toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yagmurcukardes, M. url  doi
openurl 
  Title Monolayer fluoro-InSe : formation of a thin monolayer via fluorination of InSe Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 100 Issue (up) 2 Pages 024108  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By performing density functional theory-based first-principles calculations, the formation of a thin monolayer structure, namely InSeF, via fluorination of monolayer InSe is predicted. It is shown that strong interaction of F and In atoms leads to the detachment of In-Se layers in monolayer InSe and 1T-like monolayer InSeF structure is formed. Monolayer InSeF is found to be dynamically stable in terms of its phonon band dispersions. In addition, its Raman spectrum is shown to exhibit totally distinctive features as compared to monolayer InSe. The electronic band dispersions reveal that monolayer InSeF is a direct gap semiconductor whose valence and conduction band edges reside at the Gamma point. Moreover, the orientation-dependent linear elastic properties of monolayer InSeF are investigated in terms of the in-plane stiffness and Poisson ratio. It is found that monolayer InSeF displays strong in-plane anisotropy in elastic constants and it is slightly softer material as compared to monolayer InSe. Overall, it is proposed that a thin, direct gap semiconducting monolayer InSeF can be formed by full fluorination of monolayer InSe as a new member of the two-dimensional family.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477885700003 Publication Date 2019-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161891 Serial 5423  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F. pdf  url
doi  openurl
  Title A first-principles study of C3N nanostructures : control and engineering of the electronic and magnetic properties of nanosheets, tubes and ribbons Type A1 Journal article
  Year 2020 Publication Chemphyschem Abbreviated Journal Chemphyschem  
  Volume 21 Issue (up) 2 Pages 164-174  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two-dimensional materials (2DM) with a stoichiometry C3N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3N nanoribbons, as well as the radius and length of C3N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half-metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503453100001 Publication Date 2019-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.9 Times cited 27 Open Access  
  Notes ; ; Approved Most recent IF: 2.9; 2020 IF: 3.075  
  Call Number UA @ admin @ c:irua:165045 Serial 6282  
Permanent link to this record
 

 
Author Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Double moiré with a twist : supermoiré in encapsulated graphene Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue (up) 2 Pages 979  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A periodic spatial modulation, as created by a moire pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moire patterns, resulting in a so-called supermoire (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514255400021 Publication Date 2020-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 33 Open Access OpenAccess  
  Notes ; This work was funded by FLAGERA project TRANS2DTMD and the Flemish Science Foundation (FWO-Vl) through a postdoc fellowship for S.P.M. The authors acknowledge useful discussions with W. Zihao and K. Novoselov. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:168685 Serial 6490  
Permanent link to this record
 

 
Author Bacaksiz, C.; Yagmurcukardes, M.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Hematite at its thinnest limit Type A1 Journal article
  Year 2020 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 7 Issue (up) 2 Pages 025029  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional alpha-Fe2O3 (Balan et al 2018 Nat. Nanotechnol. 13 602), we analyze the structural, vibrational, electronic and magnetic properties of single- and few-layer alpha-Fe2O3 compared to bulk, by ab initio and Monte-Carlo simulations. We reveal how monolayer alpha-Fe2O3 (hematene) can be distinguished from the few-layer structures, and how they all differ from bulk through observable Raman spectra. The optical spectra exhibit gradual shift of the prominent peak to higher energy, as well as additional features at lower energy when alpha-Fe2O3 is thinned down to a monolayer. Both optical and electronic properties have strong spin asymmetry, meaning that lower-energy optical and electronic activities are allowed for the single-spin state. Finally, our considerations of magnetic properties reveal that 2D hematite has anti-ferromagnetic ground state for all thicknesses, but the critical temperature for Morin transition increases with decreasing sample thickness. On all accounts, the link to available experimental data is made, and further measurements are prompted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537341000002 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 11 Open Access  
  Notes ; This work was supported by Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by Flemish Supercomputer Center(VSC), and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). Part of this work was also supported by FLAG-ERA project TRANS-2D-TMD and TOPBOF-UAntwerp. MY was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 5.5; 2020 IF: 6.937  
  Call Number UA @ admin @ c:irua:170301 Serial 6533  
Permanent link to this record
 

 
Author Joao, S.M.; Andelkovic, M.; Covaci, L.; Rappoport, T.G.; Lopes, J.M.V.P.; Ferreira, A. url  doi
openurl 
  Title KITE : high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures Type A1 Journal article
  Year 2020 Publication Royal Society Open Science Abbreviated Journal Roy Soc Open Sci  
  Volume 7 Issue (up) 2 Pages 191809-191832  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N similar to 10(10)). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518020200001 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2054-5703 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited 19 Open Access OpenAccess  
  Notes ; T.G.R. and A.F. acknowledge support from the Newton Fund and the Royal Society through the Newton Advanced Fellowship scheme (ref. no. NA150043). M.A. and L.C. acknowledge support from the Trans2DTMD FlagEra project and the VSC (Flemish Supercomputer Center). A.F. acknowledges support from the Royal Society through a University Research Fellowship (ref. nos. UF130385 and URF-R-191021) and an Enhancement Award (ref. no. RGF-EA-180276). T.G.R. acknowledges the support from the Brazilian agencies CNPq and FAPERJ and COMPETE2020, PORTUGAL2020, FEDER and the Portuguese Foundation for Science and Technology (FCT) through project POCI-01-0145-FEDER-028114. S.M.J. is supported by Fundacao para a Ciencia e Tecnologia (FCT) under the grant no. PD/BD/142798/ 2018. S.M.J. and J.M.V.P.L. acknowledge financial support from the FCT, COMPETE 2020 programme in FEDER component (European Union), through projects POCI-01-0145-FEDER028887 and UID/FIS/04650/2013. S.M.J. and J.M.V.P.L. further acknowledge financial support from FCT through national funds, co-financed by COMPETE-FEDER (grant no. M-ERANET2/0002/2016 -UltraGraf) under the Partnership Agreement PT2020. ; Approved Most recent IF: 3.5; 2020 IF: 2.243  
  Call Number UA @ admin @ c:irua:167751 Serial 6556  
Permanent link to this record
 

 
Author Jalali, H.; Ghorbanfekr, H.; Hamid, I.; Neek-Amal, M.; Rashidi, R.; Peeters, F.M. url  doi
openurl 
  Title Out-of-plane permittivity of confined water Type A1 Journal article
  Year 2020 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 102 Issue (up) 2 Pages 022803  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The dielectric properties of confined water is of fundamental interest and is still controversial. For water confined in channels with height smaller than h = 8 angstrom, we found a commensurability effect and an extraordinary decrease in the out-of-plane dielectric constant down to the limit of the dielectric constant of optical water. Spatial resolved polarization density data obtained from molecular dynamics simulations are found to be antisymmetric across the channel and are used as input in a mean-field model for the dielectric constant as a function of the height of the channel for h > 15 angstrom. Our results are in excellent agreement with a recent experiment [L. Fumagalli et al., Science 360, 1339 (2018)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560660400004 Publication Date 2020-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755; 1550-2376 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 25 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171157 Serial 6574  
Permanent link to this record
 

 
Author Jalali, H.; Khoeini, F.; Peeters, F.M.; Neek-Amal, M. doi  openurl
  Title Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue (up) 2 Pages 922-929  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using electrochemical methods a profound enhancement of the capacitance of electric double layer capacitor electrodes was reported when water molecules are strongly confined into the two-dimensional slits of titanium carbide MXene nanosheets [A. Sugahara et al., Nat. Commun., 2019, 10, 850]. We study the effects of hydration on the dielectric properties of nanoconfined water and supercapacitance properties of the cation intercalated MXene. A model for the electric double layer capacitor is constructed where water molecules are strongly confined in two-dimensional slits of MXene. We report an abnormal dielectric constant and polarization of nano-confined water between MXene layers. We found that by decreasing the ionic radius of the intercalated cations and in a critical hydration shell radius the capacitance of the system increases significantly (similar or equal to 200 F g(-1)) which can be interpreted as a negative permittivity. This study builds a bridge between the fundamental understanding of the dielectric properties of nanoconfined water and the capability of using MXene films for supercapacitor technology, and in doing so provides a solid theoretical support for recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610368100035 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 3 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:176141 Serial 6690  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Magnetic properties and critical behavior of magnetically intercalated WSe₂ : a theoretical study Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue (up) 2 Pages 025009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transition metal dichalcogenides, intercalated with transition metals, are studied for their potential applications as dilute magnetic semiconductors. We investigate the magnetic properties of WSe2 doped with third-row transition metals (Co, Cr, Fe, Mn, Ti and V). Using density functional theory in combination with Monte Carlo simulations, we obtain an estimate of the Curie or Neel temperature. We find that the magnetic ordering is highly dependent on the dopant type. While Ti and Cr-doped WSe2 have a ferromagnetic ground state, V, Mn, Fe and Co-doped WSe2 are antiferromagnetic in their ground state. For Fe doped WSe2, we find a high Curie-temperature of 327 K. In the case of V-doped WSe2, we find that there are two distinct magnetic phase transitions, originating from a frustrated in-plane antiferromagnetic exchange interaction and a ferromagnetic out-of-plane interaction. We calculate the formation energy and reveal that, in contrast to earlier reports, the formation energy is positive for the intercalated systems studied here. We also show that in the presence of W-vacancies, it becomes favorable for Ti, Fe, and Co to intercalate in WSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000601127600001 Publication Date 2020-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 1 Open Access OpenAccess  
  Notes ; The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This material is based upon work supported by the National Science Foundation under Grant No. 1802166. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This work was supported by IMEC's Industrial Affiliation Program. Peter D Reyntjens acknowledges support by the Eugene McDermott Fellowship program, under Grant Number 201806. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:174951 Serial 6692  
Permanent link to this record
 

 
Author Yin, L.; Juneja, R.; Lindsay, L.; Pandey, T.; Parker, D.S. doi  openurl
  Title Semihard iron-based permanent-magnet materials Type A1 Journal article
  Year 2021 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 15 Issue (up) 2 Pages 024012  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Permanent magnets generally require a favorable, but difficult-to-achieve combination of high magnetization, Curie point, and magnetic anisotropy. Thus there have been few, if any, viable permanent magnets developed since the 1982 discovery of Nd2Fe14B [M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and S. Hirosawa, J. Appl. Phys. 57, 4094 (1985)]. Here we point out, both by direct first-principles calculations on the iron carbides and silicides Fe5C2, Fe5SiC, and Fe7C3 as well as a discussion of recent experimental findings, that there are numerous rare-earth-free iron-rich potential permanent-magnet materials with sufficient intrinsic magnetic properties to reasonably achieve room-temperature energy products of 20-25 MG Oe. This is substantially better than the performance of the best available rare-earth-free magnets based on ferrite, as well as shape-anisotropy-employing alnico. These magnets could plausibly fill, at low cost, the present performance “gap” [J. M. D. Coey, Scr. Mater. 67, 524 (2012)] between the best rare-earth-free magnets and rare-earth magnets such as Nd2Fe14B and Sm-Co.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614707800002 Publication Date 2021-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.808  
  Call Number UA @ admin @ c:irua:176624 Serial 6734  
Permanent link to this record
 

 
Author Chen, X.; Li, L.; Peeters, F.M.; Sanyal, B. url  doi
openurl 
  Title Two-dimensional oxygen functionalized honeycomb and zigzag dumbbell silicene with robust Dirac cones Type A1 Journal article
  Year 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys  
  Volume 23 Issue (up) 2 Pages 023007  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dumbbell-like structures are recently found to be energetically favored in group IV two-dimensional (2D) materials, exhibiting rich physics and many interesting properties. In this paper, using first-principles calculations, we have investigated the oxidized form of the hexagonal honeycomb (ODB-h) and zigzag dumbbell silicene (ODB-z). We confirm that both oxidization processes are energetically favorable, and their phonon spectra further demonstrate the dynamic stability. Contrary to the pristine dumbbell silicene structures (PDB-h and PDB-z silicene), these oxidized products ODB-h and ODB-z silicene are both semimetals with Dirac cones at the Fermi level. The Dirac cones of ODB-h and ODB-z silicene are at the K point and between Y and Gamma points respectively, possessing high Fermi velocities of 3.1 x 10(5) m s(-1) (ODB-h) and 2.9-3.4 x 10(5) m s(-1) (ODB-z). The origin of the Dirac cones is further explained by tight-binding models. The semimetallic properties of ODB-h and ODB-z are sensitive to compression due to the self-absorption effect, but quite robust against the tensile strain. These outstanding properties make oxidized dumbbell silicene a promising material for quantum computing and high-speed electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000616114900001 Publication Date 2021-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.786  
  Call Number UA @ admin @ c:irua:176575 Serial 6741  
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Effect of mismatched electron-hole effective masses on superfluidity in double layer solid-state systems Type A1 Journal article
  Year 2021 Publication Condensed Matter Abbreviated Journal  
  Volume 6 Issue (up) 2 Pages 14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superfluidity has been predicted and now observed in a number of different electron-hole double-layer semiconductor heterostructures. In some of the heterostructures, such as GaAs and Ge-Si electron-hole double quantum wells, there is a strong mismatch between the electron and hole effective masses. We systematically investigate the sensitivity to unequal masses of the superfluid properties and the self-consistent screening of the electron-hole pairing interaction. We find that the superfluid properties are insensitive to mass imbalance in the low density BEC regime of strongly-coupled boson-like electron-hole pairs. At higher densities, in the BEC-BCS crossover regime of fermionic pairs, we find that mass imbalance between electrons and holes weakens the superfluidity and expands the density range for the BEC-BCS crossover regime. This permits screening to kill the superfluid at a lower density than for equal masses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000665155800001 Publication Date 2021-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179635 Serial 6982  
Permanent link to this record
 

 
Author Yu, Y.; Chen, X.; Liu, X.; Li, J.; Sanyal, B.; Kong, X.; Peeters, F.M.; Li, L. doi  openurl
  Title Ferromagnetism with in-plane magnetization, Dirac spin-gapless semiconducting properties, and tunable topological states in two-dimensional rare-earth metal dinitrides Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue (up) 2 Pages 024407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Since the successful synthesis of bulk single crystals MoN2 and ReN2, which have a layered structure, transition-metal dinitrides have attracted considerable attention in recent years. Here, we focus on rare-earth metal (Rem) elements, and propose seven stable Rem dinitride monolayers with a 1T structure, namely, 1T-RemN2. We use first-principles calculations, and find that these monolayers have a ferromagnetic ground state with in-plane magnetization. Without spin-orbit coupling (SOC), the band structures are spin-polarized with Dirac points at the Fermi level. Remarkably, the 1T-LuN2 monolayer exhibits an isotropic magnetocrystalline anisotropy energy in the xy plane with in-plane magnetization, indicating easy tunability of the magnetization direction. When rotating the magnetization vector in the xy plane, we propose a model that accurately describes the variation of the SOC band gap and the two possible topological states (Weyl-like semimetal and Chern insulator states) whose properties are tunable. The Weyl-like semimetal state is a critical point between the two Chern insulator states with opposite sign of the Chern numbers (+/- 1). The nontrivial band gap (up to 60.3 meV) and the Weyl-like semimetal state are promising for applications in spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000742384700001 Publication Date 2022-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 4 Open Access Not_Open_Access: Available from 06.07.2202  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:186514 Serial 6991  
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue (up) 2 Pages 025012  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions with near opposite inter-layer twist angles. In a MoS<sub>2</sub>/WSe<sub>2</sub>bilayer, the regions with<inline-formula><tex-math><?CDATA $Rh^h$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>h</mi></msubsup></math><inline-graphic href=“tdmac529dieqn1.gif” type=“simple” /></inline-formula>and<inline-formula><tex-math><?CDATA $Rh^X$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>X</mi></msubsup></math><inline-graphic href=“tdmac529dieqn2.gif” type=“simple” /></inline-formula>stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-reflected across such a twist boundary. In that case, we demonstrate that topologically protected chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-directional excitons with opposite velocities for excitons composed by electronic states with opposite valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760518100001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Conselho Nacional de Desenvolvimento Científico e Tecnológico, PQ ; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187124 Serial 7046  
Permanent link to this record
 

 
Author Sevik, C.; Bekaert, J.; Petrov, M.; Milošević, M.V. url  doi
openurl 
  Title High-temperature multigap superconductivity in two-dimensional metal borides Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials  
  Volume 6 Issue (up) 2 Pages 024803  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766666300003 Publication Date 2022-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 4 Open Access Not_Open_Access  
  Notes Universiteit Antwerpen; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, COST-118F187 ; Air Force Office of Scientific Research, FA9550-19-1-7048 ; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 3.4  
  Call Number CMT @ cmt @c:irua:187126 Serial 7047  
Permanent link to this record
 

 
Author Menezes, R.M.; Šabani, D.; Bacaksiz, C.; de Souza Silva, C.C.; Milošević, M.V. url  doi
openurl 
  Title Tailoring high-frequency magnonics in monolayer chromium trihalides Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue (up) 2 Pages 025021  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Monolayer chromium-trihalides, the archetypal two-dimensional (2D) magnetic materials, are readily suggested as a promising platform for high-frequency magnonics. Here we detail the spin-wave properties of monolayer CrBr<sub>3</sub>and CrI<sub>3</sub>, using spin-dynamics simulations parametrized from the first principles. We reveal that spin-wave dispersion can be tuned in a broad range of frequencies by strain, paving the way towards flexo-magnonic applications. We further show that ever-present halide vacancies in these monolayers host sufficiently strong Dzyaloshinskii-Moriya interaction to scatter spin-waves, which promotes design of spin-wave guides by defect engineering. Finally we discuss the spectra of spin-waves propagating across a moiré-periodic modulation of magnetic parameters in a van der Waals heterobilayer, and show that the nanoscale moiré periodicities in such samples are ideal for realization of a magnonic crystal in the terahertz frequency range. Recalling the additional tunability of magnetic 2D materials by electronic gating, our results situate these systems among the front-runners for prospective high-frequency magnonic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000771735500001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco; Special Research Funds of the University of Antwerp; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Fonds Wetenschappelijk Onderzoek; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187125 Serial 7048  
Permanent link to this record
 

 
Author Soenen, M.; Bacaksiz, C.; Menezes, R.M.; Milošević, M.V. url  doi
openurl 
  Title Stacking-dependent topological magnons in bilayer CrI₃ Type A1 Journal article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue (up) 2 Pages 024421-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the potential of atomically thin magnets towards achieving tunable high-frequency magnonics, we detail the spin-wave dispersion of bilayer CrI3. We demonstrate that the magnonic behavior of the bilayer strongly depends on its stacking configuration and the interlayer magnetic ordering, where a topological band gap opens in the dispersion caused by the Dzyaloshinskii-Moriya and Kitaev interactions, classifying bilayer CrI3 as a topological magnon insulator. We further reveal that both the size and the topology of the band gap in a CrI3 bilayer with an antiferromagnetic interlayer ordering are tunable by an external magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000943169600001 Publication Date 2023-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195179 Serial 7338  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Cakir, D. doi  openurl
  Title Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules Type A1 Journal article
  Year 2019 Publication ACS applied energy materials Abbreviated Journal  
  Volume 2 Issue (up) 2 Pages 1251-1258  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we demonstrated that high lithium storage capacity and fast kinetics are achieved for Ti3C2O2 by preintercalating organic molecules. As a proof-of-concept, two different quinone molecules, namely 1,4-benzoquinone (C6H4O2) and tetrafluoro-1,4-benzoquinone (C6F4O2) were selected as the molecular linkers to demonstrate the feasibility of this interlayer engineering strategy for energy storage. As compared to Ti3C2O2 bilayer without linker molecules, our pillared structures facilitate a much faster ion transport, promising a higher charge/discharge rate for Li. For example, while the diffusion barrier of a single Li ion within pristine Ti3C2O2 bilayer is at least 1.0 eV, it becomes 0.3 eV in pillared structures, which is comparable and even lower than that of commercial materials. At high Li concentrations, the calculated diffusion barriers are as low as 0.4 eV. Out-of-plane migration of Li ions is hindered due to large barrier energy with a value of around 1-1.35 eV. Concerning storage capacity, we can only intercalate one monolayer of Li within pristine Ti3C2O2 bilayer. In contrast, pillared structures offer significantly higher storage capacity. Our calculations showed that at least two layers of Li can be intercalated between Ti3C2O2 layers without forming bulk Li and losing the pillared structure upon Li loading/unloading. A small change in the in-plane lattice parameters (<0.5%) and volume (<1.0%) and ab initio molecular dynamics simulations prove the stability of the pillared structures against Li intercalation and thermal effects. Intercalated molecules avoid the large contraction/expansion of the whole structure, which is one of the key problems in electrochemical energy storage. Pillared structures allow us to realize electrodes with high capacity and fast kinetics. Our results open new research paths for improving the performance of not only MXenes but also other layered materials for supercapacitor and battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459948900037 Publication Date 2019-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193759 Serial 7414  
Permanent link to this record
 

 
Author Luo, Y.; He, Y.; Ding, Y.; Zuo, L.; Zhong, C.; Ma, Y.; Sun, M. pdf  doi
openurl 
  Title Defective biphenylene as high-efficiency hydrogen evolution catalysts Type A1 Journal article
  Year 2023 Publication Inorganic chemistry Abbreviated Journal  
  Volume 63 Issue (up) 2 Pages 1136-1141  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrocatalysts play a pivotal role in advancing the application of water splitting for hydrogen production. This research unveils the potential of defective biphenylenes as high-efficiency catalysts for the hydrogen evolution reaction. Using first-principles simulations, we systematically investigated the structure, stability, and catalytic performance of defective biphenylenes. Our findings unveil that defect engineering significantly enhances the electrocatalytic activity for hydrogen evolution. Specifically, biphenylene with a double-vacancy defect exhibits an outstanding Gibbs free energy of -0.08 eV, surpassing that of Pt, accompanied by a remarkable exchange current density of -3.08 A cm(-2), also surpassing that of Pt. Furthermore, we find the preference for the Volmer-Heyrovsky mechanism in the hydrogen evolution reaction, with a low energy barrier of 0.80 eV. This research provides a promising avenue for developing novel metal-free electrocatalysts for water splitting with earth-abundant carbon elements, making a significant step toward sustainable hydrogen production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001143581300001 Publication Date 2023-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202780 Serial 9018  
Permanent link to this record
 

 
Author Linek, J.; Wyszynski, M.; Müller, B.; Korinski, D.; Milošević, M.V.; Kleiner, R.; Koelle, D. pdf  doi
openurl 
  Title On the coupling of magnetic moments to superconducting quantum interference devices Type A1 Journal article
  Year 2024 Publication Superconductor science and technology Abbreviated Journal  
  Volume 37 Issue (up) 2 Pages 025010-25012  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the coupling factor phi( mu) that quantifies the magnetic flux phi per magnetic moment mu of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual inductances of SQUID and Amperian loop provides an elegant way of calculating phi(mu)(r,e(mu)) vs. position r and orientation e(mu) of the dipole anywhere in space from the magnetic field B-J(r) produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on London and Ginzburg-Landau theory to calculate phi (mu) from the supercurrent density distributions in various superconducting loop geometries. We treat the far-field regime ( r greater than or similar to a= inner size of the SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square shaped loops. We compare expressions for phi (mu) from simple filamentary loop models with simulation results for loops with finite width w (outer size A > alpha), thickness d and London penetration depth lambda(L )and show that for thin ( d << alpha ) and narrow (w < alpha) loops the introduction of an effective loop size a(eff) in the filamentary loop-model expressions results in good agreement with simulations. For a dipole placed right in the center of the loop, simulations provide an expression phi(mu)(a,A,d,lambda(L)) that covers a wide parameter range. In the near-field regime (dipole centered at small distance z above one SQUID arm) only coupling to a single strip representing the SQUID arm has to be considered. For this case, we compare simulations with an analytical expression derived for a homogeneous current density distribution, which yields excellent agreement for lambda(L)>w,d . Moreover, we analyze the improvement of phi(mu) provided by the introduction of a narrow constriction in the SQUID arm below the magnetic dipole.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001145725500001 Publication Date 2024-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202759 Serial 9067  
Permanent link to this record
 

 
Author Lauwens, J.; Kerkhofs, L.; Sala, A.; Sorée, B. pdf  doi
openurl 
  Title Superconductor-semiconductor hybrid capacitance with a nonlinear charge-voltage profile Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 57 Issue (up) 2 Pages 025301-25309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic devices that work in the quantum regime often employ hybrid nanostructures to bring about a nonlinear behaviour. The nonlinearity that these can provide has proven to be useful, in particular, for applications in quantum computation. Here we present a hybrid device that acts as a capacitor with a nonlinear charge-voltage relation. The device consists of a nanowire placed between the plates of a coplanar capacitor, with a co-parallel alignment. At low temperatures, due to the finite density of states on the nanowire, the charge distribution in the capacitor is uneven and energy-dependent, resulting in a charge-dependent effective capacitance. We study this system analytically and numerically, and show that the nonlinearity of the capacitance is significant enough to be utilized in circuit quantum electrodynamics. The resulting nonlinearity can be switched on, modulated, and switched off by an external potential, thus making this capacitive device highly versatile for uses in quantum computation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082883200001 Publication Date 2023-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200300 Serial 9099  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Raymenants, E.; Pham, V.T.; Pizzini, S.; Sorée, B.; Wostyn, K.; Couet, S.; Nguyen, V.D.; Temst, K. url  doi
openurl 
  Title Towards fully electrically controlled domain-wall logic Type A1 Journal article
  Year 2024 Publication AIP advances Abbreviated Journal  
  Volume 14 Issue (up) 2 Pages 025030-25035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Utilizing magnetic tunnel junctions (MTJs) for write/read and fast spin-orbit-torque (SOT)-driven domain-wall (DW) motion for propagation, enables non-volatile logic and majority operations, representing a breakthrough in the implementation of nanoscale DW logic devices. Recently, current-driven DW logic gates have been demonstrated via magnetic imaging, where the Dzyaloshinskii-Moriya interaction (DMI) induces chiral coupling between perpendicular magnetic anisotropy (PMA) regions via an in-plane (IP) oriented region. However, full electrical operation of nanoscale DW logic requires electrical write/read operations and a method to pattern PMA and IP regions compatible with the fabrication of PMA MTJs. Here, we study the use of a Hybrid Free Layer (HFL) concept to combine an MTJ stack with DW motion materials, and He+ ion irradiation to convert the stack from PMA to IP. First, we investigate the free layer thickness dependence of 100-nm diameter HFL-MTJ devices and find an optimal CoFeB thickness, from 7 to 10 angstrom, providing high tunneling magnetoresistance (TMR) readout and efficient spin-transfer torque (STT) writing. We then show that high DMI materials, like Pt/Co, can be integrated into an MTJ stack via interlayer exchange coupling with the CoFeB free layer. In this design, DMI values suitable for SOT-driven DW motion are measured by asymmetric bubble expansion. Finally, we demonstrate that He+ irradiation reliably converts the coupled free layers from PMA to IP. These findings offer a path toward the integration of fully electrically controlled DW logic circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001163573400005 Publication Date 2024-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203823 Serial 9109  
Permanent link to this record
 

 
Author Ferreira, W.P.; Munarin, F.F.; Nelissen, K.; Costa, R.N.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Structure, normal mode spectra, and mixing of a binary system of charged particles confined in a parabolic trap Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 72 Issue (up) 2 Part 1 Pages 021406-21413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the mixing of two different kinds of particles, having different charge and/or mass, interacting through a pure Coulomb potential, and confined in a parabolic trap. The structure of the cluster and its normal mode spectrum are analyzed as a function of the ratio of the charges (mass ratio) of the two types of particles. We show that particles are not always arranged in a shell structure. Mixing of the particles goes hand in hand with a large number of metastable states. The normal modes of the system are obtained, and we find that some of the special modes can be tuned by varying the ratio between the charges (masses) of the two species. The degree of mixing of the two type of particles is summarized in a phase diagram, and an order parameter that describes quantitatively the mixing between particles is defined.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000231564000031 Publication Date 2005-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:103149 Serial 3306  
Permanent link to this record
 

 
Author Kong, M.; Ferreira, W.P.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Magnetic field dependence of the normal mode spectrum of a planar complex plasma cluster Type A1 Journal article
  Year 2004 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume 32 Issue (up) 2,2 Pages 569-572  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000222278400007 Publication Date 2004-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.052 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.052; 2004 IF: 1.042  
  Call Number UA @ lucian @ c:irua:62453 Serial 1871  
Permanent link to this record
 

 
Author Piacente, G.; Schweigert, I.V.; Betouras, J.J.; Peeters, F.M. pdf  doi
openurl 
  Title Structural properties and melting of a quasi-one dimensional classical Wigner crystal Type A1 Journal article
  Year 2003 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 128 Issue (up) 2-3 Pages 57-61  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural and melting properties of a quasi-one dimensional system of charged particles, interacting through a screened Coulomb potential are investigated. Depending on the density and the screening length, the system crystallizes in different lattice structures. The structural phase transitions between them are of first or second order. The melting of the system is studied through Monte Carlo simulations and reentrant behavior as a function of density is observed as well as evidence of anisotropic melting. (C) 2003 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000185533100004 Publication Date 2003-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.554; 2003 IF: 1.602  
  Call Number UA @ lucian @ c:irua:102790 Serial 3253  
Permanent link to this record
 

 
Author Peeters, F.M.; Riva, C.; Varga, K. doi  openurl
  Title Trions in quantum wells Type A1 Journal article
  Year 2002 Publication Few-body systems T2 – International Workshop on Dynamics and Structure of Critically Stable, Quantum Few-Body Systems, OCT 08-12, 2001, LES HOUCHES, FRANCE Abbreviated Journal Few-Body Syst  
  Volume 31 Issue (up) 2-4 Pages 97-100  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ground-state energy of three-particle systems consisting of electrons and holes as found in semiconducting quantum wells is studied. The degree of confinement is determined by the quantum-well width and we can vary the dimensionality of the system from two to three dimensions. The energy levels of the system can further be altered by the application of an external magnetic field which is directed perpendicular to the well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wien Editor  
  Language Wos 000176115900005 Publication Date 2003-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963;1432-5411; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.877 Times cited 2 Open Access  
  Notes Approved Most recent IF: 0.877; 2002 IF: 1.773  
  Call Number UA @ lucian @ c:irua:103378 Serial 3733  
Permanent link to this record
 

 
Author Verberck, B.; Michel, K.H.; Nikolaev, A.V. doi  openurl
  Title The C60 molecules in (C60)N@SWCNT peapods: crystal field, intermolecular interactions and dynamics Type A1 Journal article
  Year 2006 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N  
  Volume 14 Issue (up) 2/3 Pages 171-178  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000238762900006 Publication Date 2006-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.35 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.35; 2006 IF: 0.462  
  Call Number UA @ lucian @ c:irua:60025 Serial 3518  
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Partoens, B.; Janssens, K.L. doi  openurl
  Title Electron and hole localization in coupled InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 13 Issue (up) 2/4 Pages 237-240  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000176869100035 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:62427 Serial 905  
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Influence of strain on the magneto-exciton in single and coupled InP/GaInP quantum disks Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 21 Issue (up) 2/4 Pages 349-353  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000220873300041 Publication Date 2004-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:62428 Serial 1635  
Permanent link to this record
 

 
Author Peeters, F.M.; Szafran, B.; Chwiej, T.; Bednarek, S.; Adamowski, J. doi  openurl
  Title Stability of charged exciton states in quantum wires Type A1 Journal article
  Year 2006 Publication Few-body systems Abbreviated Journal Few-Body Syst  
  Volume 38 Issue (up) 2/4 Pages 121-124  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wien Editor  
  Language Wos 000238498200013 Publication Date 2006-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963;1432-5411; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.877 Times cited 3 Open Access  
  Notes Approved Most recent IF: 0.877; 2006 IF: 0.765  
  Call Number UA @ lucian @ c:irua:60035 Serial 3125  
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title 30-band k\cdot p model of electron and hole states in silicon quantum wells Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue (up) 20 Pages 205306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We modeled the electron and hole states in Si/SiO2 quantum wells within a basis of standing waves using the 30-band k . p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions) and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is found to improve the accuracy of the computed hole states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327161500007 Publication Date 2013-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Belgian Science Policy (IAP), the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112704 Serial 18  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: