toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xie, Y. url  openurl
  Title Bioreactor strategies for sustainable nitrogen cycling based on mineralization/nitrification, partial nitritation/anammox or sulfur-based denitratation Type Doctoral thesis
  Year (down) 2021 Publication Abbreviated Journal  
  Volume Issue Pages iv, 205 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the biogeochemical flows on Earth, the reactive nitrogen (Nr) level has three times surpassed the safe boundary. The severe transgression of this boundary goes against sustainable planetary development. The modern food production process excessively relies on synthetic Nr fertilizers from the Haber– Bosch process. However, the massive loss of valuable nitrogen resources (i.e., 78-89%) from agriculture has been causing severe nitrogen cascade. Besides, the domestic wastewater in some local areas is discharged without proper treatment, making it a nonnegligible source of Nr pollution for local water bodies. Anthropogenic activities keep pumping out Nr pollution via point-source and non-point-source (NPS) emissions. Compared to the NPS emissions, point sources give visible and identified waste streams. It is vital to intervene the nitrogen cascade from point sources and facilitate humanity back to the safe Nr boundary. The collected and collectible Nr streams from food production, waste management, and recycling secondary raw materials can be used as waste-based fertilizers for agricultural cultivation. Besides the well-investigated recovery of inorganic Nr, organic Nr accounts for a massive Nr proportion on the Earth. Proper handling and treatment make these useful organic fertilizers for soil-based cultivation. However, these organic Nr fertilizers cannot directly apply to fertigation or hydroponic cultivation systems, and further biological conversion via nitrogen mineralization and nitrification to nitrate is essential. Besides the direct Nr cycling, the indirect Nr cycling ‘over the atmosphere’ should also be considered. In this way, the nitrogen cycle can be completed via converting the waste Nr back to nitrogen gas (i.e., Nr removal) and then synthesizing into Nr again. The municipal wastewater treatment plants receive a vast amount of low-strength Nr wastewater (mainly as ammonium) daily. Compared to the conventional nitrification/denitrification process, partial nitritation/anammox (PN/A) is considered a resource- and cost-effective technology for wastewater with a low COD/N ratio. Moreover, the novel autotrophic denitratation/anammox process could be a good Nr removal process for wastewater containing both ammonium and nitrate. This Ph.D. thesis aimed to develop Nr recovery, conversion, and removal bioreactor strategies for different types of waste streams and biomass. Nr recovery was investigated on high-strength Nr waste streams for fertigation or hydroponic applications in Chapters 2 and 3. On the other hand, Nr removal was studied on the medium- to low-strength Nr waste streams in Chapters 4 and 5. In Chapter 2, a novel mineralization and nitrification system was proposed, producing nutrient solutions from solid organic fertilizers for hydroponic systems. Batch tests showed that aerobic incubation at 35°C could realize the NO₃⁻-N production efficiency above 90% from a novel microbial fertilizer. Subsequently, in the stirred tank bioreactor test, NO₃⁻-N production efficiency stabilized in a range of 44-51% under the influent loading rate of 400 mg TN L⁻¹ d⁻¹ at a 5-day HRT. Using Ca(OH)₂ and Mg(OH)₂ as pH control reagents generated the nutrient solutions with different P, Ca, and Mg nutrient levels. After modeling the nutrient balancing process, the proportion of organic-sourced NO₃⁻-N in the Hoagland nutrient solution (HNS) of Ca(OH)₂ scenario was 92.7%, while only 37.4% in the Mg(OH)₂ scenario. Compared to commercial scenarios, the total costs of the organic-sourced HNS can be cost-competitive for hydroponic cultivation. In Chapter 3, the Nr recovery as nitrate (NO₃⁻-N) from diluted human urine (around 670 mg N L⁻¹) was explored in a trickling filter (TF) for the first time. A novel concept of in-situ integrating the TF system into hydroponic systems was proposed as meaningful progress towards sustainable agriculture. The difference between synthetic and real urine in nitrification efficiency was found to be negligible. The full nitrification of alkalinized real urine was realized in the pH-controlled TF by calcium hydroxide (Ca(OH)₂) at around pH 6. The TF could handle different urine collection batches and maintain relatively stable nitrification performance, with NO₃⁻-N production efficiency and rate of 88±3% and 136±4 mg N L⁻¹ d⁻¹, respectively. The optimal HLR to realize this nitrification performance was 2 m³ m⁻² h⁻¹, with energy consumption of 1.8 kWh electricity kg⁻¹ NO₃⁻-N production. Ca(OH)₂, as a cheap base, its triple advantages on urine alkalinization, full nitrification, and macronutrient supplementation were successfully demonstrated in our proposed concept. In Chapter 4, towards more sustainable wastewater treatment, the feasibility of one-stage partial nitritation/anammox (PN/A) was investigated in three parallel packed-bed trickling filters (TFs), with three types of carrier materials of different specific surface areas. Synthetic wastewater containing 100-250 mg NH₄⁺-N L⁻¹ was tested to mimic medium-strength household waste streams after carbon removal. Interestingly, the cheap carrier based on expanded clay achieved similar rates as commercially used plastic carrier materials. The top passive ventilation combined with an optimum hydraulic loading rate of 1.8 m³ m⁻² h⁻¹ could reach approximately 60% total nitrogen (TN) removal at a rate of 300 mg N L⁻¹ d⁻¹. A relatively low NO₃⁻-N production (13%) via PN/A was achieved in TFs. Most of the TN removal took place in the top compartment, where anammox activity was the highest. Energy consumption estimation (0.78 kWh electricity g⁻¹ N removed) suggested that the proposed process could be a suitable low-cost alternative for nitrogen removal. In Chapter 5, coupling sulfur-driven denitratation (SDN) with anammox was proposed to treat the wastewater containing both NO₃⁻-N and NH₄⁺-N, like the secondary effluents of mainstream PN/A processes. To explore the feasibility of sufficient and stable NO₂⁻-N accumulation via SDN in the long term, the effects of pH setpoints, residual NO₃⁻-N level, and biomass-specific NO₃⁻-N loading rate (BSNLR) were investigated. Alternating the pH setpoints between 7.0 and 8.5 could temporarily stimulate the NO₂⁻-N accumulation. Both the residual NO₃⁻-N and BSNLR showed highly positive correlations with the NO₂⁻-N accumulation efficiency. Under the control of pH 8.5, 1.0±0.8 mg NO₃⁻-N L⁻¹ and 150±42 mg NO₃⁻-N g⁻¹ VSS d⁻¹, SDN could produce 6.4±1.0 mg NO₂⁻-N L⁻¹ in the short term. Thiobacillus members may play a crucial role in managing the NO₂⁻-N accumulation, but the reduction of abundance and possible adaptation significantly impaired the efficacy of control strategies in the long run. Overall, novel technologies have been proposed to sustainably convert Nr in waste streams and biomass. The decision for Nr recovery versus removal and synthesis should be based on specific cases with the best environmental, economic, and human-health sustainability. In the future, the Nr management concepts should be further improved to make the nitrogen cycle more sustainable with higher resource use efficiency and less Nr emissions to the environment. Although the thesis is mainly focused on limited types of Nr waste streams, it pointed out the direction of sustainable Nr management and could facilitate the Nr back to the safe boundary in the long run.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182099 Serial 7563  
Permanent link to this record
 

 
Author Van Hal, M. url  openurl
  Title Photo(electro)catalytic air purification and soot degradation with simultaneous energy recovery Type Doctoral thesis
  Year (down) 2021 Publication Abbreviated Journal  
  Volume Issue Pages XXXII, 203 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Today’s society is increasingly challenged by a range of urgent environmental problems. Air pollution is one of these pressing topics. This thesis will mainly focus on the degradation of volatile organic compounds (VOCs) and particulate matter (PM) – more specifically soot. A second globally urging topic is the quest for sustainable energy production. To simultaneously target both environmental problems, a photoelectrochemical (PEC) cell will be studied in this thesis, combining air purification and sustainable energy production in a single device. Photocatalysis is used at the anode of the PEC cell to drive the air purification process, while the energy contained in the degraded compounds is (partially) recovered at the cathode, either as H2 gas or electricity. The first two experimental chapters focus on the proof of concept of such an unbiased all-gas phase PEC cell targeting VOC degradation, using both TiO2- and WO3-based photocatalysts. In the two following experimental chapters the photocatalytic soot oxidation capacity of these TiO2- and WO3-based photocatalysts was studied. In the final experimental chapter the previously obtained results were combined, striving towards an efficient, sunlight-driven and soot-degrading waste gas-to-energy PEC cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184521 Serial 8378  
Permanent link to this record
 

 
Author Roegiers, J. file  openurl
  Title Development of combined photocatalytic and active carbon fiber technology for indoor air purification based on Multiphysics models Type Doctoral thesis
  Year (down) 2021 Publication Abbreviated Journal  
  Volume Issue Pages XXX, 197 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Exposure to volatile organic compounds (VOCs) remains a major public health concern. Indoor VOC concentrations typically far exceed outdoor levels due to a variety of emission sources and the stringent insulation measures that are imposed today. Many attempts have been made to use photocatalysis for indoor air purification. In an ideal situation, photocatalysis is capable of complete mineralization of VOCs to H2O and CO2, without any byproduct formation. Moreover, the process can take place at standard atmospheric conditions, i.e. ambient temperature and atmospheric pressure. However, successful exploitation is still impeded due to low conversion efficiency, significant pressure loss (and hence a high energy consumption) and byproduct formation. In the first part of this thesis an attempt was made to tackles these problems by designing a novel type of photocatalytic (PCO) reactor. The PCO device consists of a cylindrical vessel filled with TiO2-coated glass tubes and equipped with UV fluorescence lamps. It was investigated in terms of fluid dynamics, coating properties, UV-light distribution and photocatalytic activity. Experimental data was later used to develop and calibrate a Multiphysics model. The model proved to be a useful tool for designing and upscaling the PCO reactor. Consequently, an optimized prototype reactor was constructed and tested according the CEN-EN-16846-1 standard for VOC removal. Although the prototype showed promising results for lab-scale conditions, it struggled with byproduct formation when purifying ppb-level VOCs. In the second part of this thesis, activated carbon adsorption was investigated in order to combine it with photocatalysis. Activated carbon fiber was opted for its fast kinetics, high adsorption capacity and thermo-electrical regeneration. The filter was studied in detail regarding the adsorption of polar and apolar VOCs at indoor air concentration levels and regeneration capabilities. Experimental data was used to develop a Multiphysics model for activated carbon adsorption as well. Consequently, a novel type of ACF filter was developed using the Multiphysics model, which was equipped with electrodes in the tips of the pleats for effective thermal regeneration. In the last part, the combination of both ACF and PCO was studied using a realistic case study. Based on the Multiphysics model, the feasibility of a so-called hybrid air purification device could be investigated. The Multiphysics model shows promising results for this hybrid PCO-ACF system and hence, a demo setup was constructed for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181137 Serial 6860  
Permanent link to this record
 

 
Author Gielis, J.; Shi, P.; Beirinckx, B.; Caratelli, D.; Ricci, P.E. file  openurl
  Title Lamé-Gielis curves in biology and geometry Type P3 Proceeding
  Year (down) 2021 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178828 Serial 8145  
Permanent link to this record
 

 
Author Gielis, J.; Ricci, P.E.; Tavkhelidze, I. pdf  url
doi  openurl
  Title The Möbius phenomenon in Generalized Möbius-Listing surfaces and bodies, and Arnold's Cat phenomenon Type A1 Journal article
  Year (down) 2021 Publication Advanced Studies : Euro-Tbilisi Mathematical Journal Abbreviated Journal  
  Volume 14 Issue 4 Pages 17-35  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Möbius bands have been studied extensively, mainly in topology. Generalized Möbius-Listing surfaces and bodies providing a full geometrical generalization, is a quite new field, motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. Our research is motivated by this reduction of complexity. In the study of cutting Generalized Möbius-Listing bodies with polygons as cross section, the conditions under which a single body results, displaying the Möbius phenomenon of a one-sided body, have been determined for even and odd polygons. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin. The Möbius phenomenon is important, since the process of cutting (or separation of zones in a GML body in general) then results in a single body, not in different, intertwined domains. In all previous works it was assumed that the cross section of the GML bodies is constant, but the main result of this paper is that it is sufficient that only one cross section on the whole GML structure meets the conditions for the Möbius phenomenon to occur. Several examples are given to illustrate this.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000774655100002 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183081 Serial 8258  
Permanent link to this record
 

 
Author Gielis, J. openurl 
  Title Er bestaan geen absurde, irrationele, onregelmatige of onderling niet-onmeetbare meetkundige getallen Type A2 Journal article
  Year (down) 2021 Publication Wiskunde en onderwijs Abbreviated Journal  
  Volume 47 Issue 188 Pages 23-33  
  Keywords A2 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2032-0485 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183083 Serial 7934  
Permanent link to this record
 

 
Author Cerruti, M.; Stevens, B.; Ebrahimi, S.; Alloul, A.; Vlaeminck, S.E.; Weissbrodt, D.G. url  doi
openurl 
  Title Enrichment and aggregation of purple non-sulfur bacteria in a mixed-culture sequencing-batch photobioreactor for biological nutrient removal from wastewater Type A1 Journal article
  Year (down) 2020 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 8 Issue Pages 557234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mixed-culture biotechnologies are widely used to capture nutrients from wastewater. Purple non-sulfur bacteria (PNSB), a guild of anoxygenic photomixotrophic organisms, rise interest for their ability to directly assimilate nutrients in the biomass. One challenge targets the aggregation and accumulation of PNSB biomass to separate it from the treated water. Our aim was to enrich and produce a concentrated, fast-settling PNSB biomass with high nutrient removal capacity in a 1.5-L, stirred-tank, anaerobic sequencing-batch photobioreactor (SBR). PNSB were rapidly enriched after inoculation with activated sludge at 0.1 gVSS L–1 in a first batch of 24 h under continuous irradiance of infrared (IR) light (>700 nm) at 375 W m–2, with Rhodobacter reaching 54% of amplicon sequencing read counts. SBR operations with decreasing hydraulic retention times (48 to 16 h, i.e., 1–3 cycles d–1) and increasing volumetric organic loading rates (0.2–1.3 kg COD d–1 m–3) stimulated biomass aggregation, settling, and accumulation in the system, reaching as high as 3.8 g VSS L–1. The sludge retention time (SRT) increased freely from 2.5 to 11 days. Acetate, ammonium, and orthophosphate were removed up to 96% at a rate of 1.1 kg COD d–1 m–3, 77% at 113 g N d–1 m–3, and 73% at 15 g P d–1 m–3, respectively, with COD:N:P assimilation ratio of 100:6.7:0.9 m/m/m. SBR regime shifts sequentially selected for Rhodobacter (90%) under shorter SRT and non-limiting concentration of acetate during reaction phases, for Rhodopseudomonas (70%) under longer SRT and acetate limitation during reaction, and Blastochloris (10%) under higher biomass concentrations, underlying competition for substrate and photons in the PNSB guild. With SBR operations we produced a fast-settling biomass, highly (>90%) enriched in PNSB. A high nutrient removal was achieved by biomass assimilation, reaching the European nutrient discharge limits. We opened further insights on the microbial ecology of PNSB-based processes for water resource recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603626100001 Publication Date 2021-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:174085 Serial 7921  
Permanent link to this record
 

 
Author Huang, W.; Li, Y.; Niklas, K.J.; Gielis, J.; Ding, Y.; Cao, L.; Shi, P. url  doi
openurl 
  Title A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo Type A1 Journal article
  Year (down) 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 12 Pages 2073  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many cross-sectional shapes of plants have been found to approximate a superellipse rather than an ellipse. Square bamboos, belonging to the genus Chimonobambusa (Poaceae), are a group of plants with round-edged square-like culm cross sections. The initial application of superellipses to model these culm cross sections has focused on Chimonobambusa quadrangularis (Franceschi) Makino. However, there is a need for large scale empirical data to confirm this hypothesis. In this study, approximately 750 cross sections from 30 culms of C. utilis were scanned to obtain cross-sectional boundary coordinates. A superellipse exhibits a centrosymmetry, but in nature the cross sections of culms usually deviate from a standard circle, ellipse, or superellipse because of the influences of the environment and terrain, resulting in different bending and torsion forces during growth. Thus, more natural cross-sectional shapes appear to have the form of a deformed superellipse. The superellipse equation with a deformation parameter (SEDP) was used to fit boundary data. We find that the cross-sectional shapes (including outer and inner rings) of C. utilis can be well described by SEDP. The adjusted root-mean-square error of SEDP is smaller than that of the superellipse equation without a deformation parameter. A major finding is that the cross-sectional shapes can be divided into two types of superellipse curves: hyperellipses and hypoellipses, even for cross sections from the same culm. There are two proportional relationships between ring area and the product of ring length and width for both the outer and inner rings. The proportionality coefficients are significantly different, as a consequence of the two different superellipse types (i.e., hyperellipses and hypoellipses). The difference in the proportionality coefficients between hyperellipses and hypoellipses for outer rings is greater than that for inner rings. This work informs our understanding and quantifying of the longitudinal deformation of plant stems for future studies to assess the influences of the environment on stem development. This work is also informative for understanding the deviation of natural shapes from a strict rotational symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602546300001 Publication Date 2020-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2020 IF: 1.457  
  Call Number UA @ admin @ c:irua:174472 Serial 8622  
Permanent link to this record
 

 
Author Do, N.H.; Pham, H.H.; Le, T.M.; Lauwaert, J.; Diels, L.; Verberckmoes, A.; Do, N.H.N.; Tran, V.T.; Le, P.K. url  doi
openurl 
  Title The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw Type A1 Journal article
  Year (down) 2020 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 10 Issue 1 Pages 21263  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Difficulties in the production of lignin from rice straw because of high silica content in the recovered lignin reduce its recovery yield and applications as bio-fuel and aromatic chemicals. Therefore, the objective of this study is to develop a novel method to reduce the silica content in lignin from rice straw more effectively and selectively. The method is established by monitoring the precipitation behavior as well as the chemical structure of precipitate by single-stage acidification at different pH values of black liquor collected from the alkaline treatment of rice straw. The result illustrates the significant influence of pH on the physical and chemical properties of the precipitate and the supernatant. The simple two-step acidification of the black liquor at pilot-scale by sulfuric acid 20w/v% is applied to recover lignin at pH 9 and pH 3 and gives a percentage of silica removal as high as 94.38%. Following the developed process, the high-quality lignin could be produced from abundant rice straw at the industrial-scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608856300027 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved Most recent IF: 4.6; 2020 IF: 4.259  
  Call Number UA @ admin @ c:irua:176054 Serial 8655  
Permanent link to this record
 

 
Author Rocha Segundo, I.; Landi Jr., S.; Margaritis, A.; Pipintakos, G.; Freitas, E.; Vuye, C.; Blom, J.; Tytgat, T.; Denys, S.; Carneiro, J. url  doi
openurl 
  Title Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO₂ Type A1 Journal article
  Year (down) 2020 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 10 Issue 11 Pages 2152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000593731700001 Publication Date 2020-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access  
  Notes Approved Most recent IF: 5.3; 2020 IF: 3.553  
  Call Number UA @ admin @ c:irua:172621 Serial 6580  
Permanent link to this record
 

 
Author Tavkhelidze, I.; Gielis, J.; Pinelas, S. pdf  doi
isbn  openurl
  Title About some methods of analytic representation and classification of a wide set of geometric figures with “complex” configuration Type H1 Book chapter
  Year (down) 2020 Publication Abbreviated Journal  
  Volume Issue Pages 347-359 T2 - Differential and difference equations  
  Keywords H1 Book chapter; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-56322-6 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174479 Serial 7407  
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; Tavkhelidze, I. pdf  doi
isbn  openurl
  Title The general case of cutting GML bodies : the geometrical solution Type H1 Book chapter
  Year (down) 2020 Publication Abbreviated Journal  
  Volume Issue Pages 397-411 T2 - Differential and difference equations  
  Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-56322-6 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174477 Serial 7991  
Permanent link to this record
 

 
Author Koch, K.; Ysebaert, T.; Denys, S.; Samson, R. pdf  doi
openurl 
  Title Urban heat stress mitigation potential of green walls: A review Type A1 Journal article
  Year (down) 2020 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban For Urban Gree  
  Volume 55 Issue Pages 126843-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Cities with resilience to climate change appear to be a vision of the future, but are inevitable to ensure the quality of life for citizens and to avoid an increase in civilian mortality. Urban green infrastructure (UGI), with the focus on vertical green, poses a beneficial mitigation and adaptation strategy for challenges such as climate change through cooling effects on building and street level. This review article explores recent literature regarding this considerable topic and investigates how green walls can be applied to mitigate this problem. Summary tables (see additional information) and figures are presented that can be used by policy makers and researchers to make informed decisions when installing green walls in built-up environments. At last, knowledge gaps are uncovered that need further investigation to exploit the benefits at its best.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000593921600001 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access  
  Notes Approved Most recent IF: 6.4; 2020 IF: 2.113  
  Call Number UA @ admin @ c:irua:172985 Serial 6650  
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; De Paepe, J.; Vanoppen, M.; Alonso-Fariñas, B.; Coessens, W.; Alloul, A.; Christiaens, M.E.R.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E. url  doi
openurl 
  Title A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions Type A1 Journal article
  Year (down) 2020 Publication Desalination Abbreviated Journal Desalination  
  Volume 495 Issue Pages 114634  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions will rely on regenerative life support as resupply of water, oxygen and food comes with constraints. The International Space Station (ISS) relies on an evaporation/condensation system to recover 74–85% of the water in urine, yet suffers from repetitive scaling and biofouling while employing hazardous chemicals. In this study, an alternative non-sanitary five-stage treatment train for one “astronaut” was integrated through a sophisticated monitoring and control system. This so-called Water Treatment Unit Breadboard (WTUB) successfully treated urine (1.2-L-d−1) with crystallisation, COD-removal, ammonification, nitrification and electrodialysis, before it was mixed with shower water (3.4-L-d−1). Subsequently, ceramic nanofiltration and single-pass flat-sheet RO were used. A four-months proof-of-concept period yielded: (i) chemical water quality meeting the hygienic standards of the European Space Agency, (ii) a 87-±-5% permeate recovery with an estimated theoretical primary energy requirement of 0.2-kWhp-L−1, (iii) reduced scaling potential without anti-scalant addition and (iv) and a significant biological reduction in biofouling potential resulted in stable but biofouling-limited RO permeability of 0.5 L-m−2-h−1-bar−1. Estimated mass breakeven dates and a comparison with the ISS Water Recovery System for a hypothetical Mars transit mission show that WTUB is a promising biological membrane-based alternative to heat-based systems for manned Space missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582172900007 Publication Date 2020-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.9 Times cited Open Access  
  Notes Approved Most recent IF: 9.9; 2020 IF: 5.527  
  Call Number UA @ admin @ c:irua:171514 Serial 6523  
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I. url  doi
openurl 
  Title The general case of cutting of Generalized Möbius-Listing surfaces and bodies Type A1 Journal article
  Year (down) 2020 Publication 4Open Abbreviated Journal  
  Volume 3 Issue Pages 7-48  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The original motivation to study Generalized Möbius-Listing GML surfaces and bodies was the observation that the solution of boundary value problems greatly depends on the domains. Since around 2010 GML’s were merged with (continuous) Gielis Transformations, which provide a unifying description of geometrical shapes, as a generalization of the Pythagorean Theorem. The resulting geometrical objects can be used for modeling a wide range of natural shapes and phenomena. The cutting of GML bodies and surfaces, with the Möbius strip as one special case, is related to the field of knots and links, and classifications were obtained for GML with cross sectional symmetry of 2, 3, 4, 5 and 6. The general case of cutting GML bodies and surfaces, in particular the number of ways of cutting, could be solved by reducing the 3D problem to planar geometry. This also unveiled a range of connections with topology, combinatorics, elasticity theory and theoretical physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2557-0250 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174471 Serial 7992  
Permanent link to this record
 

 
Author De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. pdf  doi
openurl 
  Title Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification Type A1 Journal article
  Year (down) 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 185 Issue Pages 116223  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery from source-separated urine can shorten nutrient cycles on Earth and is essential in regenerative life support systems for deep-space exploration. In this study, a robust two-stage, energy-efficient, gravity-independent urine treatment system was developed to transform fresh real human urine into a stable nutrient solution. In the first stage, up to 85% of the COD was removed in a microbial electrolysis cell (MEC), converting part of the energy in organic compounds (27-46%) into hydrogen gas and enabling full nitrogen recovery by preventing nitrogen losses through denitrification in the second stage. Besides COD removal, all urea was hydrolysed in the MEC, resulting in a stream rich in ammoniacal nitrogen and alkalinity, and low in COD. This stream was fed into a membrane-aerated biofilm reactor (MABR) in order to convert the volatile and toxic ammoniacal nitrogen to non-volatile nitrate by nitrification. Bio-electrochemical pre-treatment allowed to recover all nitrogen as nitrate in the MABR at a bulk-phase dissolved oxygen level below 0.1 mg O2 L-1. In contrast, feeding the MABR directly with raw urine (omitting the first stage), at the same nitrogen loading rate, resulted in nitrogen loss (18%) due to denitrification. The MEC and MABR were characterised by very distinct and diverse microbial communities. While (strictly) anaerobic genera, such as Geobacter (electroactive bacteria), Thiopseudomonas, a Lentimicrobiaceae member, Alcaligenes and Proteiniphilum prevailed in the MEC, the MABR was dominated by aerobic genera, including Nitrosomonas (a known ammonium oxidiser), Moheibacter and Gordonia. The two-stage approach yielded a stable nitrate-rich, COD-low nutrient solution, suitable for plant and microalgae cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580639800035 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited Open Access  
  Notes Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:170524 Serial 6461  
Permanent link to this record
 

 
Author Liu, J.-W.; Wu, S.-M.; Wang, L.-Y.; Tian, G.; Qin, Y.; Wu, J.-X.; Zhao, X.-F.; Zhang, Y.-X.; Chang, G.-G.; Wu, L.; Zhang, Y.-X.; Li, Z.-F.; Guo, C.-Y.; Janiak, C.; Lenaerts, S.; Yang, X.-Y. pdf  doi
openurl 
  Title Pd/Lewis acid synergy in macroporous Pd@Na-ZSM-5 for enhancing selective conversion of biomass Type A1 Journal article
  Year (down) 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem  
  Volume Issue Pages 1-6  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Pd nanometal particles encapsulated in macroporous Na-ZSM-5 with only Lewis acid sites have been successfully synthesized by a steam-thermal approach. The synergistic effect of Pd and Lewis acid sites have been investigated for significant enhancement of the catalytic selectivity towards furfural alcohol in furfural hydroconversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000554645800001 Publication Date 2020-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited 1 Open Access  
  Notes ; We acknowledge a joint DFG-NSFC project (DFG JA466/39-1, NSFC grant 51861135313). This work was also supported by National Key R&D Program of China (2017YFC1103800), NSFC (U1662134, 21711530705), Jilin Province Science and Technology Development Plan (20180101208JC), HPNSF (2016CFA033), FRFCU (19lgzd16) and ISTCP (2015DFE52870). ; Approved Most recent IF: 4.5; 2020 IF: 4.803  
  Call Number UA @ admin @ c:irua:171178 Serial 6579  
Permanent link to this record
 

 
Author Zhu, W.; Li, J.; Wang, B.; Chen, G. pdf  doi
openurl 
  Title Enhancement of pollutants removal from saline wastewater through simultaneous anammox and denitrification (SAD) process with glycine betaine addition Type A1 Journal article
  Year (down) 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 315 Issue Pages 123784  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Enhanced pollutants removal from saline wastewater was investigated in simultaneous anammox and denitrification (SAD) process with glycine betaine (GB) addition. Long-term operation indicated the optimal GB dose was around 0.4 mM, which enhanced both anammox and denitrifying activity by 30% and 45%, respectively. The total nitrogen and organic removal rates were 0.38 +/- 0.2 kgN/m(3)/d and 0.34 +/- 0.3 kgCOD/m(3)/d, respectively, which increased by 34.5% and 20.5%. Independent of GB dose, denitrifying activity was promoted, but anammox activity was drastically deteriorated after excessive GB addition. The optimal GB dose predicated by both Gaussian and Modified-Boltzmann models were 0.42-0.45 mM. Besides, the bacterial activity recovery after excessive GB addition could be analyzed by the Modified-Boltzmann model. With 1.5 mM GB, granular floatation occurred since numerous gas bubbles were inside the granules. In general, exogenous GB addition can mitigate salinity inhibition and promote pollutants removal from saline wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560717900013 Publication Date 2020-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was financially supported by the National Natural Science Foundation of China (51878362), China Postdoctoral Science Foundation (2017M610410, 2018T110665) and State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-environmental Sciences, Chinese Academy of Sciences) (18K02ESPCR). The authors also thank Dr. Yuan Hou and Dr. Chao Fang from University of Antwerp for numerous discussion. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:171118 Serial 6508  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal Arroyo, J.M.; Van Tendeloo, M.; Chatzigiannidou, I.; Molina, J.; Nop, S.; Boon, N.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Mainstream partial nitritation/anammox with integrated fixed-film activated sludge : combined aeration and floc retention time control strategies limit nitrate production Type A1 Journal article
  Year (down) 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 314 Issue Pages 123711-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Implementation of mainstream partial nitritation/anammox (PN/A) can lead to more sustainable and cost-effective sewage treatment. For mainstream PN/A reactor, an integrated fixed-film activated sludge (IFAS) was operated (26 °C). The effects of floccular aerobic sludge retention time (AerSRT_floc), a novel aeration strategy, and N-loading rate were tested to optimize the operational strategy. The best performance was observed with a low, but sufficient AerSRTfloc (~7d) and continuous aeration with two alternating dissolved oxygen setpoints: 10 min at 0.07–0.13 mg O2 L−1 and 5 min at 0.27–0.43 mg O2 L−1. Nitrogen removal rates were 122 ± 23 mg N L−1 d−1, and removal efficiencies 73 ± 13%. These conditions enabled flocs to act as nitrite sources while the carriers were nitrite sinks, with low abundance of nitrite oxidizing bacteria. The operational strategies in the source-sink framework can serve as a guideline for successful operation of mainstream PN/A reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558601200004 Publication Date 2020-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 3 Open Access  
  Notes ; D.S. was supported by a Ph.D. grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWTVlaanderen, SB-131769). M.V.T. was supported by a Ph.D. SB Fellowship from the Research Foundation -Flanders (FWO-Vlaanderen, 1S03218N). ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:170054 Serial 6559  
Permanent link to this record
 

 
Author Parchomenko, A.; Nelen, D.; Gillabel, J.; Vrancken, K.C.M.; Rechberger, H. pdf  doi
openurl 
  Title Evaluation of the resource effectiveness of circular economy strategies through multilevel statistical entropy analysis Type A1 Journal article
  Year (down) 2020 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 161 Issue Pages 104925-16  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In a circular economy (CE), materials, components and products should be kept at the highest level of functionality, while phenomena like dilution, mixing and contamination, often referred to as the loss of resources, should be avoided. One method that can assess the performance of systems to concentrate or avoid dilution of resources is Statistical Entropy Analysis (SEA). Up till now, the method has been applied on the substance level (elements and compounds) only, but showed its applicability to various scales and a variety of systems. Further development of the method allowed to consider information on the product, component and material levels, which makes the method applicable to different combinations of CE strategies, both destructive (e.g. recycling) and non-destructive (e.g. reuse). The method is demonstrated on a simplified vehicle life-cycle, which is modeled through four component groups and six materials. It shows that the method allows to evaluate different CE strategies and identify critical stages which lead to the most severe resource and functionality losses. Based on the methods results, it is possible to determine a perfect circularity reference level, representing a system state that preserves functionality and avoids resource losses. The introduction of a circularity reference level enables the establishment of a framework for resource effectiveness in which diluting and concentrating effects of activities (e.g. sorting) are quantified. The distance of a system to an ideal circular state determines the deviation from a resource-effective system that maintains the original product functionality over a maximum period of time, with minimal efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569610400032 Publication Date 2020-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited Open Access  
  Notes ; The authors would like to acknowledge the support of Prof. David Laner for his valuable inputs, as well as the financial support of Vito (Flemish Institute for Technological Research) and Altstoff Recycling Austria AG (ARA). ; Approved Most recent IF: 13.2; 2020 IF: 3.313  
  Call Number UA @ admin @ c:irua:171925 Serial 6512  
Permanent link to this record
 

 
Author Wuyts, W.; Marin, J.; Brusselaers, J.; Vrancken, K. pdf  doi
openurl 
  Title Circular economy as a COVID-19 cure? Type A1 Journal article
  Year (down) 2020 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 162 Issue Pages 105016-2  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569614800012 Publication Date 2020-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited 3 Open Access  
  Notes ; Part of this work was financially supported by the Research Foundation – Flanders (FWO), Belgium and the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. We want to thank Lynne Stearman Falick and the editor for proofreading and providing comments on previous drafts. ; Approved Most recent IF: 13.2; 2020 IF: 3.313  
  Call Number UA @ admin @ c:irua:171912 Serial 6469  
Permanent link to this record
 

 
Author Capson-Tojo, G.; Batstone, D.J.; Grassino, M.; Vlaeminck, S.E.; Puyol, D.; Verstraete, W.; Kleerebezem, R.; Oehmen, A.; Ghimire, A.; Pikaar, I.; Lema, J.M.; Hülsen, T.; Grassino, M.; Hulsen, T. pdf  doi
openurl 
  Title Purple phototrophic bacteria for resource recovery : challenges and opportunities Type A1 Journal article
  Year (down) 2020 Publication Biotechnology Advances Abbreviated Journal Biotechnol Adv  
  Volume 43 Issue Pages 107567-27  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a “removal and disposal” approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved−1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3–2.2 and 0.1–0.3 $·kgdry biomass−1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5–2.0 $·kg−1) appears as a promising valorisation route.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000572355300007 Publication Date 2020-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-9750 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16 Times cited 6 Open Access  
  Notes ; Tim Hulsen acknowledges The Queensland Government, GHD, Ridley, Aquatec Maxcon and Ingham for financial support as part of an Advanced Queensland Industry Fellowship (061-2018). This project is supported by Meat and Livestock Australia through funding from the Australian Government Department of Agriculture, Water and the Environment (Australia; RnD4Profit-16-03-002) as part of its Rural R&D for Profit program and the partners. Gabriel Capson-Tojo is grateful to the Xunta de Galicia (Spain) for his postdoctoral fellowship (ED481B-2018/017). The authors acknowledge Eucalyp, Freepick, Good Ware, Nhor Phai, photo3idea_studio, smalllikea and Smashicons for the icons used (taken from www.flaticon.com). ; Approved Most recent IF: 16; 2020 IF: 10.597  
  Call Number UA @ admin @ c:irua:169736 Serial 6588  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year (down) 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6367  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year (down) 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6368  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Eimer, D.A.; Idris, Z. url  doi
openurl 
  Title Viscosity measurement and correlation of unloaded and CO₂-loaded aqueous solutions of N-methyldiethanolamine + 2-amino-2-methyl-1-propanol Type A1 Journal article
  Year (down) 2020 Publication Journal Of Chemical And Engineering Data Abbreviated Journal J Chem Eng Data  
  Volume 65 Issue 6 Pages 3072-3078  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work contributes to new and complementary experimental viscosity data for blended amine mixtures of aqueous N-methyldiethanolamine + 2-amino-2-methyl-1-propanol (MDEA + AMP) solutions with and without CO2 at different temperatures and mass fractions. For the unloaded MDEA + AMP solutions, measurements were conducted with total amine mass fractions ranging from 0.30 to 0.60. In the case of CO2-loaded aqueous MDEA + AMP solutions, experiments were performed at CO2 loadings ranging from 0.11 to 0.80. Proposed correlations were used to represent viscosity at the unloaded and CO2-loaded solutions within experimental uncertainty.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541740100016 Publication Date 2020-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9568; 1520-5134 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.6 Times cited Open Access  
  Notes Approved Most recent IF: 2.6; 2020 IF: 2.323  
  Call Number UA @ admin @ c:irua:180363 Serial 8737  
Permanent link to this record
 

 
Author Van De Vijver, E.; Delbecque, N.; Verdoodt, A.; Seuntjens, P. pdf  doi
openurl 
  Title Estimating the urban soil information gap using exhaustive land cover data: The example of Flanders, Belgium Type A1 Journal article
  Year (down) 2020 Publication Geoderma Abbreviated Journal Geoderma  
  Volume 372 Issue Pages 114371  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Human activities related to urbanization and industrialization have established a vast territory of urban soil worldwide. On traditional soil maps, urban and industrial areas usually appear as blind spots as they were beyond the interest of national soil survey campaigns. Furthermore, these soil maps are likely already outdated with respect to urban soil due to rapid urban expansion in recent decades. This research aims to evaluate the use of land cover data to estimate the urban soil information gap considering the highly urbanized region of Flanders, Belgium, as a case study. The current extent and spatial distribution of anthropogenic urban soil (1) was estimated through reclassification of recently acquired (2012) exhaustive land cover data, discriminating three qualitative likelihood levels (high-intermediate-low) of anthropogenic influence by urbanization, and (2) compared with its occurrence as represented by the 'Technosols/Not Surveyed area' in the legacy soil map of Belgium, as this map unit best matches with the likelihood for anthropogenic urban soil at the time of the National Soil Survey conducted between end 1940s and mid 1970s. The proposed reclassification of the land cover map resulted in 16.3% and 16.7% of Flanders' total area that corresponds with a high and intermediate likelihood for anthropogenic urban soil, which highlights the underestimation of the anthropogenic urban soil extent as represented by the 'Technosol/Not Surveyed' unit in the legacy soil map (only 13.7%). Moreover, a more realistic spatial pattern of anthropogenic urban soil occurrence was obtained, providing an improved basis for urban soil spatial analysis studies. The produced anthropogenic urban soil likelihood map therefore presents a useful supporting tool for coordinating future soil surveys in urban environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535713600006 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-7061 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 6.1; 2020 IF: 4.036  
  Call Number UA @ admin @ c:irua:170153 Serial 6510  
Permanent link to this record
 

 
Author Shi, P.; Ratkowsky, D.A.; Gielis, J. url  doi
openurl 
  Title The generalized Gielis geometric equation and its application Type A1 Journal article
  Year (down) 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 4 Pages 645-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural shapes exhibit surprising symmetry and can be described by the Gielis equation, which has several classical geometric equations (for example, the circle, ellipse and superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse shapes due to limitations of its power-law hypothesis. In the present study, we propose a generalized version by introducing a link function. Thus, the original Gielis equation can be deemed to be a special case of the generalized Gielis equation (GGE) with a power-law link function. The link function can be based on the morphological features of different objects so that the GGE is more flexible in fitting the data of the shape than its original version. The GGE is shown to be valid in depicting the shapes of some starfish and plant leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540222200156 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 4 Open Access  
  Notes ; This research was funded by the Jiangsu Government Scholarship for Overseas Studies (grant number: JS-2018-038). ; Approved Most recent IF: 2.7; 2020 IF: 1.457  
  Call Number UA @ admin @ c:irua:168141 Serial 6526  
Permanent link to this record
 

 
Author Borah, R.; Gupta, S.; Mishra, L.; Chhabra, R.P. pdf  doi
openurl 
  Title Heating of liquid foods in cans: Effects of can geometry, orientation, and food rheology Type A1 Journal article
  Year (down) 2020 Publication Journal Of Food Process Engineering Abbreviated Journal J Food Process Eng  
  Volume Issue Pages e13420-24  
  Keywords A1 Journal article; Pharmacology. Therapy; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, the effect of geometry and orientation of food cans on the heating characteristics of processed liquid foods and the resulting lethality target values as a function of the processing times have been investigated. For this purpose, the governing differential equations have been solved numerically for elliptical and cylindrical cans of varying aspect ratios in different orientations in order to delineate their effect on the heating rate (especially of the slowest heating zone [SHZ]) and lethality values over wide ranges of rheological features including shear thinning (n < 1), Newtonian (n = 1), and shear thickening (n > 1) behaviors. The flow and heat transfer characteristics were analyzed with the help of velocity vectors, isotherm contours, average Nusselt number, SHZ temperature and heat penetration parameters, and lethality target values. Also, comparisons were made in terms of the sterilization time and heat penetration parameters to identify the preferable geometries and orientations of food cans for effective heating of non-Newtonian foodstuffs. Finally, favorable conditions in terms of the shape and orientation of the can and the rheological properties have been delineated which lead to superior heating characteristics. Practical Applications Processed foodstuffs are produced in various forms ranging from that in solid, liquid, or as heterogeneous mixtures. Often such liquid and heterogeneous suspensions products are viscous non-Newtonian in character and their thermal processing (including pasteurization, sterilization, etc.) tends to be much more challenging than that of their Newtonian counterparts like air and water. This work explores heating of non-Newtonian liquid foodstuffs in cans of various shapes, geometries and in different orientations in the free convection regime. The results show that depending upon the rheological properties of the products, some orientations and/or geometries offer potential advantages in terms of shorter processing times and lethality values. This information can be of great potential in customizing the design of containers for different food products as well as of different rheological properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526147100001 Publication Date 2020-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0145-8876 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited 2 Open Access  
  Notes ; Science and Engineering Research Board, Department of Science and Technology, Government of India, New Delhi, Grant/Award Number: SB/S2/JCB-06/2014 ; Approved Most recent IF: 3; 2020 IF: 1.37  
  Call Number UA @ admin @ c:irua:168539 Serial 6532  
Permanent link to this record
 

 
Author Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N₂O emission for mainstream partial nitritation/anammox Type A1 Journal article
  Year (down) 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 9 Pages 5822-5831  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system’s nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530651900057 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was supported by the European Commission Horizon 2020 Program through Marie Curie Individual Fellowship (N2OPNA-708592). W. V.B. and S. L. were supported by grants from the Flanders Innovation and Entrepreneurship Agency [IWT-SBO ProCure project (IWT/50052) by IWT-SBO ProCure and internal Uantwerpen funding]. The authors are grateful to the research collaboration. The authors declare no conflict of interest. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:168829 Serial 6596  
Permanent link to this record
 

 
Author Muys, M.; Papini, G.; Spiller, M.; Sakarika, M.; Schwaiger, B.; Lesueur, C.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality Type A1 Journal article
  Year (down) 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 307 Issue Pages 123242-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528857700051 Publication Date 2020-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; The authors kindly thank (i) i-Cleantech Flanders MIP (Milieu-innovatieplatform) for financial support through the MicroNOD project (Microbial Nutrients on Demand), (ii) Erik Fransen (StatUA) for the helpful advice on the statistical analysis, and (iii) Ilse De Leersnyder and Diederik Leenknecht for assistance with the EAA analysis. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:169452 Serial 6491  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: