toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schram, J.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van den Berg, J.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical profiling and liquid chromatography–mass spectrometry characterization of synthetic cathinones : from methodology to detection in forensic samples Type A1 Journal article
  Year 2021 Publication Drug Testing And Analysis Abbreviated Journal Drug Test Anal  
  Volume 13 Issue 7 Pages 1282-1294  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on‐site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SC) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone and 4‐chloro‐alpha‐pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen‐printed electrodes (SPE). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography‐high resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas‐chromatography‐mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever‐diversifying drug market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000624902500001 Publication Date 2021-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.469 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.469  
  Call Number UA @ admin @ c:irua:175583 Serial 7863  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Vermeyen, T.; Brence, J.; Van Echelpoel, R.; Aerts, R.; Acke, G.; Bultinck, P.; Herrebout, W. url  doi
openurl 
  Title Exploring machine learning methods for absolute configuration determination with vibrational circular dichroism Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 35 Pages 19781-19789  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Molecular Spectroscopy (MolSpec)  
  Abstract The added value of supervised Machine Learning (ML) methods to determine the Absolute Configuration (AC) of compounds from their Vibrational Circular Dichroism (VCD) spectra was explored. Among all ML methods considered, Random Forest (RF) and Feedforward Neural Network (FNN) yield the best performance for identification of the AC. At its best, FNN allows near-perfect AC determination, with accuracy of prediction up to 0.995, while RF combines good predictive accuracy (up to 0.940) with the ability to identify the spectral areas important for the identification of the AC. No loss in performance of either model is observed as long as the spectral sampling interval used does not exceed the spectral bandwidth. Increasing the sampling interval proves to be the best method to lower the dimensionality of the input data, thereby decreasing the computational cost associated with the training of the models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000691366500001 Publication Date 2021-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:180290 Serial 7951  
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 292 Issue Pages 120204  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663216500001 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177075 Serial 7989  
Permanent link to this record
 

 
Author Beltran, V.; Marchetti, A.; De Meyer, S.; Nuyts, G.; De Wael, K. pdf  url
doi  openurl
  Title Geranium lake pigments : the role of the synthesis on the structure and composition Type A1 Journal article
  Year 2021 Publication Dyes And Pigments Abbreviated Journal Dyes Pigments  
  Volume 189 Issue Pages 109260  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Eosin Y has an extraordinary capacity to form complexes with metallic elements, that have applications in many different fields, from photovoltaics and photocatalysis to historical artists? pigments. To unravel the complexes reactivity, it is essential to have a precise knowledge of their structure and composition, as well as how these can be affected by the synthesis protocol, an often underestimated factor. This manuscript presents a thorough investigation of the structure and composition of eosin Y complexes based on Al and Pb, by FTIR, XRPD and Raman spectroscopy, with a particular focus on the effect of the synthesis conditions. Results clearly show the change of the coordination mode in Pb complexes depending on the protocol, while the structure of Al complexes remains stable. In both cases, the formation of by-products was observed. Additionally, a detailed band assignment of the FTIR and Raman spectra of eosin Y and Pb and Al complexes is described, providing interesting details such as the interaction between the metallic ion and the xanthene moiety (chromophore). This is extremely important for the analysis of historical paintings where eosin Y is bonded to metallic ions, as well as for other materials in dye-sensitized solar cells, wastewater treatment or photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634733200001 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-7208 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.473 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.473  
  Call Number UA @ admin @ c:irua:177676 Serial 8002  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Newsome, G.A.; Janssens, K. pdf  url
doi  openurl
  Title High-resolution mass spectrometry and nontraditional mass defect analysis of brominated historical pigments Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 44 Pages 14851-14858  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The implementation of high-resolution mass spectrometry systems offers new possibilities for the analysis of complex art samples such as historical oil paintings. However, these multicomponent systems generate large and complex data sets that require advanced visualization tools to aid interpretation, especially when no chromatographic separation is performed. In the context of this research, it was crucial to propose a data analysis tool to identify the products generated during the synthesis, drying, and aging of historical pigments. This study reports for the first time a nontraditional mass defect analysis of oil paint samples containing a fugitive brominated-organic pigment, eosin or geranium lake, by using direct infusion electrospray ionization in combination with a high-resolution Orbitrap mass spectrometer. The use of nontraditional Kendrick mass defect plots is presented in this study as a processing and visualization tool to recognize brominated species based on their specific mass defect and isotope pattern. The results demonstrate that this approach could provide valuable molecular compositional information on the degradation pathways of this pigment. We anticipate that mass defect analysis will become highly relevant in future degradation studies of many more historical organic pigments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000718171600037 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:182347 Serial 8038  
Permanent link to this record
 

 
Author Aucar Boidi, N.; Fernández García, H.; Nunez-Fernandez, Y.; Hallberg, K. url  doi
openurl 
  Title In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction Type A1 Journal article
  Year 2021 Publication Physical review research Abbreviated Journal  
  Volume 3 Issue 4 Pages 043213  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000736651500002 Publication Date 2021-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184836 Serial 8073  
Permanent link to this record
 

 
Author Daems, E.; Moro, G.; Campos, R.; De Wael, K. pdf  url
doi  openurl
  Title Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions Type A1 Journal article
  Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 142 Issue Pages 116311  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers are promising biorecognition elements with a wide applicability from therapeutics to bio-sensing. However, to successfully use these biomolecules, a complete characterisation of their bindingperformance in the presence of the target is crucial. Several multi-analytical approaches have been re-ported including techniques to describe kinetic and thermodynamic aspects of the aptamer-targetinteraction, and techniques which allow an in-depth understanding of the aptamer-target structures.Recent literature shows the need of a critical data interpretation, a combination of characterisationtechniques and suggests the key role of the characterisation protocol design. Indeed, thefinal applicationof the aptamer should be considered before choosing the characterisation method. All the limitations andcapabilities of the analytical tools in use for aptamer characterisation should be taken into account. Here,we present a critical overview of the current methods and multi-analytical approaches to study aptamer-target binding, aiming to provide researchers with guidelines for the design of characterisation protocols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682179000010 Publication Date 2021-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936; 1879-3142 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 8.442  
  Call Number UA @ admin @ c:irua:179407 Serial 8203  
Permanent link to this record
 

 
Author Castanheiro, A.; Wuyts, K.; Hofman, J.; Nuyts, G.; De Wael, K.; Samson, R. pdf  url
doi  openurl
  Title Morphological and elemental characterization of leaf-deposited particulate matter from different source types : a microscopic investigation Type A1 Journal article
  Year 2021 Publication Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume 28 Issue 20 Pages 25716-25732  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Particulate matter (PM) deposition on urban green enables the collection of particulate pollution from a diversity of contexts, and insight into the physico-chemical profiles of PM is key for identifying main polluting sources. This study reports on the morphological and elemental characterization of PM2-10 deposited on ivy leaves from five different environments (forest, rural, roadside, train, industry) in the region of Antwerp, Belgium. Ca. 40,000 leaf-deposited particles were thoroughly investigated by particle-based analysis using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX) and their physico-chemical characteristics were explored for PM source apportionment purposes. The size distribution of all deposited particles was biased towards small-sized PM, with 32% of the particles smaller than 2.5 mu m (PM2.5) and median diameters of 2.80-3.09 mu m. The source type influenced both the particles' size and morphology (aspect ratio and shape), with roadside particles being overall the smallest in size and the most spherical. While forest and rural elemental profiles were associated with natural PM, the industry particles revealed the highest anthropogenic metal input. PM2-10 profiles for roadside and train sites were rather comparable and only distinguishable when evaluating the fine (2-2.5 mu m) and coarse (2.5-10 mu m) PM fractions separately, which enabled the identification of a larger contribution of combustion-derived particles (small, circular, Fe-enriched) at the roadside compared to the train. Random forest prediction model classified the source type correctly for 61-85% of the leaf-deposited PM. The still modest classification accuracy denotes the influence of regional background PM and demands for additional fingerprinting techniques to facilitate source apportionment. Nonetheless, the obtained results demonstrate the utility of leaf particle-based analysis to fingerprint and pinpoint source-specific PM, particularly when considering both the composition and size of leaf-deposited particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000609067300006 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.741 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 2.741  
  Call Number UA @ admin @ c:irua:176082 Serial 8282  
Permanent link to this record
 

 
Author Trashin, S.; Morales-Yánez, F.; Thiruvottriyur Shanmugam, S.; Paredis, L.; Carrión, E.N.; Sariego, I.; Muyldermans, S.; Polman, K.; Gorun, S.M.; De Wael, K. pdf  url
doi  openurl
  Title Nanobody-based immunosensor detection enhanced by photocatalytic-electrochemical redox cycling Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 40 Pages 13606-13614  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708550500025 Publication Date 2021-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:181795 Serial 8290  
Permanent link to this record
 

 
Author Beltran, V.; Marchetti, A.; Nuyts, G.; Leeuwestein, M.; Sandt, C.; Borondics, F.; De Wael, K. pdf  url
doi  openurl
  Title Nanoscale analysis of historical paintings by means of O‐PTIR spectroscopy : the identification of the organic particles in L’Arlésienne (portrait of Madame Ginoux) by Van Gogh Type A1 Journal article
  Year 2021 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume 60 Issue 42 Pages 22753-22760  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Optical-photothermal infrared (O-PTIR) spectroscopy is a recently developed technique that provides spectra comparable to traditional transmission FTIR spectroscopy with nanometric spatial resolution. Hence, O-PTIR is a promising candidate for the analysis of historical paintings, as well as other cultural heritage objects, but its potential has not yet been evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694015700001 Publication Date 2021-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:179989 Serial 8291  
Permanent link to this record
 

 
Author Daems, E.; Moro, G.; Berghmans, H.; Moretto, L.M.; Dewilde, S.; Angelini, A.; Sobott, F.; De Wael, K. pdf  url
doi  openurl
  Title Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds Type A1 Journal article
  Year 2021 Publication Analyst Abbreviated Journal Analyst  
  Volume 146 Issue 6 Pages 2065-2073  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins’ (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631575100031 Publication Date 2021-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654; 1364-5528 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.885 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.885  
  Call Number UA @ admin @ c:irua:177074 Serial 8294  
Permanent link to this record
 

 
Author Dubinina, T.; Maklakov, S.; Petrusevich, E.; Borisova, N.E.; Trashin, S.A.; De Wael, K.; Tomilova, L.G. url  doi
openurl 
  Title Photoactive layers for photovoltaics based on near-infrared absorbing aryl-substituted naphthalocyanine complexes : preparation and investigation of properties Type A1 Journal article
  Year 2021 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 45 Issue 32 Pages 14815-14821  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Photoactive layers based on aryl- and aryloxy-substituted naphthalocyanines and conductive polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were prepared using the spin-coating technique and their conductivity was tested in dark and under illumination. For this purpose novel octa-2-naphthoxy-substituted naphthalocyanines were synthesized starting from 6,7-di(2-naphthoxy)naphthalene-2,3-dicarbonitrile. For those novel naphthalocyanine complexes, spectral and electrochemical data were measured and compared with corresponding ones for other aryl-substituted analogues. In comparison to the previously studied naphthalocyanines with alkyl- and phenyl- groups, the formal oxidation and reduction potentials were rather similar. All target complexes demonstrate intense near-infrared absorption at 760-790 nm, which is about 30 nm bathochromically shifted in thin films. The photo-resistive effect was found increasing from composites comprised of naphthoxy- to phenyl-substituted naphthalocyanines. This peculiarity was explained by using optical and atomic force microscopy in terms of different sizes of aggregates formed. The photo-response time for novel composited was approximately 3 s, which is about 20 times faster than measured previously for the films deposited via the drop-casting technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000680389800001 Publication Date 2021-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.269 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.269  
  Call Number UA @ admin @ c:irua:179884 Serial 8379  
Permanent link to this record
 

 
Author Mudronja, D.; Vanmeert, F.; Fazinic, S.; Janssens, K.; Tibljas, D.; Desnica, V. url  doi
openurl 
  Title Protection of stone monuments using a brushing treatment with ammonium oxalate Type A1 Journal article
  Year 2021 Publication Coatings Abbreviated Journal Coatings  
  Volume 11 Issue 4 Pages 379  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Stone monuments and buildings are susceptible to weathering. Carbonate-based stones are especially vulnerable in acidic environments, whereas magmatic acidic stones are more susceptible to chemical weathering in basic environments. To slow down surface corrosion of limestone and marble artworks/buildings, protective coatings which inhibit calcite dissolution have been proposed. In this work, samples from two stone types with different porosity were treated with ammonium oxalate (AmOx) to create a protective layer of calcium oxalate (CaOx) using the previously developed brushing method. Two different synchrotron microscopy experiments were performed to determine its protective capability. X-ray powder diffraction (SR-mu-XRPD) in transmission geometry allowed visualization of the distributions of calcium carbonate and oxalates along the sample depths. In a second step, X-ray fluorescence (SR-mu-XRF) was used to check the efficiency/integrity of the protective surface coating layer. This was done by measuring the sulfur distribution on the stone surface after exposing the protected stones to sulfuric acid. XRPD showed the formation of a protective oxalate layer with a thickness of 5-15 mu m on the less porous stone, while a 20-30 mu m thick layer formed on the more porous stone. The XRF study showed that the optimal treatment time depends on the stone porosity. Increasing the treatment time from 1 to 3 h resulted in a decreased efficiency of the protective layer for the low porosity stone. We assume that this is due to the formation of vertical channels (cracks) in the protective layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000642940900001 Publication Date 2021-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-6412 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.175 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 2.175  
  Call Number UA @ admin @ c:irua:178271 Serial 8428  
Permanent link to this record
 

 
Author Al-Emam, E.; Beltran, V.; De Meyer, S.; Nuyts, G.; Wetemans, V.; De Wael, K.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Removal of a past varnish treatment from a 19th-century Belgian wall painting by means of a solvent-loaded double network hydrogel Type A1 Journal article
  Year 2021 Publication Polymers Abbreviated Journal Polymers-Basel  
  Volume 13 Issue 16 Pages 2651-20  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Polymeric materials have been used by painting conservator-restorers as consolidants and/or varnishes for wall paintings. The application of these materials is carried out when confronting loose paint layers or as a protective coating. However, these materials deteriorate and cause physiochemical alterations to the treated surface. In the past, the monumental neo-gothic wall painting 'The Last Judgment' in the chapel of Sint-Jan Berchmanscollege in Antwerp, Belgium was treated with a synthetic polymeric material. This varnish deteriorated significantly and turned brown, obscuring the paint layers. Given also that the varnish was applied to some parts of the wall painting and did not cover the entire surface, it was necessary to remove it in order to restore the original appearance of the wall painting. Previous attempts carried out by conservator-restorers made use of traditional cleaning methods, which led to damage of the fragile paint layers. Therefore, gel cleaning was proposed as a less invasive and more controllable method for gently softening and removing the varnish. The work started by identifying the paint stratigraphy and the deteriorated varnish via optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. A polyvinyl alcohol-borax/agarose (PVA-B/AG) hydrogel loaded with a number of solvents/solvent mixtures was employed in a series of tests to select the most suitable hydrogel composite. By means of the hydrogel composite loaded with 10% propylene carbonate, it was possible to safely remove the brown varnish layer. The results were verified by visual examinations (under visible light 'VIS' and ultraviolet light 'UV') as well as OM and FTIR spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000690248000001 Publication Date 2021-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4360 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.364 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.364  
  Call Number UA @ admin @ c:irua:181567 Serial 8470  
Permanent link to this record
 

 
Author Schalm, O.; Nuyts, G.; Janssens, K. pdf  url
doi  openurl
  Title Some critical observations about the degradation of glass : the formation of lamellae explained Type A1 Journal article
  Year 2021 Publication Journal Of Non-Crystalline Solids Abbreviated Journal J Non-Cryst Solids  
  Volume 569 Issue Pages 120984  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This study demonstrates that the mechanism responsible for the transformation of glass into a degradation layer is pH-dependent. In acid conditions, the transformed glass is homogeneous and brittle. In mild alkaline conditions, transformed glass is heterogeneous due to the presence of lamellae composed of silica nanoparticles and the occurrence of Ca-rich inclusions. The fundamental difference between acid and alkaline conditions cannot be explained by the currently accepted degradation mechanism based on ion exchange. To explain this critical observation, we propose a refined degradation mechanism based on existing knowledge that involves several inwardly moving reaction fronts. The fronts responsible for the transformation of the silicate network into amorphous silica are also responsible for the morphology of the transformed glass. We have identified the feedback mechanism that explains the formation of lamellae in alkaline conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000674487200009 Publication Date 2021-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.124 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 2.124  
  Call Number UA @ admin @ c:irua:179835 Serial 8551  
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Soot removal from ancient Egyptian complex painted surfaces using a double network gel : empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I-Abydos Type A1 Journal article
  Year 2021 Publication Heritage science Abbreviated Journal  
  Volume 9 Issue 1 Pages 1-10  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract In this study, we evaluated the ease of removal of soot layers from ancient wall paintings by employing double network gels as a controllable and safe cleaning method. The ceiling of the temple of Seti I (Abydos, Egypt) is covered with thick layers of soot; this is especially the case in the sanctuary of Osiris. These layers may have been accumulated during the occupation of the temple by Christians, fleeing the Romans in the first centuries A.D. Soot particulates are one of the most common deposits to be removed during conservation-restoration activities of ancient Egyptian wall paintings. They usually mask the painted reliefs and reduce the permeability of the painted surface. A Polyvinyl alcohol-borax/agarose (PVA-B/AG) double network gel was selected for this task since its properties were expected to be compatible with the cleaning treatment requirements. The gel is characterized by its flexibility, permitting to take the shape of the reliefs, while also having self-healing properties, featuring shape stability and an appropriate capacity to retain liquid. The gel was loaded with several cleaning reagents that proved to be effective for soot removal. Soot removal tests were conducted with these gel composites. The cleaned surfaces were evaluated with the naked eye, a digital microscope, and color measurements in order to select the best gel composite. The gel composite, loaded with a solution of 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA yielded the most satisfactory results and allowed to safely remove a crust of thick soot layers from the surface. Thus, during the final phase of the study, it was used successfully to clean a larger area of the ceiling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604977300001 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174948 Serial 8557  
Permanent link to this record
 

 
Author Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K. pdf  url
doi  openurl
  Title Surface plasmon resonance-induced visible light photocatalytic TiO₂ modified with AuNPs for the quantification of hydroquinone Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 389 Issue Pages 138734  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The impregnation of size-controlled gold nanoparticles (AuNPs) on an anatase TiO2 structure (AuNPs@TiO2) was studied for the photoelectrochemical detection of hydroquinone (HQ) under visible light illumination integrated into a flow injection analysis (FIA) setup. The crystalline form of TiO2 was preserved during synthesis and the homogeneous distribution of AuNPs over the TiO2 structure was confirmed. Its photoelectrocatalytic activity was improved due to the presence of AuNPs, preventing charge recombination in TiO2 and improving its light absorption ability by the surface plasmon resonance effect (SPR). The FIA system was used in order to significantly reduce the electrode fouling during electroanalysis through periodic washing steps of the electrode surface. During the amperometric detection process, reactive oxygen species (ROS), generated by visible light illumination of AuNPs@TiO2, participate in the oxidation process of HQ. The reduction of the oxidized form of HQ, i.e. benzoquinone (BQ) occurs by applying a negative potential and the measurable amperometric response will be proportional to the initial HQ concentration. The influencing parameters on the response of the amperometric photocurrent such as applied potential, flow rate and pH were investigated. The linear correlation between the amperometric response and the concentration of HQ was recorded (range 0.0125 – 1.0 µM) with a limit of detection (LOD) of 33.8 nM and sensitivity of 0.22 A M−1 cm−2. In this study, we illustrated for the first time that the impregnation of AuNPs in TiO2 allows the sensitive detection of phenolic substances under green laser illumination by using a photoelectrochemical flow system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687283100018 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:178908 Serial 8626  
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Van Echelpoel, R.; Boeye, G.; Eliaerts, J.; Samanipour, M.; Ching, H.Y.V.; Florea, A.; Van Doorslaer, S.; Van Durme, F.; Samyn, N.; Parrilla, M.; De Wael, K. pdf  url
doi  openurl
  Title Towards developing a screening strategy for ecstasy : revealing the electrochemical profile Type A1 Journal article
  Year 2021 Publication Chemelectrochem Abbreviated Journal Chemelectrochem  
  Volume 8 Issue 24 Pages 4826-4834  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This article describes the development of an electrochemical screening strategy for 3,4-methylenedioxymethamphetamine (MDMA), the regular psychoactive compound in ecstasy (XTC) pills. We have investigated the specific electrochemical profile of MDMA and its electro-oxidation mechanisms at disposable graphite screen-printed electrodes. We have proved that the formation of a radical cation and subsequent reactions are indeed responsible for the electrode surface passivation, as evidenced by using electron paramagnetic resonance spectroscopy and electrochemistry. Thereafter, pure cutting agents and MDMA as well as simulated binary mixtures of compounds with MDMA were subjected to square wave voltammetry at pH 7 to understand the characteristic electrochemical profile. An additional measurement at pH 12 was able to resolve false positives and negatives occurring at pH 7. Finally, validation of the screening strategy was done by measuring a set of ecstasy street samples. Overall, our proposed electrochemical screening strategy has been demonstrated for the rapid, sensitive, and selective detection of MDMA, resolving most of the false positives and negatives given by the traditional Marquis color tests, thus exhibiting remarkable promises for the on-site screening of MDMA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000735883700020 Publication Date 2021-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.136 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.136  
  Call Number UA @ admin @ c:irua:184371 Serial 8680  
Permanent link to this record
 

 
Author Van Echelpoel, R.; de Jong, M.; Daems, D.; van Espen, P.; De Wael, K. pdf  url
doi  openurl
  Title Unlocking the full potential of voltammetric data analysis : a novel peak recognition approach for (bio)analytical applications Type A1 Journal article
  Year 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume 233 Issue Pages 122605  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Bridging the gap between complex signal data output and clear interpretation by non-expert end-users is a major challenge many scientists face when converting their scientific technology into a real-life application. Currently, pattern recognition algorithms are the most frequently encountered signal data interpretation algorithms to close this gap, not in the least because of their straight-forward implementation via convenient software packages. Paradoxically, just because their implementation is so straight-forward, it becomes cumbersome to integrate the expert's domain-specific knowledge. In this work, a novel signal data interpretation approach is presented that uses this domain-specific knowledge as its fundament, thereby fully exploiting the unique expertise of the scientist. The new approach applies data preprocessing in an innovative way that transcends its usual purpose and is easy to translate into a software application. Multiple case studies illustrate the straight-forward application of the novel approach. Ultimately, the approach is highly suited for integration in various (bio)analytical applications that require interpretation of signal data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000668000500108 Publication Date 2021-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.162  
  Call Number UA @ admin @ c:irua:179417 Serial 8712  
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Voltammetric sensing using an array of modified SPCE coupled with machine learning strategies for the improved identification of opioids in presence of cutting agents Type A1 Journal article
  Year 2021 Publication Journal Of Electroanalytical Chemistry Abbreviated Journal J Electroanal Chem  
  Volume 902 Issue Pages 115770  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This work reports the use of modified screen-printed carbon electrodes (SPCEs) for the identification of three drugs of abuse and two habitual cutting agents, caffeine and paracetamol, combining voltammetric sensing and chemometrics. In order to achieve this goal, codeine, heroin and morphine were subjected to Square Wave Voltammetry (SWV) at pH 7, in order to elucidate their electrochemical fingerprints. The optimized SPCEs electrode array, which have a differentiated response for the three oxidizable compounds, was derived from Carbon, Prussian blue, Cobalt (II) phthalocyanine, Copper (II) oxide, Polypyrrole and Palladium nanoparticles ink-modified carbon electrodes. Finally, Principal Component Analysis (PCA) coupled with Silhouette parameter assessment was used to select the most suitable combination of sensors for identification of drugs of abuse in presence of cutting agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714415500006 Publication Date 2021-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.012 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.012  
  Call Number UA @ admin @ c:irua:184018 Serial 8745  
Permanent link to this record
 

 
Author Parrilla, M.; De Wael, K. pdf  url
doi  openurl
  Title Wearable self‐powered electrochemical devices for continuous health management Type A1 Journal article
  Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 31 Issue 50 Pages 2107042  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694642500001 Publication Date 2021-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:181306 Serial 8750  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: