toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. pdf  doi
openurl 
  Title Tight-binding studio : a technical software package to find the parameters of tight-binding Hamiltonian Type A1 Journal article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput Phys Commun  
  Volume 254 Issue Pages 107379-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present the Tight-Binding Studio (TB Studio) software package that calculates the different parameters of a tight-binding Hamiltonian from a set of Bloch energy bands obtained from first principle theories such as density functional theory, Hartree-Fock calculations or semi-empirical band-structure theory. This will be helpful for scientists who are interested in studying electronic and optical properties of structures using Green's function theory within the tight-binding approximation. TB Studio is a cross-platform application written in C++ with a graphical user interface design that is user-friendly and easy to work with. This software is powered by Linear Algebra Package C interface library for solving the eigenvalue problems and the standard high performance OpenGL graphic library for real time plotting. TB Studio and its examples together with the tutorials are available for download from tight-binding.com. Program summary Program Title: Tight-Binding Studio Program Files doi:http://dx.doi.org/10.17632/j6x5mwzm2d.1 Licensing provisions: LGPL Programming language: C++ External routines: BLAS, LAPACK, LAPACKE, wxWidgets, OpenGL, MathGL Nature of problem: Obtaining Tight-Binding Hamiltonian from a set of Bloch energy bands obtained from first-principles calculations. Solution method: Starting from the simplified LCAO method, a tight-binding model in the two-center approximation is constructed. The Slater and Koster (SK) approach is used to calculate the parameters of the TB Hamiltonian. By using non-linear fitting approaches the optimal values of the SK parameters are obtained such that the TB energy eigenvalues are as close as possible to those from first-principles calculations. We obtain the expression for the Hamiltonian and the overlap matrix elements between the different orbitals of the different atoms in an orthogonal or non-orthogonal basis set. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000541251200030 Publication Date 2020-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.3 Times cited 14 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government, Belgium and M. Nakhaee was supported by a BOF-fellowship (UAntwerpen), Belgium. ; Approved Most recent IF: 6.3; 2020 IF: 3.936  
  Call Number UA @ admin @ c:irua:170149 Serial 6630  
Permanent link to this record
 

 
Author Leishman, A.W.D.; Menezes, R.M.; Longbons, G.; Bauer, E.D.; Janoschek, M.; Honecker, D.; DeBeer-Schmitt, L.; White, J.S.; Sokolova, A.; Milošević, M.V.; Eskildsen, M.R. url  doi
openurl 
  Title Topological energy barrier for skyrmion lattice formation in MnSi Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 10 Pages 104416-104419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report the direct measurement of the topological skyrmion energy barrier through a hysteresis of the skyrmion lattice in the chiral magnet MnSi. Measurements were made using small-angle neutron scattering with a custom-built resistive coil to allow for high-precision minor hysteresis loops. The experimental data were analyzed using an adapted Preisach model to quantify the energy barrier for skyrmion formation and corroborated by the minimum-energy path analysis based on atomistic spin simulations. We reveal that the skyrmion lattice in MnSi forms from the conical phase progressively in small domains, each of which consisting of hundreds of skyrmions, and with an activation barrier of several eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000568994800005 Publication Date 2020-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award No. DE-SC0005051 (A.W.D.L., G.L., M.R.E.), the Research Foundation -Flanders (FWO-Vlaanderen) (R.M.M., M.V.M.), and Brazilian Agencies FACEPE, CAPES and CNPq (R.M.M.). M.J. was supported by the LANL Directed Research and Development (LDRD) program via the Directed Research (DR) project “A New Approach to Mesoscale Functionality: Emergent Tunable Superlattices (20150082DR).” E.D.B. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under project “Quantum Fluctuations in Narrow-Band Systems.” A portion of this research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. Part of this work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland. We acknowledge useful conversations with E. Louden, D. Green, and A. Francisco in preparation for these experiments, as well as the assistance of K. Avers, G. Taufer, M. Harrington, M. Bartkowiak, and C. Baldwin in completing them. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:171959 Serial 6631  
Permanent link to this record
 

 
Author Conti, S.; Neilson, D.; Peeters, F.M.; Perali, A. url  doi
openurl 
  Title Transition metal dichalcogenides as strategy for high temperature electron-hole superfluidity Type A1 Journal article
  Year 2020 Publication Condensed Matter Abbreviated Journal  
  Volume 5 Issue 1 Pages 22-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Condensation of spatially indirect excitons, with the electrons and holes confined in two separate layers, has recently been observed in two different double layer heterostructures. High transition temperatures were reported in a double Transition Metal Dichalcogenide (TMD) monolayer system. We briefly review electron-hole double layer systems that have been proposed as candidates for this interesting phenomenon. We investigate the double TMD system WSe2/hBN/MoSe2, using a mean-field approach that includes multiband effects due to the spin-orbit coupling and self-consistent screening of the electron-hole Coulomb interaction. We demonstrate that the transition temperature observed in the double TMD monolayers, which is remarkably high relative to the other systems, is the result of (i) the large electron and hole effective masses in TMDs, (ii) the large TMD band gaps, and (iii) the presence of multiple superfluid condensates in the TMD system. The net effect is that the superfluidity is strong across a wide range of densities, which leads to high transition temperatures that extend as high as TBKT=150 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000523711200017 Publication Date 2020-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl), the Methusalem Foundation and the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:168658 Serial 6636  
Permanent link to this record
 

 
Author Bafekry, A.; Akgenc, B.; Shayesteh, S.F.; Mortazavi, B. pdf  url
doi  openurl
  Title Tunable electronic and magnetic properties of graphene/carbon-nitride van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 505 Issue Pages 144450-144459  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we explore the electronic properties of C3N, C3N4 and C4N3 and graphene (Gr) van der Waals heterostructures by conducing extensive first-principles calculations. The acquired results show that these heterostructures can show diverse electronic properties, such as the metal (Gr on C3N), semiconductor with narrow band gap (Gr on C3N4) and ferromagnetic-metal (Gr on C4N3). We furthermore explored the effect of vacancies, atom substitution, topological, antisite and Stone-Wales defects on the structural and electronic properties of considered heterostructures. Our results show that the vacancy defects introduce localized states near the Fermi level and create a local magnetic moment. The Gr/C3N heterostructures with the single and double vacancy defects exhibit a ferromagnetic-metal, while Stone-Wales defects show an indirect semiconductor with the band gap of 0.2 eV. The effects of adsorption and insertion of O, C, Be, Cr, Fe and Co atoms on the electronic properties of Gr/C3N have been also elaborately studied. Our results highlight that the electronic and magnetic properties of garphene/carbon-nitride lateral heterostructures can be effectively modified by point defects and impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000510846500052 Publication Date 2019-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 26 Open Access  
  Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:167732 Serial 6638  
Permanent link to this record
 

 
Author Chaves, A.; Moura, V.N.; Linard, F.J.A.; Covaci, L.; Milošević, M.V. doi  openurl
  Title Tunable magnetic focusing using Andreev scattering in superconductor-graphene hybrid devices Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 12 Pages 124303  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We perform the wavepacket dynamics simulation of a graphene-based device where propagating electron trajectories are tamed by an applied magnetic field toward a normal/superconductor interface. The magnetic field controls the incidence angle of the incoming electronic wavepacket at the interface, which results in the tunable electron-hole ratio in the reflected wave function due to the angular dependence of the Andreev reflection. Here, mapped control of the quasiparticle trajectories by the external magnetic field not only defines an experimental probe for fundamental studies of the Andreev reflection in graphene but also lays the foundation for further development of magnetic focusing devices based on nanoengineered superconducting two-dimensional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000576393200002 Publication Date 2020-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the Brazilian Council for Research (CNPq) through the PRONEX/FUNCAP and PQ programs and by the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:172730 Serial 6639  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M. url  doi
openurl 
  Title Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 8 Pages 085417-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000515659700007 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167760 Serial 6640  
Permanent link to this record
 

 
Author Torsello, D.; Ummarino, G.A.; Bekaert, J.; Gozzelino, L.; Gerbaldo, R.; Tanatar, M.A.; Canfield, P.C.; Prozorov, R.; Ghigo, G. url  doi
openurl 
  Title Tuning the intrinsic anisotropy with disorder in the CaKFE₄As₄ superconductor Type A1 Journal article
  Year 2020 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 13 Issue 6 Pages 064046-64049  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on the anisotropy of the London penetration depth of CaKFe4As4, discussing how it relates to its electronic structure and how it modifies under introduction of disorder, both chemically induced (by Ni substitution) and irradiation induced (by 3.5-MeV protons). Indeed, CaKFe4As4 is particularly suitable for the study of fundamental superconducting properties due to its stoichiometric composition, exhibiting clean-limit behavior in the pristine samples and having a fairly high critical temperature, T-c approximate to 35 K. The London penetration depth lambda(L) is measured with a microwave-coplanar-resonator technique that allows us to deconvolve the anisotropic contributions lambda(L,ab) and lambda(L,c) and obtain the anisotropy parameter gamma(lambda) = lambda(L,c)/lambda(L,ab). The gamma(lambda) (T) found for the undoped pristine sample is in good agreement with previous literature and is here compared to ab initio density-functional-theory and Eliashberg calculations. The dependence of gamma(lambda) (T) on both chemical and irradiation-induced disorder is discussed to highlight which method is more suitable to decrease the direction dependence of the electromagnetic properties while maintaining a high critical temperature. Lastly, the relevance of an intrinsic anisotropy such as gamma(lambda) on application-related anisotropic parameters (critical current, pinning) is discussed in light of the recent employment of CaKFe4As4 in the production of wires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000540915800003 Publication Date 2020-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 4 Open Access  
  Notes ; This work was partially supported by the Italian Ministry of Education, University and Research (Project PRIN “HIBiSCUS,” Grant No. 201785KWLE). J.B. acknowledges the support of a postdoctoral fellowship of the Research Foundation-Flanders (FWO). The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. Work done at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. G.A.U. acknowledges support from the MEPhI Academic Excellence Project (Contract No. 702.a03.21.0005). ; Approved Most recent IF: 4.6; 2020 IF: 4.808  
  Call Number UA @ admin @ c:irua:170178 Serial 6641  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Two-dimensional graphitic carbon nitrides: strain-tunable ferromagnetic ordering Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 16 Pages 165407-165408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principle calculations, we systematically study strain tuning of the electronic properties of two- dimensional graphitic carbon nitride nanosheets with empirical formula CnNm. We found the following: (i) the ferromagnetic ordered state in the metal-free systems (n, m) = (4,3), (10,9), and (14,12) remains stable in the presence of strain of about 6%. However, the system (9,7) loses its ferromagnetic ordering when increasing strain. This is due to the presence of topological defects in the (9,7) system, which eliminates the asymmetry between spin up and spin down of the p(z) orbitals when strain is applied. (ii) By applying uniaxial strain, a band gap opens in systems which are initially gapless. (iii) In semiconducting systems which have an initial gap of about 1 eV, the band gap is closed with applying uniaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000523630200012 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 22 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168560 Serial 6643  
Permanent link to this record
 

 
Author Bafekry, A.; Shojaei, F.; Obeid, M.M.; Ghergherehchi, M.; Nguyen, C.; Oskouian, M. url  doi
openurl 
  Title Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 53 Pages 31894-31900  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory, we investigate a novel two-dimensional silicon bismotide (SiBi) that has a layered GaSe-like crystal structure.Ab initiomolecular dynamic simulations and phonon dispersion calculations suggest its good thermal and dynamical stability. The SiBi monolayer is a semiconductor with a narrow indirect bandgap of 0.4 eV. Our results show that the indirect bandgap decreases as the number of layers increases, and when the number of layers is more than six layers, direct-to-indirect bandgap switching occurs. The SiBi bilayer is found to be very sensitive to an E-field. The bandgap monotonically decreases in response to uniaxial and biaxial compressive strain, and reaches 0.2 eV at 5%, while at 6%, the semiconductor becomes a metal. For both uniaxial and biaxial tensile strains, the material remains a semiconductor and indirect-to-direct bandgap transition occurs at a strain of 3%. Compared to a SiBi monolayer with a layer thickness of 4.89 angstrom, the bandgap decreases with either increasing or decreasing layer thickness, and at a thicknesses of 4.59 to 5.01 angstrom, the semiconductor-to-metal transition happens. In addition, under pressure, the semiconducting character of the SiBi bilayer with a 0.25 eV direct bandgap is preserved. Our results demonstrate that the SiBi nanosheet is a promising candidate for designing high-speed low-dissipation devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000565206400027 Publication Date 2020-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 8 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172045 Serial 6644  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C. doi  openurl
  Title Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000543344800001 Publication Date 2020-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2020 IF: 2.588  
  Call Number UA @ admin @ c:irua:169754 Serial 6651  
Permanent link to this record
 

 
Author Baskurt, M.; Eren, I.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Vanadium dopant- and strain-dependent magnetic properties of single-layer VI₃ Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 508 Issue Pages 144937-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional VI3 [Kong et al. Adv. Mater. 31, 1808074 (2019)], we investigate the effect of V doping on the magnetic and electronic properties of monolayer VI3 by means of first-principles calculations. The dynamically stable semiconducting ferromagnetic (FM) and antiferromagnetic (AFM) phases of monolayer VI3 are found to display distinctive vibrational features that the magnetic state can be distinguished by Raman spectroscopy. In order to clarify the effect of experimentally observed excessive V atoms, the magnetic and electronic properties of the V-doped VI3 structures are analyzed. Our findings indicate that partially doped VI3 structures display FM ground state while the fully-doped structure exhibits AFM ground state. The fully-doped monolayer VI3 is found to be a semiconductor with a relatively larger band gap than its pristine structure. In addition, strain-dependent electronic and magnetic properties of fully- and partially-doped VI3 structures reveal that pristine monolayer displays a FM-to-AFM phase transition with robust semiconducting nature for 5% of compressive strain, while fully-doped monolayer VI3 structure possesses AFM-to-FM semiconducting transition at tensile strains larger than 4%. In contrast, the partially-doped VI3 monolayers are found to display robust FM ground state under biaxial strain. Its dopant and strain tunable electronic and magnetic nature makes monolayer VI3 a promising material for applications in nanoscale spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000516818700040 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 10 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:168595 Serial 6652  
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X. pdf  doi
openurl 
  Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
  Year 2020 Publication Materials today energy Abbreviated Journal  
  Volume 16 Issue Pages Unsp 100392-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000539083500049 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited 13 Open Access  
  Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169752 Serial 6655  
Permanent link to this record
 

 
Author Obeid, M.M.; Bafekry, A.; Rehman, S.U.; Nguyen, C., V. pdf  doi
openurl 
  Title A type-II GaSe/HfS₂ van der Waals heterostructure as promising photocatalyst with high carrier mobility Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 534 Issue Pages 147607  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, the electronic, optical, and photocatalytic properties of GaSe/HfS2 heterostructure are studied via first-principles calculations. The stability of the vertically stacked heterobilayers is validated by the binding energy, phonon spectrum, and ab initio molecular dynamics simulation. The results reveal that the most stable GaSe/HfS2 heterobilayer retains a type-II alignment with an indirect bandgap 1.40 eV. As well, the results also show strong optical absorption intensity in the studied heterostructure (1.8 x 10(5) cm(-1)). The calculated hole mobility is 1376 cm(2) V-1 s(-1), while electron mobility reaches 911 cm(2) V-1 s(-1) along the armchair and zigzag directions. By applying an external electric field, the bandgap and band offset of the designed heterostructure can be effectively modified. Remarkably, a stronger external electric field can create nearly free electron states in the vicinity of the bottom of the conduction band, which induces indirect-to-direct bandgap transition as well as a semiconductor-to-metal transition. In contrast, the electronic properties of GaSe/HfS2 heterostructure are predicted to be insensitive to biaxial strain. The current work reveals that GaSe/HfS2 heterostructure is a promising candidate as a novel photocatalytic material for hydrogen generation in the visible range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000582367700045 Publication Date 2020-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:174301 Serial 6682  
Permanent link to this record
 

 
Author Foumani, A.A.; Forster, D.J.; Ghorbanfekr, H.; Weber, R.; Graf, T.; Niknam, A.R. pdf  doi
openurl 
  Title Atomistic simulation of ultra-short pulsed laser ablation of metals with single and double pulses : an investigation of the re-deposition phenomenon Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 537 Issue Pages 147775  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The demand for higher throughput in the processing of materials with ultra-short pulsed lasers has motivated studies on the use of double pulses (DP). It has been observed in such studies that at relatively high time delays between the two pulses, the ablated volume is lower than that for a single pulse (SP). This has been attributed to the shielding of the second pulse and the re-deposition of the material removed by the first pulse. The investigation of re-deposition in copper with the aid of atomistic simulations is the main objective of this study. Nevertheless, a computational investigation of SP-ablation and experimental measurement of the SP-ablation depths and threshold fluence are also covered. The applied computational apparatus comprises a combination of molecular dynamics with the two-temperature model and the Helmholtz wave equation. The analysis of the simulation results shows that the derived quantities like the SP-ablation threshold fluence and the ratio of DP ablation depth to SP-ablation depth are in agreement with the experimental values. An important finding of this study is that the characteristics of the re-deposition process are highly dependent on the fluence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000582798700006 Publication Date 2020-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors thank the Center for High-Performance Computing at Shahid Beheshti University of Iran (SARMAD) for making available the computational resources required for this work. ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174299 Serial 6683  
Permanent link to this record
 

 
Author Milovanović, S.P.; Andelkovic, M.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Band flattening in buckled monolayer graphene Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 24 Pages 245427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The strain fields of periodically buckled graphene induce a periodic pseudomagnetic field (PMF) that modifies the electronic band structure. From the geometry, amplitude, and period of the periodic pseudomagnetic field, we determine the necessary conditions to access the regime of correlated phases by examining the band flattening. As compared to twisted bilayer graphene the proposed system has the advantages that (1) only a single layer of graphene is needed, (2) one is not limited to hexagonal superlattices, and (3) narrower flat bandwidth and larger separation between flat bands can be induced. We, therefore, propose that periodically strained graphene single layers can become a platform for the exploration of exotic many-body phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000602844600007 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 11 Open Access OpenAccess  
  Notes ; S.P.M. is supported by the Flemish Science Foundation (FWO). We thank E. Y. Andrei, Y. Jiang, and J. Mao for fruitful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:175021 Serial 6684  
Permanent link to this record
 

 
Author Wang, H.; Su, L.; Yagmurcukardes, M.; Chen, J.; Jiang, Y.; Li, Z.; Quan, A.; Peeters, F.M.; Wang, C.; Geim, A.K.; Hu, S. pdf  doi
openurl 
  Title Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue 12 Pages 8634-8639  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 angstrom in diameter with an estimated density of about 10(12) cm(-2). The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000599507100032 Publication Date 2020-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 29 Open Access  
  Notes ; The authors acknowledge supported from National Key Research and Development Program of China (2019YFA0705400, 2018YFA0209500), and National Natural Science Foundation of China (21972121, 21671162). M. Y. acknowledges the Flemish Science Foundation (FWO-Vl) postdoctoral fellowship. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:175048 Serial 6685  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Critical behavior of the ferromagnets CrI₃, CrBr₃, and CrGeTe₃ and the antiferromagnet FeCl₂ : a detailed first-principles study Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the Curie temperature of layered ferromagnets, chromium tri-iodide (CrI3), chromium tri-bromide (CrBr3), chromium germanium tri-telluride (CrGeTe3), and the Ned temperature of a layered antiferromagnet iron di-chloride (FeCl2), using first-principles density functional theory calculations and Monte Carlo simulations. We develop a computational method to model the magnetic interactions in layered magnetic materials and calculate their critical temperature. We provide a unified method to obtain the magnetic exchange parameters (J) for an effective Heisenberg Hamiltonian from first principles, taking into account both the magnetic ansiotropy as well as the out-of-plane interactions. We obtain the magnetic phase change behavior, in particular the critical temperature, from the susceptibility and the specific-heat, calculated using the three-dimensional Monte Carlo (METROPOLIS) algorithm. The calculated Curie temperatures for ferromagnetic materials (CrI3, CrBr3, and CrGeTe3), match well with experimental values. We show that the interlayer interaction in bulk CrI3 with R (3) over bar stacking is significantly stronger than the C2/m stacking, in line with experimental observations. We show that the strong interlayer interaction in R (3) over bar CrI3 results in a competition between the in-plane and the out-of-plane magnetic easy axes. Finally, we calculate the Ned temperature of FeCl2 to be 47 +/- 8 K and show that the magnetic phase transition in FeCl2 occurs in two steps with a high-temperature intralayer ferromagnetic phase transition and a low-temperature interlayer antiferromagnetic phase transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000609012000002 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes ; The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency Grant No. HDTRA1-18-1-0018. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176081 Serial 6686  
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Chaves, A.; Sena, S.H.R.; Farias, G.A.; Van Duppen, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Effect of zitterbewegung on the propagation of wave packets in ABC-stacked multilayer graphene : an analytical and computational approach Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 9 Pages 095503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials. The main features of the zitterbewegung (trembling motion) of wave packets in graphene are demonstrated and are found to depend not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Moreover, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000599465000001 Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 3 Open Access OpenAccess  
  Notes ; Discussions with D J P de Sousa and J M Pereira Jr are gratefully acknowledged. This work was financially supported by the Brazilian Council for Research (CNPq), under the PQ and PRONEX/FUNCAP programs, and by CAPES. One of us (BVD) is supported by the FWO-Vl. DRC is supported by CNPq Grant Nos. 310019/2018-4 and 437067/2018-1. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:174953 Serial 6687  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.; Kim, D.; Mortazavi, B. pdf  doi
openurl 
  Title Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 540 Issue 1 Pages 148289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Latest synthesis of ZnSb monolayer, encouraged us to conduct density functional theory (DFT) simulations in order to study the structural, magnetic, electronic/optical and mechanical features of the sp2-hybridized honeycomb ZnSb monolayer (ML-ZnSb) and bilayer (BL-ZnSb). Our structural optimizations reveal that ML-ZnSb is an anisotropic hexagonal structure while BL-ZnSb is composed of shifted ZnSb layers which are covalently binded. ML-ZnSb is found to be a ferromagnetic metal, in contrast BL-ZnSb has a non-magnetic indirect band gap semiconducting ground state. For the in-plane polarization, first absorption peak of ML-ZnSb and BL-ZnSb confirm the absorbance of the light within the infrared domain wand visible range, respectively. Moreover, our results reveal that the layer-layer chemical bonding in BL-ZnSb significantly enhances the mechanical response of ML-ZnSb whose in-plane stiness is the smallest among all 2D materials (2DM). Notably, the strong in-plane anisotropy of ML-ZnSb in its stiness reduces in BL-ZnSb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000599883200005 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. B.M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174956 Serial 6688  
Permanent link to this record
 

 
Author Ceyhan, E.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. doi  openurl
  Title Electronic and magnetic properties of single-layer FeCl₂ with defects Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The formation of lattice defects and their effect on the electronic properties of single-layer FeCl2 are investigated by means of first-principles calculations. Among the vacancy defects, namely mono-, di-, and three-Cl vacancies and mono-Fe vacancy, the formation of mono-Cl vacancy is the most preferable. Comparison of two different antisite defects reveals that the formation of the Fe-antisite defect is energetically preferable to the Cl-antisite defect. While a single Cl vacancy leads to a 1 mu(B) decrease in the total magnetic moment of the host lattice, each Fe vacant site reduces the magnetic moment by 4 mu(B). However, adsorption of an excess Cl atom on the surface changes the electronic structure to a ferromagnetic metal or to a ferromagnetic semiconductor depending on the adsorption site without changing the ferromagnetic state of the host lattice. Both Cl-antisite and Fe-antisite defected domains change the magnetic moment of the host lattice by -1 mu(B) and +3 mu(B), respectively. The electronic ground state of defected structures reveals that (i) single-layer FeCl2 exhibits half-metallicity under the formation of vacancy and Cl-antisite defects; (ii) ferromagnetic metallicity is obtained when a single Cl atom is adsorbed on upper-Cl and Fe sites, respectively; and (iii) ferromagnetic semiconducting behavior is found when a Cl atom is adsorbed on a lower-Cl site or a Fe-antisite defect is formed. Simulated scanning electron microscope images show that atomic-scale identification of defect types is possible from their electronic charge density. Further investigation of the periodically Fe-defected structures reveals that the formation of the single-layer FeCl3 phase, which is a dynamically stable antiferromagnetic semiconductor, is possible. Our comprehensive analysis on defects in single-layer FeCl2 will complement forthcoming experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000606969400002 Publication Date 2021-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access Not_Open_Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and by Flemish Supercomputer Center (VSC). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176039 Serial 6689  
Permanent link to this record
 

 
Author Jalali, H.; Khoeini, F.; Peeters, F.M.; Neek-Amal, M. doi  openurl
  Title Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 2 Pages 922-929  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using electrochemical methods a profound enhancement of the capacitance of electric double layer capacitor electrodes was reported when water molecules are strongly confined into the two-dimensional slits of titanium carbide MXene nanosheets [A. Sugahara et al., Nat. Commun., 2019, 10, 850]. We study the effects of hydration on the dielectric properties of nanoconfined water and supercapacitance properties of the cation intercalated MXene. A model for the electric double layer capacitor is constructed where water molecules are strongly confined in two-dimensional slits of MXene. We report an abnormal dielectric constant and polarization of nano-confined water between MXene layers. We found that by decreasing the ionic radius of the intercalated cations and in a critical hydration shell radius the capacitance of the system increases significantly (similar or equal to 200 F g(-1)) which can be interpreted as a negative permittivity. This study builds a bridge between the fundamental understanding of the dielectric properties of nanoconfined water and the capability of using MXene films for supercapacitor technology, and in doing so provides a solid theoretical support for recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000610368100035 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 3 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:176141 Serial 6690  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. doi  openurl
  Title Machine learning approach to constructing tight binding models for solids with application to BiTeCl Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 21 Pages 215107  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Finding a tight-binding (TB) model for a desired solid is always a challenge that is of great interest when, e.g., studying transport properties. A method is proposed to construct TB models for solids using machine learning (ML) techniques. The approach is based on the LCAO method in combination with Slater-Koster (SK) integrals, which are used to obtain optimal SK parameters. The lattice constant is used to generate training examples to construct a linear ML model. We successfully used this method to find a TB model for BiTeCl, where spin-orbit coupling plays an essential role in its topological behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000597311900001 Publication Date 2020-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited 2 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government and was partially supported by BOF (UAntwerpen Grant Reference No. ADPERS/BAP/RS/ 2019). We would like to thank one of the anonymous referees for assisting us in making the paper more accessible to the reader. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:174380 Serial 6691  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Magnetic properties and critical behavior of magnetically intercalated WSe₂ : a theoretical study Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 2 Pages 025009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transition metal dichalcogenides, intercalated with transition metals, are studied for their potential applications as dilute magnetic semiconductors. We investigate the magnetic properties of WSe2 doped with third-row transition metals (Co, Cr, Fe, Mn, Ti and V). Using density functional theory in combination with Monte Carlo simulations, we obtain an estimate of the Curie or Neel temperature. We find that the magnetic ordering is highly dependent on the dopant type. While Ti and Cr-doped WSe2 have a ferromagnetic ground state, V, Mn, Fe and Co-doped WSe2 are antiferromagnetic in their ground state. For Fe doped WSe2, we find a high Curie-temperature of 327 K. In the case of V-doped WSe2, we find that there are two distinct magnetic phase transitions, originating from a frustrated in-plane antiferromagnetic exchange interaction and a ferromagnetic out-of-plane interaction. We calculate the formation energy and reveal that, in contrast to earlier reports, the formation energy is positive for the intercalated systems studied here. We also show that in the presence of W-vacancies, it becomes favorable for Ti, Fe, and Co to intercalate in WSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000601127600001 Publication Date 2020-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 1 Open Access OpenAccess  
  Notes ; The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This material is based upon work supported by the National Science Foundation under Grant No. 1802166. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This work was supported by IMEC's Industrial Affiliation Program. Peter D Reyntjens acknowledges support by the Eugene McDermott Fellowship program, under Grant Number 201806. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:174951 Serial 6692  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Hoat, D.M.; Shahrokhi, M.; Fadlallah, M.M.; Shojaei, F.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  doi
openurl 
  Title MoSi₂N₄ single-layer : a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties Type A1 Journal article
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue 15 Pages 155303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Very recently, the 2D form of MoSi2N4 has been successfully fabricated (Hong et al 2020 Science 369 670). Motivated by these recent experimental results, we investigate the structural, mechanical, thermal, electronic and optical properties of the MoSi2N4 monolayer. The mechanical study confirms the stability of the MoSi2N4 monolayer. The Young's modulus decreases by similar to 30%, while the Poisson's ratio increases by similar to 30% compared to the corresponding values of graphene. In addition, the MoSi2N4 monolayer's work function is very similar to that of phosphorene and MoS2 monolayers. The electronic structure shows that the MoSi2N4 monolayer is an indirect semiconductor with a band gaps of 1.79 (2.35) eV using the GGA (HSE06) functional. The thermoelectric performance of the MoSi2N4 monolayer has been revealed and a figure of merit slightly larger than unity at high temperatures is calculated. The optical analysis shows that the first absorption peak for in-plane polarization is located in the visible range of the spectrum, therefore, the MoSi2N4 monolayer is a promising candidate for advanced optoelectronic nanodevices. In summary, the fascinating MoSi2N4 monoloayer is a promising 2D material for many applications due to its unique physical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000613849300001 Publication Date 2021-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2015M2B2A4033123). Computational resources were provided by the Flemish Supercomputer Center (VSC) and TUBITAK ULAKBIM, High Performance and Grid Computing Center (Tr-Grid e-Infrastructure). ; Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:176167 Serial 6693  
Permanent link to this record
 

 
Author Benito Llorens, J.; Embon, L.; Correa, A.; Gonzalez, J.D.; Herrera, E.; Guillamon, I.; Luccas, R.F.; Azpeitia, J.; Mompean, F.J.; Garcia-Hernandez, M.; Munuera, C.; Aragon Sanchez, J.; Fasano, Y.; Milošević, M.V.; Suderow, H.; Anahory, Y. url  doi
openurl 
  Title Observation of a gel of quantum vortices in a superconductor at very low magnetic fields Type A1 Journal article
  Year 2020 Publication Physical review research Abbreviated Journal  
  Volume 2 Issue 1 Pages 013329  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type-II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in beta-Bi2Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000602698100008 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 14 Open Access  
  Notes ; We acknowledge support, discussions and critical reading of the manuscript from Eli Zeldov, who also devised and setup the SOT system. We also acknowledge critical reading and suggestions of Vladimir Kogan and Alexander Buzdin. Work performed in Spain was supported by the MINECO (FIS2017-84330-R, MAT2017-87134-C2-2-R, RYC-2014-16626 and RYC-2014-15093) and by the Region of Madrid through programs NANOFRONTMAG-CM (S2013/MIT-2850) and MAD2D-CM (S2013/ MIT-3007). The SEGAINVEX at UAM is also acknowledged as well as PEOPLE, Graphene Flagship, NMP programs of EU (Grant Agreements FP7-PEOPLE-2013-CIG 618321, 604391 and AMPHIBIAN H2020-NMBP-03-2016 NMP3-SL 2012-310516). Work in Israel was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802952). Y.F. acknowledges the support of grant PICT 2017-2182 from the ANPCyT. R.F.L. acknowledges the support of grant PICT 2017-2898 from the ANPCyT. E.H. acknowledges support of Departamento Administrativo de Ciencia, Tecnologia e Innovacion, COLCIENCIAS (Colombia) Programa de estancias Postdoctorales convocatoria 784-2017 and the Cluster de investigacin en ciencias y tecnologas convergentes de la Universidad Central (Colombia). I.G. was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 679080). M.V.M. acknowledges support from Research FoundationFlanders (FWO). The international collaboration on this work was fostered by the EU-COST Action CA16218 Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies (NANOCOHYBRI). J.D.G. and M.V.M. gratefully acknowledge support from the Research Fund (FONCIENCIAS) of Universidad del Magdalena. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:175138 Serial 6694  
Permanent link to this record
 

 
Author Shekarforoush, S.; Jalali, H.; Yagmurcukardes, M.; Milošević, M.V.; Neek-Amal, M. url  doi
openurl 
  Title Optoelectronic properties of confined water in angstrom-scale slits Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 23 Pages 235406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The optoelectronic properties of confined water form one of the most active research areas in the past few years. Here we present the multiscale methodology to discern the out-of-plane electronic and dipolar dielectric constants (epsilon(el)(perpendicular to) and epsilon(diP)(perpendicular to)) of strongly confined water. We reveal that epsilon(perpendicular to el) and epsilon(diP)(perpendicular to) become comparable for water confined in angstrom-scale channels (with a height of less than 15 angstrom) within graphene (GE) and hexagonal boron nitride (hBN) bilayers. Channel height (h) associated with a minimum in both epsilon(e)(l)(perpendicular to) and epsilon(dip)(perpendicular to) is linked to the formation of the ordered structure of ice for h approximate to (7 -7.5) angstrom. The recently measured total dielectric constant epsilon(T)(perpendicular to) of nanoconfined water [L. Fumagalli et al., Science 360, 1339 (2018)] is corroborated by our results. Furthermore, we evaluate the contribution from the encapsulating membranes to the dielectric properties, as a function of the interlayer spacing, i.e., the height of the confining channel for water. Finally, we conduct analysis of the optical properties of both confined water and GE membranes, and show that the electron energy loss function of confined water strongly differs from that of bulk water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000595856100004 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). M.Y. gratefully acknowledges his FWO postdoctoral mandate. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:175051 Serial 6695  
Permanent link to this record
 

 
Author Lavor, I.R.; Cavalcante, L.S.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Probing the structure and composition of van der Waals heterostructures using the nonlocality of Dirac plasmons in the terahertz regime Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 1 Pages 015014  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment. We show that this can be used to probe the structure and composition of van der Waals heterostructures (vdWh) put underneath a single graphene layer. In order to do so, we assess vdWh composed of hexagonal boron nitride and different types of transition metal dichalcogenides (TMDs). By performing realistic simulations that account for the contribution of each layer of the vdWh separately and including the importance of the substrate phonons, we show that one can achieve single-layer resolution by investigating the nonlocal nature of the Dirac plasmon-polaritons. The composition of the vdWh stack can be inferred from the plasmon-phonon coupling once it is composed by more than two TMD layers. Furthermore, we show that the bulk character of TMD stacks for plasmonic screening properties in the terahertz regime is reached only beyond 100 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000582820500001 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 2 Open Access OpenAccess  
  Notes ; This work was financially supported by the Brazilian Council for Research (CNPq), Brazilian National Council for the Improvement of Higher Education (CAPES) and by the Research Foundation Flanders (FWO) through a postdoctoral fellowship to B.V.D. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:173507 Serial 6696  
Permanent link to this record
 

 
Author Jiang, J.; Wang, Y.-L.; Milošević, M.V.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H. url  doi
openurl 
  Title Reversible ratchet effects in a narrow superconducting ring Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the ratchet effect in a narrow pinning-free superconductive ring based on time-dependent Ginzburg-Landau (TDGL) equations. Voltage responses to external dc and ac currents at various magnetic fields are studied. Due to asymmetric barriers for flux penetration and flux exit in the ring-shaped superconductor, the critical current above which the flux-flow state is reached, as well as the critical current for the transition to the normal state, are different for the two directions of applied current. These effects cooperatively cause ratchet signal reversal at high magnetic fields, which has not been reported to date in a pinning-free system. The ratchet signal found here is larger than those induced by asymmetric pinning potentials. Our results also demonstrate the feasibility of using mesoscopic superconductors to employ a superconducting diode effect in versatile superconducting devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000604821500003 Publication Date 2021-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access OpenAccess  
  Notes ; We are grateful to G. Berdiyorov for useful suggestions and comments. Q.-H.C. thanks Beiyi Zhu for helpful discussions during the early stage of this work. This work is supported in part by the National Key Research and Development Program of China, Grants No. 2017YFA0303002 (Q.-H.C. and J.J.), and No. 2018YFA0209002 (Y.-L.W.), and the National Natural Science Foundation of China Grants No. 11834005, No. 11674285, No. 61771235, and No. 61727805. Z.-L.X. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering and the National Science Foundation under Grant No. DMR-1901843. F.M.P. and M.V.M. acknowledge support by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:174984 Serial 6697  
Permanent link to this record
 

 
Author Yagmurcukardes, M. url  doi
openurl 
  Title Stable anisotropic single-layer of ReTe₂ : a first principles prediction Type A1 Journal article
  Year 2020 Publication Turkish Journal of Physics Abbreviated Journal  
  Volume 44 Issue 5 Pages 450-457  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In order to investigate the structural, vibrational, electronic, and mechanical features of single-layer ReTe2 first-principles calculations are performed. Dynamical stability analyses reveal that single-layer ReTe2 crystallize in a distorted phase while its 1H and 1T phases are dynamically unstable. Raman spectrum calculations show that single-layer distorted phase of ReTe2 exhibits 18 Raman peaks similar to those of ReS2 and ReSe2. Electronically, single-layer ReTe2 is shown to be an indirect gap semiconductor with a suitable band gap for optoelectronic applications. In addition, it is found that the formation of Re-units in the crystal induces anisotropic mechanical parameters. The in-plane stiffness and Poisson ratio are shown to be significantly dependent on the lattice orientation. Our findings indicate that single-layer form of ReTe2 can only crystallize in a dynamically stable distorted phase formed by the Re-units. Single-layer of distorted ReTe2 can be a potential in-plane anisotropic material for various nanotechnology applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000585330600004 Publication Date 2020-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1300-0101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; Computational resources were provided by the Scientific and Technological Research Council of Turkey (TUBITAK) Turkish Academic Network and Information Center (ULAKBIM), High Performance and Grid Computing Center (TR-Grid e-Infrastructure) and by Flemish Supercomputer Center (VSC). This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174296 Serial 6698  
Permanent link to this record
 

 
Author Kahraman, Z.; Baskurt, M.; Yagmurcukardes, M.; Chaves, A.; Sahin, H. pdf  doi
openurl 
  Title Stable Janus TaSe₂ single-layers via surface functionalization Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 538 Issue Pages 148064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculations are performed in order to investigate the formation of Janus structures of single layer TaSe2. The structural optimizations and phonon band dispersions reveal that the formation and stability of hydrogenated (HTaSe2), fluorinated (FTaSe2), and the one-side hydrogenated and one-side fluorinated (Janus-HTaSe2F) single-layers are feasible in terms of their phonon band dispersions. It is shown that bare metallic single-layer TaSe2 can be turned into a semiconductor as only one of its surface is functionalized while it remains as a metal via its two surfaces functionalization. In addition, the semiconducting nature of single-layers HTaSe2 and FTaSe2 and the metallic behavior of Janus TaSe2 are found to be robust under applied uniaxal strains. Further analysis on piezoelectric properties of the predicted single-layers reveal the enhanced in-plane and out of-plane piezoelectricity via formed Janus-HTaSe2F. Our study indicates that single-layer TaSe2 is a suitable host material for surface functionalization via fluorination and hydrogenation which exhibit distinctive electronic and vibrational properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Wos 000595860900001 Publication Date 2020-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). HS acknowledges support from Turkiye Bilimler Akademisi -Turkish Academy of Sciences under the GEBIP program. This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174964 Serial 6699  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: