cars 

[4] Three or more cars 

13 

71 

53 

21 

8.23% 

44.94% 

33.54% 

13.29% 

Employment of domestic help [1] None 

[2] At least 1 person part-time 

[3] At least 1 person full-time 

16 

86 

57 

10.06% 

54.09% 

35.85% 

Housing type [1] Apartment 

[2] Independent floor 

[3] Independent house 

80 

33 

46 

50.31% 

20.75% 

28.93% 

Number of people in household [1] 1-2 people 

[2] 3-4 people 

[3] 5-6 people 

[4] >6 people 

39 

74 

33 

12 

24.68% 

46.84% 

20.89% 

7.59% 

Home ownership [1] Rent 

[2] Own 

[3] Other  

44 

112 

3 

27.67% 

70.44% 

1.89% 

 

The electricity profiles of these respondents are captured in Table 3. Most respondents lived in 

Delhi or Gurgaon and owned three or more room ACs. 95% faced summertime power outages 

of under four hours per day, and 90% of them had at least one type of power backup system at 

home. 
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Table 3: Respondent Electricity Usage Profiles (N = 167) 

Electricity Profile Question Level Respondents Percentage 

Part of National Capital Region 

(NCR) 

[1] Delhi 

[2] Gurgaon 

[3] Noida 

[4] Faridabad 

[5] Ghaziabad 

76 

65 

16 

2 

8 

45.51% 

38.92% 

9.58% 

1.20% 

4.79% 

Number of air conditioners at 

home 

[1] One 

[2] Two 

[3] Three or more 

19 

36 

112 

11.38% 

21.56% 

67.07% 

Monthly electricity bills amount 

in summer 

[1] <₹2,500 

[2] ₹2,500-₹5,000 

[3] ₹5,000-₹7,500 

[4] ₹7,500-₹10,000 

[5] >₹10,000 

16 

55 

37 

28 

28 

9.76% 

33.54% 

22.56% 

17.07% 

17.07% 

Other heavy appliances at home [1] One 

[2] Two  

[3] Three 

[4] Four 

15 

89 

45 

18 

8.98% 

53.29% 

26.95% 

10.78% 

Average daily power outages in 

summer 

[1] 0-2 hours 

[2] 2-4 hours 

[3] 4-6 hours 

[4] Above 6 hours 

127 

30 

6 

2 

76.97% 

18.18% 

3.64% 

1.21% 

Power backup system [1] None 

[2] Diesel-based 

[3] UPS/Inverter 

[4] Community backup 

17 

11 

85 

54 

10.18% 

6.59% 

50.90% 

32.33% 

Rooftop solar PV panels [1] No 

[2] Yes/Maybe 

146 

20 

87.95% 

12.05% 

 

The socio-psychological values of the respondents are captured in Table 4. Most were not very 

concerned about data privacy, suggesting that they may not be resistant to the introduction of 

smart meters. While 61% were very concerned about the environment, only 42% expressed a 

willingness to personally act on their concerns. A larger number of respondents seemed to be 

politically liberal than conservative, based on their news viewership, and most were 

comfortable with new technologies, and thus more likely to exhibit higher environmental 

concerns as found in previous studies [101].  
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Table 4: Respondent Values (N = 167) 

Socio-Psychological Value Level Respondents Percentage 

Privacy 1 (On activities being 

recorded) 

[1] Not at all comfortable 

[2] Not very comfortable  

[3] Fairly comfortable 

[4] Very comfortable 

2 

27 

61 

73 

1.23% 

16.56% 

37.42% 

44.79% 

Privacy 2 (On personal 

information being stored) 

[1] Not at all comfortable 

[2] Not very comfortable  

[3] Fairly comfortable 

[4] Very comfortable 

2 

13 

66 

83 

1.22% 

7.93% 

40.24% 

50.61% 

Environment 1 (Importance of 

environment to respondent) 

[1] Not at all important 

[2] Not very important 

[3] Neutral 

[4] Somewhat important 

[5] Very important 

6 

2 

11 

45 

99 

3.68% 

1.23% 

6.75% 

27.61% 

60.74% 

Environment 2 (Willingness to 

spend on sustainable products) 

[1] Completely disagree 

[2] Somewhat disagree 

[3] Neutral 

[4] Somewhat agree 

[5] Completely agree 

6 

13 

11 

65 

68 

3.68% 

7.97% 

6.75% 

39.88% 

41.72% 

Convenience (Preference for 

shopping online) 

[1] Completely disagree 

[2] Somewhat disagree 

[3] Neutral 

[4] Somewhat agree 

[5] Completely agree 

15 

26 

43 

59 

20 

9.20% 

15.95% 

26.38% 

36.20% 

12.27% 

Political leaning (Preferred news 

channel) 

[1] Right-leaning 

[2] Left-leaning 

[3] Others 

41 

70 

52 

25.15% 

42.94% 

31.90% 

Technology 1 (On new 

technologies being better) 

[1] Completely disagree 

[2] Somewhat disagree 

[3] Neutral 

[4] Somewhat agree 

[5] Completely agree 

2 

30 

35 

75 

22 

1.22% 

18.29% 

21.34% 

45.73% 

13.41% 

Technology 2 (Ease of use of 

new technology) 

[1] Completely disagree 

[2] Somewhat disagree 

[3] Neutral 

[4] Somewhat agree 

[5] Completely agree 

0 

23 

27 

78 

36 

0.00% 

14.02% 

16.46% 

47.56% 

21.95% 

 

4.2 Logit Model Results 
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We first estimated the mixed logit model with main effects only, and the results are captured 

in Table 5. In this analysis, the base rate structure is the twice-a-day ToU, and the estimates for 

the other two rate structures are relative to this. 

 

Table 5: Parameter Estimates and Goodness-of-Fit for Main Effects Model 
a
 

Effect Mixed logit 

 Mean Estimate Std. Dev 

Rate structure [RTP]   -4.7249** 1.6561 

Rate structure [ToU 3 times]    3.0103** 1.3057 

High rate -43.7282** 9.4445 

Low rate  24.0235** 6.8355 

Reduction in power outages  25.4045** 4.2851 

Expected monthly savings    0.0196** 0.0062 

No choice indicator -71.8557 18.1288 

Goodness of Fit Measure  Value 

-2 * LL  134.5537 

 Total Iterations: 15000 
a
 P < 0.01: ***|| P < 0.05: **|| P < 0.1: * 

 

Expectedly, of the three rate structures, the real-time pricing had the lowest utility to 

respondents, since it would require the most effort to track. However, although we had expected 

the twice-a-day ToU to be the most preferred due to its simplicity, the three-times-a-day ToU 

yielded the highest utility across rate structures, reflecting the fact that it offered 6 hours of 

peak pricing, unlike the 10 hours in the twice-a-day ToU plan. Respondents attached the 

greatest importance to the upper price band, and to the reductions they could expect in power 

outages – these indicate the high value people attach to security of supply and price 

considerations. 

 

Based on these mixed logit estimates, using Equation 4, we estimate the monthly savings that 

respondents would require – in rupees and as a percentage of the minimum qualifying bill 
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amount of ₹2500 – for a change in each of the attributes, shown in Table 6, assuming that the 

rate changes and reductions in power outages are linear in utility15. 

 

Table 6: Monthly Savings Required for Changes 

Attribute Change Desired Savings Required (% of ₹2500) 
Rate Structure ToU 3 times - RTP ₹ 393.14 (15.7%) 

Rate Structure ToU 3 times - ToU 2 times ₹ 65.85 (2.6%) 

High Rate 10% increase ₹ 222.24 (8.9%) 

Low Rate 10% reduction -₹ 122.10 (-4.9%) 

Reduction in Power Outages 10% reduction -₹ 129.12 (-5.2%) 

 

We then test for subject effects, and the results of this full model – capturing significant effects 

– are shown in Table 7. 

 

Table 7: Parameter Estimates and Goodness-of-Fit for Overall Model 
b
 

Effect Posterior Mean Posterior Std. 

Dev 

Subject Std. 

Dev 

Main Effects 

Rate structure [RTP]       -9.5297** 4.7590       34.3279 

Rate structure [ToU 3 times]        6.6491** 2.8787    23.7150 

High rate    -69.4249** 18.1029 33.5181 

Low rate      46.1991** 17.8895 85.9705 

Reduction in power outages      38.6684** 10.4992 21.6869 

Expected monthly savings      0.0642* 0.0344 0.0834 

No choice indicator    -24.5196** 10.6798   6.1153 

Subject Effects 

High rate * Monthly bills [2] -31.6950 22.2196 56.5519 

High rate * Monthly bills [3]     -57.7057** 22.2951 13.7876 

High rate * Monthly bills [4]     -91.1971** 30.1354 7.0693 

High rate * Monthly bills [5] -23.1002 55.3610 4.3074 

Reduction in power outages * Age [2]   21.8808 13.0266 10.9530 

Reduction in power outages * Age [3]   -17.2219* 8.9144 11.6467 

Reduction in power outages * Age [4] -30.4321 23.0164 2.6994 

Reduction in power outages * Age [5]     -29.3362** 14.3113 2.2346 

Reduction in power outages * Income [2]  13.4181 18.2701 30.9496 

Reduction in power outages * Income [3]    22.3316* 11.7106 24.7583 

                                                           
15 We tested for exponential utilities in the mixed logit model, but the goodness-of-fit and significance of 

parameter estimates was found to be lower in those cases 
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Reduction in power outages * Income [4]      25.7021** 11.6405 4.1048 

Reduction in power outages * Income [5]      56.0497** 11.6642 5.9376 

Reduction in power outages * Income [6]      63.2032** 23.2532 3.8995 

Expected savings * Environment 1 [2]       0.1868** 0.0794 0.2356 

Expected savings * Environment 1 [3]       0.1758** 0.0881 0.1382 

Expected savings * Environment 1 [4]     0.0595* 0.0329 0.0610 

Expected savings * Environment 1 [5]   0.0578 0.0426 0.0529 

No choice indicator * Convenience [2]     -23.6463** 11.8685 5.3641 

No choice indicator * Convenience [3]   -171.1601** 63.2396 116.6273 

No choice indicator * Convenience [4]      33.5092** 14.3121 6.0846 

No choice indicator * Convenience [5]      -491.1501* 253.4644 71.0172 

No choice indicator * Home ownership [1]      34.1568** 15.9839 4.0730 

No choice indicator * Home ownership [2]      28.3893** 11.3569 1.3049 

Goodness of Fit Measure Value 

-2 * Average LL 

Total Iterations: 15000, Burn-in Iterations: 7500 

69.1011 

b
 P < 0.01: ***|| P < 0.05: **|| P < 0.1: * 

 

5. Research Findings 

 

5.1 Cluster Analysis of Preferences 

 

Beyond the mixed logit model, we further study preference heterogeneity using a hierarchical 

clustering method to identify preference clusters, similar to the approaches previously with 

choice exercises [102][103]. Clustering sorts objects according to their similarity on desired 

dimensions and identifies groups that maximize within-group similarity and minimize 

between-group similarity [104]. This process is preferred over a single-step method like latent 

class logit because the former relies on a continuous distribution of preference heterogeneity – 

typically a more realistic scenario that allows for a parsimonious derivation of preference 

weights and their confidence intervals [102][105] – while the latter assumes a discrete 

distribution of preferences, in which heterogeneity is captured by membership in distinct 

classes [106]. 
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For the dimensions, we use the subject-level coefficients for each attribute from the main-

effects mixed logit model. Relying on the cubic clustering criterion values [107], we specify a 

four-cluster scheme, and identify the characteristics of the respondents within each cluster to 

examine differences between them. These characteristics are shown in Table 8, together with 

the averaged values of the attribute coefficients within each cluster. We do not pursue this 

exploratory analysis with confirmatory approaches such as regressions to determine predictors 

of cluster membership. 

 

Table 8: Cluster Analysis Based on Preferences 

 Sample 

N=167 

Cluster 1 

N=34 

Cluster 2 

N=39 

Cluster 3 

N=27 

Cluster 4 

N=67 

 

Demographic 

     

Age (55 years or above) 22.15% 18.18% 25.64% 33.33% 18.18% 

Gender (Female) 25.74% 18.18% 23.08% 25.93% 30.30% 

Income (≥ ₹150,000) 37.72% 27.27% 53.84% 40.74% 31.82% 

Car Ownership (≥ 3) 12.57% 18.18% 10.26% 14.81% 10.61% 

Number of people (≥ 5) 26.95% 36.36% 25.64% 22.22% 25.76% 

Home ownership 67.06% 69.69% 66.67% 70.37% 65.15% 

 

Electricity Profile 

     

People in Delhi 45.51% 48.48% 43.59% 44.44% 43.94% 

Number of ACs (≥ 3) 67.06% 63.63% 69.23% 74.07% 65.15% 

Monthly bills (≥ ₹7500) 33.53% 36.36% 28.20% 40.74% 31.82% 

Daily power outages (> 2 hrs.) 22.75% 24.24% 28.20% 25.93% 18.18% 

 

Value 

     

Privacy 1 [Level 3,4] 80.24% 87.88% 76.92% 66.67% 83.33% 

Environment 2 [Level 4,5] 79.64% 69.70% 87.18% 77.78% 80.30% 

Convenience [Level 4,5] 47.31% 42.42% 46.15% 51.85% 46.97% 

Technology 1 [Level 4,5] 58.08% 51.51% 69.23% 40.74% 63.64% 

 

Utility Coefficients 

     

Rate Structure (RTP)  -4.50 -3.03 -1.30 -20.88 -0.43 

Rate Structure (ToU 3)  3.13 -0.12 5.33 16.44 -1.97 

High Rate -48.90 -72.41 -21.23 -82.91 -39.59 

Low Rate 23.41 -9.65 19.95 4.77 49.63 

Reduction in Power Outages 26.84 28.07 74.28 5.16 7.08 

Expected Savings 0.02 -0.07 -0.02 0.04 0.08 
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5.2 General Utility-Based Options 

 

Yan et al [108], in a review of price-based DR, conclude that with smart metering technologies, 

pricing signals can be an effective instrument for peak demand reductions, reliability 

management, and emissions and cost reductions. With this in mind, we use our results to 

propose specific pricing signals for the Indian market. In doing so, we take two independent 

approaches to offering policy suggestions.  

 

First, we use the main effects model to derive four DR structures that offer a high utility, 

drawing from the approach used by Byun and Lee [109]. To do this, we obtain the part-worth 

of each attribute k by multiplying its coefficient, βk, with the range of attribute k. We note that 

the average sum of part-worths of the 24 D-efficient alternatives presented to respondents 

across choice sets is 21.29, and the standard distribution of their utility is 8.73.  

 

Assuming a normal distribution, we set a target sum of part-worths at the 90% level (right-

tailed p-value of 0.1) i.e. 32.47, and present four possible DR structures that approximately 

achieve this sum and that could feasibly be implemented among a general population, not 

taking into account the specific subject effects captured in the overall model. These four 

structures are presented in Table 9. For each proposed structure, we calculate the relative 

importance (RI) of each attribute, A – and its monetary value – within the structure, based on 

Equations 5 and 6. 

 

RIA = [ |UA| / ∑A=1

4
 |UA | ] * 100              (5) 
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ValueA = UA / ∑A=1

4
 UA * (Expected Savings)             (6) 

 

Table 9: Potential DR Structures based on Main Effects 

Attribute Structure 1 Structure 2 Structure 3 Structure 4 

Rate structure 

RI 

Value 

ToU 2 

5.84% 

₹84.33 

ToU 3 

7.69% 

₹76.45 

ToU 3 

6.52% 

₹90.48 

RTP 

10.25% 

-₹160.45 

High rate 

RI 

Value 

+15% 

22.32% 

-₹322.60 

+20% 

22.34% 

-₹222.10 

+30% 

28.40% 

-₹394.28 

+20% 

18.98% 

-₹296.99 

Low rate 

RI 

Value 

-35% 

28.61% 

₹413.54 

-40% 

24.55% 

₹244.04 

-30% 

15.60% 

₹216.61 

-30% 

15.64% 

₹244.74 

Reduction in power 

outages 

RI 

Value 

50% 

43.23% 

₹624.73 

70% 

45.42% 

₹451.62 

90% 

49.49% 

₹687.19 

100% 

55.13% 

₹862.70 

Expected monthly savings 

 

₹800 ₹550 ₹600 ₹650 

 

5.3 Specific Enrollment-Based Options 

 

Secondly, we develop six potential policy options – which are based on simulated sample 

enrollment rates – using the estimates from the full mixed logit model in Table 7, adopting the 

approach used by Bennett et al [110]. These options are complementary to the options proposed 

in Section 6.2, since we cannot predict their population enrollment rates. In these simulations, 

the predicted enrolment probability in a DR program k for respondent i ϵ {1…n} in the sample 

is estimated by the binomial logit characterization 

 

Pik(Enroll) = exp (βxxk + βyyik) / [1 + exp (βxk)]             (7) 
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Where yik are the user-specific indicator variables. Thus, the minimum payments ck for the 

program k are the level of compensation at which the model predicts a targeted enrolment rate 

of R:  

 

ΣN

i=1 F [Pik(Enroll) | ck] / N = R              (8) 

 

Where F [.] takes a value of 1 if Pik > 0.5, and 0 otherwise. For the sample simulations, we 

estimate ck for various values of R, i.e. we estimate the minimum payments necessary to predict 

various enrolment rates of the households in our sample. 

 

Table 10 shows the six policy options, with the reductions in power outages and the monthly 

savings that the sample respondents would require for predicted enrollment rates of 60%, 75%, 

and 90%. 
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Table 10: Policy Options for Various Levels of Sample Enrollment 

Option Rate 

Structure 

High Rate Low Rate Reductions in 

Power Outages 

Required Monthly Savings for Sample Enrollment of 

60% 75% 90% 

1 RTP Up to 30% higher Up to 20% lower 30% ₹140 ₹240 ₹380 

2 RTP Up to 40% higher Up to 40% lower  80% ₹10 ₹250 ₹620 

3 ToU 2 times 40% higher 50% lower 40% ₹150 ₹320 ₹510 

4 ToU 2 times 20% higher  10% lower 20% ₹70 ₹160 ₹250 

5 ToU 3 times 35% higher 20% lower 40% ₹130 ₹270 ₹460 

6 ToU 3 times 50% higher  35% lower 60% ₹190 ₹370 ₹670 
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6. Policy Implications 

 

6.1 Discussion of estimates 

 

The overall model in Table 7 shows that the proportional utilities of the five attributes in 

relation to each other remain similar to the main effects model. However, the respondent 

profiles do affect the preferences among the various attribute levels.  

 

The disutility from the high rate increases as respondents’ monthly bill amounts increase, 

indicating a greater unwillingness to risk higher bill amounts. The high coefficients also 

indicate – in line with literature [48] – that respondents are very sensitive to prices and/or risk-

averse, particularly if they’re already paying a lot. 

 

Younger respondents tend to derive a greater utility from reductions in power outages. 13 of 

the 17 respondents who did not have a power backup system, and 22 of the 38 who faced 

summertime power outages above 2 hours per day, fell in the first and second age categories, 

which may partly explain this trend. Yang et al. [111] had found, using survey data, that 

younger consumers are more likely to shift to ToU pricing programs than older ones, although 

their analysis was not related to energy security. Alongside security of supply issues, younger 

populations also tend to use more technological appliances [112] and may thus be more reliant 

on electricity for entertainment. 

 

Higher levels of income also correlate to a greater utility from reductions in power outages. It 

is possible that richer populations are more willing to spend money on comfort. In line with 

this, 33 of the 63 respondents (52.4%) with a stated income of above ₹150,000 ($2140) per 
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month valued convenience highly, compared with the sample average of 48.4%. This is in line 

with our initial expectations, that higher-income households would be more willing to pay for 

an uninterrupted power supply, and could generate added revenues for utilities. It is also in line 

with other literature [113][114] from developed countries, based on methods such as choice 

experiments and secondary survey data, which shows that higher incomes lead to greater values 

for comfort and convenience and correlates negatively with energy curtailment behavior. 

 

The utility from expected monthly savings was increasing at a slowing rate with increases in 

the levels of environmental concern. However, the increase in utility was marginal, suggesting 

that people would not be willing to sacrifice too much in the interest of benefitting the 

environment. This was also seen from the relationship between the first and the second 

environmental questions, on the concern for the environment and the willingness to spend on 

more sustainable products, in Table 4. It runs against previous findings [46] from developed 

country contexts, although the potential environmental benefits of DR were not explained in 

our study. 

 

People derived a lower utility from staying on the current plan if they owned their homes rather 

than renting them, and if they valued convenience more highly. This was somewhat 

counterintuitive, since staying with the status quo would inconvenience people less than 

shifting to a new tariff structure that requires a more active monitoring of rates.  

 

We did not find significant effects for education rates, the presence of domestic help such as 

maids, power outages and backup systems, values towards privacy and technology. We expect 

that response bias, sample selection and size, and cultural differences may have played a role 
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in these omissions. Further, to reduce cognitive burden and given the low market penetration 

rates, we did not include smart appliances in our study. 

 

In discussing these results, we note that the Indian economy is growing rapidly, implying that 

more people will eventually move into the higher levels of income where expected price 

elasticity might be lower, as seen from the value of reduced power outages, yielding greater 

revenues for the utilities. At the same time, many more people may also enter the middle- to 

upper-middle income ranges, creating the potential for significantly higher peaks if 

consumption patterns are not meaningfully shifted.  

 

6.2 Cluster Analysis of Preferences 

 

In analyzing the clusters specified in Section 5.1, we see that Cluster 1 had more negative 

preference weights overall, and was more likely to select the no choice option i.e. reject the 

proposed DR structures and remain on the current tariff plan. Relatively, this cluster had the 

highest share of male respondents as well as the lowest income earners. The household size 

was the largest in this cluster, and AC ownership was lower. Respondents had the lowest 

privacy concerns, lowest scores on convenience, and lowest willingness to spend more for 

environmentally-friendly products. 

 

Cluster 2 had a strong preference for reductions in power outages and in general experienced 

less disutility from the higher peak rates. This cluster had the highest incomes, though car 

ownership was lower. Respondents in this cluster were most willing to spend more on 

environmentally-friendly products, and were very comfortable with new technologies. 
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Cluster 3 exhibited very strong preferences for the rate structures and higher peak rates, and 

comparatively weak preferences for reductions in power outages. This cluster had more older 

respondents, smaller household sizes, and the highest rates of home and car ownership. 

Respondents also owned more ACs and had larger monthly electricity bills. They had stronger 

privacy concerns, and greater preferences for convenience, but were least comfortable with 

new technologies. 

 

Lastly, cluster 4 – with the largest population – had comparatively strong preferences for the 

lower off-peak rates and for the expected savings, and were relatively indifferent to the rate 

structures. This cluster included more younger respondents, as well as more female 

respondents. They had lower incomes and fewer cars, and the lowest rates of home ownership. 

Respondents in this cluster also faced the fewest power outages. 

 

Though we note that certain characteristics, such as home ownership rates, were not 

significantly different across the clusters, these clusters indicate that even among higher income 

households in the NCR, different groups within the sample have different concerns, likely 

shaped by their different characteristics. Further, we acknowledge that this sample may not 

represent the middle- and upper income residents across India; however, it offers initial insights 

into the large populations of the NCR, and can be used as a basis for further studying similar 

urban regions in India. These varying concerns will have different effects on future DR 

adoption. 

 

6.3 General Utility-Based Options 
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Of the four DR structures in Table 9, the most preferred rate structure, three-times-a-day ToU, 

could potentially have a greater variance in the upper and lower rates, and would require the 

lowest monthly savings as long as it achieves a moderate reduction in power outages. RTP 

structures could achieve the same utility, so long as the rates do not vary greatly and they realize 

significant reductions in power outages. As we expect a twice-a-day ToU structure to realize a 

lesser reduction in power outages, their acceptance based on this utility approach would require 

higher monthly bill savings. 

 

6.4 Specific Enrollment-Based Options 

 

Among the six policy options in Table 10 above, the cheapest option is option 4, where the 

flattest rate structure compensates for a limited reduction in power outages, enabling a 90% 

sample enrollment for savings of just ₹250 ($3.60) per month16. However, all six options 

predict a 90% sample enrollment for savings of under ₹700 ($10) per month, which is under 

30% of the minimum summer monthly bill amounts of the participating households. 

 

Figure 4 additionally shows the predicted enrollment rates for these policy options at various 

levels of expected monthly savings. Options 2 and 4 have the highest predicted enrollment 

when the expected monthly savings are negligible. In the middle brackets of expected savings, 

around ₹100-₹400 ($1.40-$5.70) per month, options 1 and 4 – offering both the lowest peak 

rates and least reductions in power outages – would enroll the greatest shares of the sample. 

Options 3 and 5 would witness stable increases in enrollment. Option 1, offering RTP with 

                                                           
16 We note that what is cheapest for customers may not be the most valuable to the power system, and any DR 
program implementation will involve trade-offs between savings for customers and the costs to the utilities 
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higher off-peak rates and fewer reductions in power outages, is the least attractive in the 

absence of significant savings. 

 

 

Figure 4: Sample Enrollment Rates for Policy Options 

 

We note that the predicted enrollment rates would be dependent not just on the levels of 

expected savings, but also on the DR structures being able to offer these predicted reductions 

in power outages. 

 

6.5 Economic Value of Demand Response Implementation 

 

We explore the economic value of shifts in consumption once a dynamic pricing program is 

introduced. We however do not look at the costs of implementing such a program. We choose 
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the rates structures outlined in Option 5 above, since it falls in the middle of the other options 

in terms of enrollment rates, as seen in Figure 4.  

 

We consider the effects on Delhi alone, and do not include the other NCR regions in this study. 

There were about 3.7 million households in Delhi in 2009-10 [115]; we expect that with 

urbanization, population growth rates, and nuclearization of families that there are currently 

around 4 million households.  

 

We then assume that the DR program is applied to the richest 20% of Delhi’s population, 

similar to the set-up in this choice experiment, which comes to about 800,000 households of 

the 3.7 million. We expect that these 20% of households are responsible for about 45% of the 

city’s residential electricity consumption, in line with the shares of income mentioned in 

Section 3.2.  

 

In Option 5, the difference between the peak (35% higher, or ₹8.8) and off-peak (20% lower, 

or ₹5.2) rates is ₹3.6 per kWh. Given that each room AC uses an average of 1.8 kW [116][117], 

then for each hour that an AC’s usage is shifted from peak to off-peak hours, the marginal 

impact on savings would come to (1) ₹3.6 x 1.8 = ₹6.48 ($0.09), relative to consuming at peak 

hours, and (2) ₹1.3 x 1.8 = ₹2.34 ($0.03), relative to the current average tariff of ₹6.5. Thus, if 

a household shifts consumption of 1 AC for two hours each evening, the monthly savings for 

a household consuming 407 kWh come to about (1) ₹390 ($5.60), compared to consuming at 

peak hours (10.47% of the current average bill), or (2) ₹140 ($2.00), compared to consuming 

under the current tariff structure (3.76% of the current average bill). This looks at only the 

marginal impacts of shifting AC usage and does not consider other impacts of shifts in the 
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overall consumption profile. These savings can become more significant if further flexibility 

is induced in other ACs, water heaters, washing machines, and other appliances.  

 

Further, the residential sector accounts for 44% of Delhi’s total electricity demand [118]. For 

simplicity – and given a lack of available data – we assume it constitutes 50%, or 3500 MW, 

of the 7000 MW peak. If the top 20% of households are responsible for 45% of total residential 

consumption, in line with India’s income trends [92], and 50% of the shares at peak hours for 

simplicity, then they would account for 1750 MW of the peak demand. Shifts of even 10%, 

which have been observed in DR programs in other countries [96][119], could thus lead to 

reductions in peak demand of up to 175 MW.  

 

7. Conclusion  

 

This paper used a discrete choice experiment to test the acceptability of implementing a 

dynamic pricing-based demand response program in the residential sector in India.  

 

India is a developing economy with a large low-income population, many still lacking regular 

access to electricity. Additionally, it is experiencing high economic growth, high growth in 

consumption, and consequently large increases in greenhouse gas emissions. This creates the 

incentive for using DR to improve the security of supply, particularly with India’s ambitious 

renewables targets. The opportunity for implementing such DR programs comes from India’s 

smart grid ambitions and its smart metering targets.  

 

The analysis focused on a part of the national capital region of Delhi. This was due to 

considerations of homogeneity – each state in India has its own electricity tariff structure – and 
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socio-cultural comparability. With a population of 26 million people, an implementation even 

in this region alone can yield sizeable effects, particularly as Delhi has the highest per capita 

energy consumption rates in the country. The expectation is that any peak reductions can be 

used to improve electricity access to underserved populations, while any additional revenues 

to utilities can be used to improve the provision of electricity services and the grid 

infrastructure.  

 

The target population was higher income households who had a summertime monthly bill 

above ₹2500 and who owned at least one room AC. We obtained 167 usable responses for our 

analysis, where each respondent was presented with six choice sets of two alternatives. Each 

alternative was comprised of five attributes with three possible levels. 

 

The results showed that respondents preferred ToU pricing to RTP structures, because they are 

easier to track. Within ToU structures, they preferred the three-rate structure to the two-rate 

structure, perhaps because the former offered a fewer number of hours of peak pricing than the 

latter. In general, however, respondents attached a lower utility to the different types of rate 

structures than to the remaining attributes. 

 

Although the off-peak rates were not as important, respondents exhibited a strong preference 

for lower peak time rates, particularly if their monthly electricity bills were already high. This 

indicated a greater aversion to risk and a greater unwillingness for potentially further inflating 

existing bill amounts.  

 

Respondents attached a high value to reductions in power outages, indicative of the extent of 

supply-side problems. Younger and higher income respondents in particular attached a higher 
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utility to such reductions, owing to a mix of greater technological appliance usage and lower 

ownership of power backup systems among the former, and a greater value of convenience 

among the latter group. Although respondents who were more concerned about the 

environment attached a lower utility to the required monthly savings, this amount was not 

substantial and indicated that environmental concern does not necessarily translate to action. 

This was in line with the risk of hypothetical bias that is faced by choice experiments, and also 

suggests that environmental issues are a secondary consideration in energy consumption. A 

cluster analysis demonstrated that respondents that exhibit similar preferences also share 

similar characteristics that are distinct from those of respondents in other clusters. 

 

Based on results, the paper then presented a number of potential DR structures that could be 

implemented, and that were designed to either yield a high general utility or achieve a high 

predicted enrollment among the sample. Lastly, it offered a rough estimate of the potential 

benefits – to households and utilities – of implementing one of these structures. 

 

Overall, the analysis indicates that a dynamic pricing-based DR program could be feasible in 

such a developing country context, particularly when it is designed for higher income 

households and addresses local electricity sector considerations. While framing it as an 

environmental solution may help to some extent, the key concerns for the local population are 

expected savings and reductions in power outages. Thus, any DR program would have to 

clearly be able to address people’s price sensitivities and security of supply concerns.  

 

We acknowledge that we did not offer smart appliances and smart meters in our hypothetical 

choice exercise, although their availability may also affect the desirability of such programs, 

and the potential impacts on power outages were hypothetical. 
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Aside from the risk of hypothetical bias, discrete choice experiments should also be interpreted 

differently from actual trials, because the short run and long run price elasticities are 

measurably different due to behavioral learning over time, and due to stock changes (e.g. 

buying smart or more efficient appliances) [120][121]. Price-based DR programs also run the 

risk that they may attract consumers who benefit without responding to the price, simply 

because they already have a favorable consumption pattern [46], although this has not been 

found to be a significant factor in previous analyses [45]. 

 

However, we believe that the potential benefits of choice experiments, particularly as indicators 

of market feasibility, outweigh their limitations. Although the sample size was limited, the 

research offers indicative results that may be validated through further research. Future studies 

looking at the Indian context may consider applying similar methods to other cities, in order to 

consider the design requirements for a national roll-out, and may look at the techno-economic 

feasibility and challenges of actually implementing such programs.  
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