toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Electric quadrupole interactions and the γ-α phase transition in Ce: the role of conduction electrons Type A1 Journal article
  Year 2000 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 17 Issue Pages 15-32  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000089339900004 Publication Date 2003-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 8 Open Access  
  Notes Approved (up) Most recent IF: 1.461; 2000 IF: 2.077  
  Call Number UA @ lucian @ c:irua:34338 Serial 888  
Permanent link to this record
 

 
Author Betouras, J.J.; Ivanov, V.A.; Peeters, F.M. pdf  doi
openurl 
  Title Ginzburg-Landau theory and effects of pressure on a two-band superconductor : application to MgB2 Type A1 Journal article
  Year 2003 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 31 Issue 3 Pages 349-354  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a model of pressure effects of a two-band superconductor based on a Ginzburg-Landau free energy with two order parameters. The parameters of the theory are pressure as well as temperature dependent. New pressure effects emerge as a result of the competition between the two bands. The theory then is applied to MgB2. We identify two possible scenaria regarding the fate of the two Q subbands under pressure, depending on whether or not both subbands are above the Fermi energy at ambient pressure. The splitting of the two subbands is probably caused by the E-2g, distortion. If only one subband is above the Fermi energy at ambient pressure (scenario I), application of pressure diminishes the splitting and it is possible that the lower subband participates in the superconductivity. The corresponding crossover pressure and Gruneisen parameter are estimated. In the second scenario both bands start above the Fermi energy and they move below it, either by pressure or via the substitution of Mg by Al. In both scenaria, the possibility of electronical topological transition is emphasized. Experimental signatures of both scenaria are presented and existing experiments are discussed in the light of the different physical pictures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000181614300008 Publication Date 2004-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 10 Open Access  
  Notes Approved (up) Most recent IF: 1.461; 2003 IF: 1.457  
  Call Number UA @ lucian @ c:irua:94859 Serial 1343  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.; Nikolaev, A.V. doi  openurl
  Title Nanotube field and one-dimensional fluctuations of C60 molecules in carbon nanotubes Type A1 Journal article
  Year 2005 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 48 Issue 1 Pages 113-124  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000233998600016 Publication Date 2005-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 25 Open Access  
  Notes Approved (up) Most recent IF: 1.461; 2005 IF: 1.720  
  Call Number UA @ lucian @ c:irua:56408 Serial 2279  
Permanent link to this record
 

 
Author Cantoro, M.; Klekachev, A.V.; Nourbakhsh, A.; Sorée, B.; Heyns, M.M.; de Gendt, S. doi  openurl
  Title Long-wavelength, confined optical phonons in InAs nanowires probed by Raman spectroscopy Type A1 Journal article
  Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 79 Issue 4 Pages 423-428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Strongly confined nano-systems, such as one-dimensional nanowires, feature deviations in their structural, electronic and optical properties from the corresponding bulk. In this work, we investigate the behavior of long-wavelength, optical phonons in vertical arrays of InAs nanowires by Raman spectroscopy. We attribute the main changes in the spectral features to thermal anharmonicity, due to temperature effects, and rule out the contribution of quantum confinement and Fano resonances. We also observe the appearance of surface optical modes, whose details allow for a quantitative, independent estimation of the nanowire diameter. The results shed light onto the mechanisms of lineshape change in low-dimensional InAs nanostructures, and are useful to help tailoring their electronic and vibrational properties for novel functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000288120600005 Publication Date 2011-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 10 Open Access  
  Notes ; ; Approved (up) Most recent IF: 1.461; 2011 IF: 1.534  
  Call Number UA @ lucian @ c:irua:89502 Serial 1841  
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.H.; Li, Y.T.; Tian, Y.M. pdf  doi
openurl 
  Title Melting properties of two-dimensional multi-species colloidal systems in a parabolic trap Type A1 Journal article
  Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 83 Issue 4 Pages 499-505  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The angular and radial melting properties of two-dimensional classical systems consisting of different types of particles confined in a parabolic trap are studied through modified Monte Carlo simulations. A universal behavior of the angular melting process is found, which occurs in multiple steps due to shell depended melting temperatures. The melting sequence of the different shells is determined by two major factors: (1) the confinement strength which each shell is subjected to, and (2) the specific structure of each shell. Further, a continuous radial disordering of the particle types forming a single circular shell is found and analyzed. This phenomenon has never been observed before in two-dimensional mono-dispersive systems. This continuous radial disordering results from the high energy barrier between different particle types in multi-species systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000296633700013 Publication Date 2011-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 2 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. 11047111, the Major State Basic Research Development Program of China (973) under Grant No. 2009CB724201, the Key Science and Technology Program of Shanxi Province of China under Grant No. 20090321085, the Doctors' Initial Foundation of Taiyuan University of Science and Technology under Grant No. 20092010, the Youth Foundation of Taiyuan University of Science and Technology under Grant No. 20113020, the FWO-Vl (Belgium) and CNPq (Brazil). Part of the calculations were carried out using the CalcUA core facility of Universiteit Antwerpen (Belgium), a division of Flemish Supercomputer Center VSC, and in the Center for Computational Science of CASHIPS (China). ; Approved (up) Most recent IF: 1.461; 2011 IF: 1.534  
  Call Number UA @ lucian @ c:irua:93589 Serial 1989  
Permanent link to this record
 

 
Author Verberck, B.; Tarakina, N.V. pdf  doi
openurl 
  Title Tubular fullerenes inside carbon nanotubes : optimal molecular orientation versus tube radius Type A1 Journal article
  Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 80 Issue 3 Pages 355-362  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present an investigation of the orientations and positions of tubular fullerene molecules (C90, ..., C200) encapsulated in single-walled carbon nanotubes (SWCNT), a series of so-called fullerene nanopeapods. We find that increasing the tube radius leads to the following succession of energetically stable regimes: (1) lying molecules positioned on the tube's long axis; (2) tilted molecules on the tube's long axis; and (3) lying molecules shifted away from the tube's long axis. As opposed to C70 and C80 molecules encapsulated in a SWCNT, standing orientations do not develop. Our results are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods, and also for the interpretation of future experiments on double-walled carbon nanotube formation by annealing fullerene peapod systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000289576200010 Publication Date 2011-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 10 Open Access  
  Notes ; This work was financially supported by the Research Foundation – Flanders (FWO-VI). B.V. is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO-VI). ; Approved (up) Most recent IF: 1.461; 2011 IF: 1.534  
  Call Number UA @ lucian @ c:irua:89286 Serial 3738  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; de Romaguera, A.R.C.; Milošević, M.V.; Doria, M.M.; Covaci, L.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links Type A1 Journal article
  Year 2012 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 85 Issue 4 Pages 130-130,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Static and dynamic properties of superconducting vortices in a superconducting stripe with a periodic array of weakly-superconducting (or normal metal) regions are studied in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau theory is used to describe the electronic transport, where the anisotropy is included through the spatially-dependent critical temperature T-c. Superconducting vortices penetrating into the weak-superconducting region with smaller T-c are more mobile than the ones in the strong superconducting regions. We observe periodic entrance and exit of vortices which reside in the weak link for some short interval. The mobility of the weakly-pinned vortices can be reduced by increasing the uniform applied magnetic field leading to distinct features in the voltage vs. magnetic field response of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000303545400013 Publication Date 2012-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 32 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral programme between Flanders and Brazil. G.R.B. and L.C. acknowledge individual support from FWO-Vl. A.R.de C.R. acknowledges CNPq and FACEPE for financial support. ; Approved (up) Most recent IF: 1.461; 2012 IF: 1.282  
  Call Number UA @ lucian @ c:irua:98267 Serial 761  
Permanent link to this record
 

 
Author Pogosov, W.V.; Lin, N.; Misko, V.R. doi  openurl
  Title Electron-hole symmetry and solutions of Richardson pairing model Type A1 Journal article
  Year 2013 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 86 Issue 5 Pages 235-236  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Richardson approach provides an exact solution of the pairing Hamiltonian. This Hamiltonian is characterized by the electron-hole pairing symmetry, which is however hidden in Richardson equations. By analyzing this symmetry and using an additional conjecture, fulfilled in solvable limits, we suggest a simple expression of the ground state energy for an equally-spaced energy-level model, which is applicable along the whole crossover from the superconducting state to the pairing fluctuation regime. Solving Richardson equations numerically, we demonstrate a good accuracy of our expression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000320286200044 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 6 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). W.V.P. acknowledges useful discussions with Monique Combescot and the support from the Dynasty Foundation, the RFBR (project No. 12-02-00339), and RFBR-CNRS programme (project No. 12-02-91055). ; Approved (up) Most recent IF: 1.461; 2013 IF: 1.463  
  Call Number UA @ lucian @ c:irua:109657 Serial 935  
Permanent link to this record
 

 
Author Hai, G.-Q.; Peeters, F.M. pdf  doi
openurl 
  Title Hamiltonian of a many-electron system with single-electron and electron-pair states in a two-dimensional periodic potential Type A1 Journal article
  Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 88 Issue 88 Pages 20  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Based on the metastable electron-pair energy band in a two-dimensional (2D) periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens. Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many electrons consisting of single electrons and electron pairs in the 2D system. The electron-pair states are metastable of energies higher than those of the single-electron states at low electron density. We assume two different scenarios for the single-electron band. When it is considered as the lowest conduction band of a crystal, we compare the obtained Hamiltonian with the phenomenological model Hamiltonian of a boson-fermion mixture proposed by Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair and electron-pair-electron-pair interaction terms appear in our Hamiltonian and the interaction potentials can be determined from the electron-electron Coulomb interactions. When we consider the single-electron band as the highest valence band of a crystal, we show that holes in this valence band are important for stabilization of the electron-pair states in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000347776800005 Publication Date 2015-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 2 Open Access  
  Notes ; This work was supported by FAPESP and CNPq (Brazil). ; Approved (up) Most recent IF: 1.461; 2015 IF: 1.345  
  Call Number c:irua:125317 Serial 1406  
Permanent link to this record
 

 
Author Vasylenko, A.A.; Misko, V.R. pdf  doi
openurl 
  Title Nonlinear transport of the Wigner crystal in symmetric and asymmetric FET-like structures : nonlinear transport of the Wigner crystal on superfluid He-4 in quasi-one-dimensional channels with symmetric and asymmetric constrictions Type A1 Journal article
  Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 88 Issue 88 Pages 105  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract When floating on a two-dimensional surface of superfluid He-4, electrons arrange themselves in two-dimensional crystalline structure known as Wigner crystal. In channels, the boundaries interfere the crystalline order and in case of very narrow channels one observes a quasi-one-dimensional (quasi-1D) Wigner crystal formed by just a few rows of electrons and, ultimately, one row in the “quantum wire” regime. Recently, the “quantum wire” regime was accessed experimentally [D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)] resulting in unusual transport phenomena such as, e.g., oscillations in the electron conductance. Using molecular dynamics simulations, we study the nonlinear transport of electrons in channels with various types of constrictions: single and multiple symmetric and asymmetric geometrical constrictions with varying width and length, and saddle-point-type potentials with varying gate voltage. In particular, we analyze the average particle velocity of the particles and the corresponding electron current versus the driving force or the gate voltage. We have revealed a significant difference in the dynamics for long and short constrictions: The oscillations of the average velocity of the particles for the systems with short constrictions exhibit a clear correlation with the transitions between the states with different numbers of rows of particles; on the other hand, for the systems with longer constrictions these oscillations are suppressed. The obtained results qualitatively agree with the experimental observations. Next, we propose a FET-like structure that consists of a channel with asymmetric constrictions. We show that applying a transverse bias results either in increase of the average particle velocity or in its suppression thus allowing a flexible control tool over the electron transport. The advantage of the asymmetric FET is that it does not have a gate and it allows an easy control of relatively large electron flow. Furthermore, the asymmetric device can be used for rectification of an ac-driven electron flow. Our results bring important insights into the dynamics of electrons floating on the surface of superfluid He-4 in channels with constrictions and allow the effective control over the electron transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000353065100002 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited Open Access  
  Notes Approved (up) Most recent IF: 1.461; 2015 IF: 1.345  
  Call Number c:irua:125997 Serial 2359  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.; Kusmartsev, F.V.; Peeters, F.M. url  doi
openurl 
  Title Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current Type A1 Journal article
  Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 88 Issue 88 Pages 286  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a “superradiant” vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000363960900002 Publication Date 2015-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 1 Open Access  
  Notes ; This work was supported by EU Marie Curie (Project No. 253057). ; Approved (up) Most recent IF: 1.461; 2015 IF: 1.345  
  Call Number UA @ lucian @ c:irua:129509 Serial 4166  
Permanent link to this record
 

 
Author Horzum, S.; Torun, E.; Serin, T.; Peeters, F.M. pdf  doi
openurl 
  Title Structural, electronic and optical properties of Cu-doped ZnO : experimental and theoretical investigation Type A1 Journal article
  Year 2016 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 96 Issue 96 Pages 1743-1756  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/G(0)W(0) method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376076500002 Publication Date 2016-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 29 Open Access  
  Notes ; Theoretical part of this work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Experimental part of this work was supported by Ankara University BAP under Project Number [14B0443001]. ; Approved (up) Most recent IF: 1.505  
  Call Number UA @ lucian @ c:irua:134161 Serial 4254  
Permanent link to this record
 

 
Author Khotkevych, V.V.; Milošević, M.V.; Bending, S.J. doi  openurl
  Title A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK Type A1 Journal article
  Year 2008 Publication The review of scientific instruments Abbreviated Journal Rev Sci Instrum  
  Volume 79 Issue 12 Pages 123708  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial 3He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6×6×7 mm3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields 10 mG/Hz1/2. The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000262224800032 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6748; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.515 Times cited 14 Open Access  
  Notes Approved (up) Most recent IF: 1.515; 2008 IF: 1.738  
  Call Number UA @ lucian @ c:irua:75725 Serial 2942  
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W. doi  openurl
  Title Quantized conductance without reservoirs : method of the nonequilibrium statistical operator Type A1 Journal article
  Year 2007 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 6 Issue 1/3 Pages 255-258  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We introduce a generalized non-equilibrium statistical operator (NSO) to study a current-carrying system. The NSO is used to derive a set of quantum kinetic equations based on quantum mechanical balance equations. The quantum kinetic equations are solved self-consistently together with Poissons equation to solve a general transport problem. We show that these kinetic equations can be used to rederive the Landauer formula for the conductance of a quantum point contact, without any reference to reservoirs at different chemical potentials. Instead, energy dissipation is taken into account explicitly through the electron-phonon interaction. We find that both elastic and inelastic scattering are necessary to obtain the Landauer conductance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208473600062 Publication Date 2007-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.526 Times cited Open Access  
  Notes Approved (up) Most recent IF: 1.526; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:89506 Serial 2769  
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Pourtois, G. doi  openurl
  Title Analytical and self-consistent quantum mechanical model for a surrounding gate MOS nanowire operated in JFET mode Type A1 Journal article
  Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 7 Issue 3 Pages 380-383  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We derive an analytical model for the electrostatics and the drive current in a silicon nanowire operating in JFET mode. We show that there exists a range of nanowire radii and doping densities for which the nanowire JFET satisfies reasonable device characteristics. For thin nanowires we have developed a self-consistent quantum mechanical model to obtain the electronic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208473800067 Publication Date 2008-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 70 Open Access  
  Notes Approved (up) Most recent IF: 1.526; 2008 IF: NA  
  Call Number UA @ lucian @ c:irua:89504 Serial 107  
Permanent link to this record
 

 
Author Slachmuylders, A.; Partoens, B.; Magnus, W.; Peeters, F.M. doi  openurl
  Title The effect of dielectric mismatch on excitons and trions in cylindrical semiconductor nanowires Type A1 Journal article
  Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume Issue Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208473800066 Publication Date 2008-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 2 Open Access  
  Notes Approved (up) Most recent IF: 1.526; 2008 IF: NA  
  Call Number UA @ lucian @ c:irua:69620 Serial 808  
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; de Meyer, K.; Meuris, M.; Heyns, M. doi  openurl
  Title General 2D Schrödinger-Poisson solver with open boundary conditions for nano-scale CMOS transistors Type A1 Journal article
  Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 7 Issue 4 Pages 475-484  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Employing the quantum transmitting boundary (QTB) method, we have developed a two-dimensional Schrödinger-Poisson solver in order to investigate quantum transport in nano-scale CMOS transistors subjected to open boundary conditions. In this paper we briefly describe the building blocks of the solver that was originally written to model silicon devices. Next, we explain how to extend the code to semiconducting materials such as germanium, having conduction bands with energy ellipsoids that are neither parallel nor perpendicular to the channel interfaces or even to each other. The latter introduces mixed derivatives in the 2D effective mass equation, thereby heavily complicating the implementation of open boundary conditions. We present a generalized quantum transmitting boundary method that mainly leans on the completeness of the eigenstates of the effective mass equation. Finally, we propose a new algorithm to calculate the chemical potentials of the source and drain reservoirs, taking into account their mutual interaction at high drain voltages. As an illustration, we present the potential and carrier density profiles obtained for a (111) Ge NMOS transistor as well as the ballistic current characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000209032500002 Publication Date 2008-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 3 Open Access  
  Notes Approved (up) Most recent IF: 1.526; 2008 IF: NA  
  Call Number UA @ lucian @ c:irua:89505 Serial 1322  
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B. doi  openurl
  Title Modeling drive currents and leakage currents : a dynamic approach Type A1 Journal article
  Year 2009 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 8 Issue 3/4 Pages 307-323  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract The dynamics of electrons and holes propagating through the nano-scaled channels of modern semiconductor devices can be seen as a widespread manifestation of non-equilibrium statistical physics and its ruling principles. In this respect both the devices that are pushing conventional CMOS technology towards the final frontiers of Moores law and the upcoming set of alternative, novel nanostructures grounded on entirely new concepts and working principles, provide an almost unlimited playground for assessing physical models and numerical techniques emerging from classical and quantum mechanical non-equilibrium theory. In this paper we revisit the Boltzmann as well as the WignerBoltzmann equation which offers a valuable platform to study transport of charge carriers taking part in drive currents. We focus on a numerical procedure that regained attention recently as an alternative tool to solve the time-dependent Boltzmann equation for inhomogeneous systems, such as the channel regions of field-effect transistors, and we discuss its extension to the WignerBoltzmann equation. Furthermore, we pay attention to the calculation of tunneling leakage currents. The latter typically occurs in nano-scaled transistors when part of the carrier distribution sustaining the drive current is found to tunnel into the gate due the presence of an ultra-thin insulating barrier separating the gate from the channel region. In particular, we discuss the paradox related to the very existence of leakage currents established by electrons occupying quasi-bound states, while the (real) wave functions of the latter cannot carry net currents. Finally, we describe a simple model to resolve the paradox as well as to estimate gate currents provided the local carrier generation rates largely exceed the tunneling rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208236100009 Publication Date 2009-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 4 Open Access  
  Notes Approved (up) Most recent IF: 1.526; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:89503 Serial 2110  
Permanent link to this record
 

 
Author Sels, D.; Sorée, B.; Groeseneken, G. doi  openurl
  Title Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor Type A1 Journal article
  Year 2011 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 10 Issue 1 Pages 216-221  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000300735800021 Publication Date 2011-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 12 Open Access  
  Notes ; ; Approved (up) Most recent IF: 1.526; 2011 IF: 1.211  
  Call Number UA @ lucian @ c:irua:89501 Serial 2772  
Permanent link to this record
 

 
Author Masir, M.R.; Peeters, F.M. doi  openurl
  Title Scattering of Dirac electrons by a random array of magnetic flux tubes Type A1 Journal article
  Year 2013 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 12 Issue 2 Pages 115-122  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The scattering of two-dimensional (2D) massless electrons as presented in graphene in the presence of a random array of circular magnetic flux tubes is investigated. The momentum relaxation time and the Hall factor are obtained using optical theorem techniques for scattering. Electrons with energy close to those of the Landau levels of the flux tubes exhibit resonant scattering and have a long life-time to reside inside the magnetic flux tube. These resonances appear as sharp structures in the Hall factor and the magneto-resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000320044900007 Publication Date 2013-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 2 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-Vl). We acknowledge fruitful discussions with A. Matulis. ; Approved (up) Most recent IF: 1.526; 2013 IF: 1.372  
  Call Number UA @ lucian @ c:irua:109615 Serial 2950  
Permanent link to this record
 

 
Author Govaerts, K.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Extended homologous series of Sn–O layered systems: A first-principles study Type A1 Journal article
  Year 2016 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 243 Issue 243 Pages 36-43  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Apart from the most studied tin-oxide compounds, SnO and SnO2, intermediate states have been claimed to exist for more than a hundred years. In addition to the known homologous series (Seko et al., Phys. Rev. Lett. 100, 045702 (2008)), we here predict the existence of several new compounds with an O concentration between 50 % (SnO) and 67 % (SnO2). All these intermediate compounds are constructed from removing one or more (101) oxygen layers of SnO2. Since the van der Waals (vdW) interaction is known to be important for the Sn-Sn interlayer distances, we use a vdW-corrected functional, and compare these results with results obtained with PBE and hybrid functionals. We present the electronic properties of the intermediate structures and we observe a decrease of the band gap when (i) the O concentration increases and (ii) more SnO-like units are present for a given concentration. The contribution of the different atoms to the valence and conduction band is also investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381544200007 Publication Date 2016-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 10 Open Access  
  Notes We gratefully acknowledge financial support from a GOA fund of the University of Antwerp. K.G. thanks the University of Antwerp for a PhD fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government – department EWI. Approved (up) Most recent IF: 1.554  
  Call Number c:irua:134037 Serial 4085  
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M. pdf  doi
openurl 
  Title Quantum transport in graphene Hall bars : effects of side gates Type A1 Journal article
  Year 2017 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 257 Issue 257 Pages 20-26  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000401101400005 Publication Date 2017-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.554 Times cited Open Access  
  Notes ; This work was supported by the Methusalem programme of the Flemish government. One of us (F. M. Peeters) acknowledges correspondence with K. Novoselov. ; Approved (up) Most recent IF: 1.554  
  Call Number UA @ lucian @ c:irua:143761 Serial 4604  
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Dong, H.M.; Yu, Y.; Qin, H.; Peeters, F.M. pdf  doi
openurl 
  Title Enhancement of plasmon-photon coupling in grating coupled graphene inside a Fabry-Perot cavity Type A1 Journal article
  Year 2018 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 280 Issue 280 Pages 45-49  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical investigation of the plasmon-polariton modes in grating coupled graphene inside a Fabry-Perot cavity. The cavity or photon modes of the device are determined by the Finite Difference Time Domain (FDTD) simulations and the corresponding plasmon-polariton modes are obtained by applying a many-body self-consistent field theory. We find that in such a device structure, the electric field strength of the incident electromagnetic (EM) field can be significantly enhanced near the edges of the grating strips. Thus, the strong coupling between the EM field and the plasmons in graphene can be achieved and the features of the plasmon-polariton oscillations in the structure can be observed. It is found that the frequencies of the plasmon-polariton modes are in the terahertz (THz) bandwidth and depend sensitively on electron density which can be tuned by applying a gate voltage. Moreover, the coupling between the cavity photons and the plasmons in graphene can be further enhanced by increasing the filling factor of the device. This work can help us to gain an in-depth understanding of the THz plasmonic properties of graphene-based structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000439059600008 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access  
  Notes ; This work is supported by the National Natural Science Foundation of China (Grand No. 11604192 and Grant No. 11574319); the Center of Science and Technology of Hefei Academy of Science; the Ministry of Science and Technology of China (Grant No. 2011YQ130018); Department of Science and Technology of Yunnan Province; Chinese Academy of Sciences. ; Approved (up) Most recent IF: 1.554  
  Call Number UA @ lucian @ c:irua:152369UA @ admin @ c:irua:152369 Serial 5024  
Permanent link to this record
 

 
Author Wang, W.; Li, L.; Kong, X.; Van Duppen, B.; Peeters, F.M. pdf  url
doi  openurl
  Title T4,4,4-graphyne : a 2D carbon allotrope with an intrinsic direct bandgap Type A1 Journal article
  Year 2019 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 293 Issue 293 Pages 23-27  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A novel two-dimensional (2D) structurally stable carbon allotrope is proposed using first-principles calculations, which is a promising material for water purification and for electronic devices due to its unique porous structure and electronic properties. Rectangular and hexagonal rings are connected with acetylenic linkages, forming a nanoporous structure with a pore size of 6.41 angstrom, which is known as T-4,T-4,T-4-graphyne. This 2D sheet exhibits a direct bandgap of 0.63 eV at the M point, which originates from the p(z)( )atomic orbitals of carbon atoms as confirmed by a tight-binding model. Importantly, T-4,T-4,T-4-graphyne is found to be energetically more preferable than the experimentally realized beta-graphdiyne, it is dynamically stable and can withstand temperatures up to 1500 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460909600005 Publication Date 2019-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 10 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China (Grant Nos. 11404214 and 11455015), the China Scholarship Council (CSC), the Science and Technology Research Foundation of Jiangxi Provincial Education Department (Grant Nos. GJJ180868 and GJJ161062) the Fonds Wetenschappelijk Onderzoek (FWO-V1), and the FLAG-ERA project TRANS2DTMD. BVD was supported by the Research Foundation – Flanders (FWO-V1) through a postdoctoral fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government department EWI. ; Approved (up) Most recent IF: 1.554  
  Call Number UA @ admin @ c:irua:158503 Serial 5234  
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of defects at Σ3 grain boundaries in CuGaSe2 Type A1 Journal article
  Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume Issue Pages 114263  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract We present a first-principles computational study of cation–Se 3 (112) grain boundaries in CuGaSe. We discuss the structure of these grain boundaries, as well as the effect of native defects and Na impurities on their electronic properties. The formation energies show that the defects will tend to form preferentially at the grain boundaries, rather than in the grain interiors. We find that in Ga-rich growth conditions Cu vacancies as well as Ga at Cu and Cu at Ga antisites are mainly responsible for having the equilibrium Fermi level pinned toward the middle of the gap, resulting in carrier depletion. The Na at Cu impurity in its +1 charge state contributes to this. In Ga-poor growth conditions, on the other hand, the formation energies of Cu vacancies and Ga at Cu antisites are comparatively too high for any significant influence on carrier density or on the equilibrium Fermi level position. Thus, under these conditions, the Cu at Ga antisites give rise to a -type grain boundary. Also, their formation energy is lower than the formation energy of Na at Cu impurities. Thus, the latter will fail to act as a hole barrier preventing recombination at the grain boundary, in contrast to what occurs in CuInSe grain boundaries. We also discuss the effect of the defects on the electronic properties of bulk CuGaSe, which we assume reflect the properties of the grain interiors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652668500013 Publication Date 2021-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access OpenAccess  
  Notes Fwo; We acknowledge the financial support of FWO-Vlaanderen, Belgium through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved (up) Most recent IF: 1.554  
  Call Number EMAT @ emat @c:irua:176544 Serial 6703  
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M. pdf  doi
openurl 
  Title Tunable effective masses of magneto-excitons in two-dimensional materials Type A1 Journal article
  Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume 334 Issue Pages 114371  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitonic properties of Ge2H2 and Sn2H2, also known as Xanes, are investigated within the effective mass model. A perpendicularly applied magnetic field induces a negative shift on the exciton center-of-mass kinetic energy that is approximately quadratic with its momentum, thus pushing down the exciton dispersion curve and flattening it. This can be interpreted as an increase in the effective mass of the magneto-exciton, tunable by the field intensity. Our results show that in low effective mass two-dimensional semiconductors, such as Xanes, the applied magnetic field allows one to tune the magneto-exciton effective mass over a wide range of values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670329600003 Publication Date 2021-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.554 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 1.554  
  Call Number UA @ admin @ c:irua:179762 Serial 7037  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title Electronic structure and electric quadrupoles of a polymerized chain in solid AC60 Type A1 Journal article
  Year 2001 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 117 Issue Pages 739-743  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000167538300010 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 10 Open Access  
  Notes Approved (up) Most recent IF: 1.554; 2001 IF: 1.381  
  Call Number UA @ lucian @ c:irua:36881 Serial 1009  
Permanent link to this record
 

 
Author Chang, K.; Peeters, F.M. doi  openurl
  Title Spin-polarized tunneling through diluted magnetic semiconductor barriers Type A1 Journal article
  Year 2001 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 120 Issue Pages 181-184  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000171685400001 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 35 Open Access  
  Notes Approved (up) Most recent IF: 1.554; 2001 IF: 1.381  
  Call Number UA @ lucian @ c:irua:37303 Serial 3099  
Permanent link to this record
 

 
Author Ivanov, V.A.; van den Broek, M.; Peeters, F.M. doi  openurl
  Title Strongly interacting σ-electrons and MgB2 superconductivity Type A1 Journal article
  Year 2001 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 120 Issue Pages 53-57  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000171221900001 Publication Date 2002-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 5 Open Access  
  Notes Approved (up) Most recent IF: 1.554; 2001 IF: 1.381  
  Call Number UA @ lucian @ c:irua:37304 Serial 3187  
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M. doi  openurl
  Title Wigner crystallization in the two electron quantum dot Type A1 Journal article
  Year 2001 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 117 Issue Pages 655-660  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000167475900006 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 34 Open Access  
  Notes Approved (up) Most recent IF: 1.554; 2001 IF: 1.381  
  Call Number UA @ lucian @ c:irua:37305 Serial 3920  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: