toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Duran, T.A.; Šabani, D.; Milošević, M.V.; Sahin, H. doi  openurl
  Title Experimental and theoretical investigation of synthesis and properties of dodecanethiol-functionalized MoS₂ Type A1 Journal article
  Year 2023 Publication Physical chemistry, chemical physics Abbreviated Journal (up)  
  Volume 25 Issue 40 Pages 27141-27150  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Herein, we investigate the DDT (1-dodecanethiol) functionalization of exfoliated MoS2 by using experimental and theoretical tools. For the functionalization of MoS2, DDT treatment was incorporated into the conventional NMP (N-methyl pyrrolidone) exfoliation procedure. Afterward, it has been demonstrated that the functionalization process is successful through optical, morphological and theoretical analysis. The D, G and 2LA peaks seen in the Raman spectrum of exfoliated NMP-MoS2 particles, indicate the formation of graphitic species on MoS2 sheets. In addition, as the DDT ratio increases, the vacant sites on MoS2 sheets diminish. Moreover, at an optimized ratio of DDT-NMP, the maximum number of graphitic quantum dots (GQDs) is observed on MoS2 nanosheets. Specifically, the STEM and AFM data confirm that GQDs reside on the MoS2 nano-sheets and also that the particle size of the DDT-MoS2 is mostly fixed, while the NMP-MoS2 show many smaller and distributed sizes. The comparison of PL intensities of the NMP-MoS2 and DDT-MoS2 samples states a 10-fold increment is visible, and a 60-fold increment in NIR region photoluminescent properties. Moreover, our results lay out understanding and perceptions on the surface and edge chemistry of exfoliated MoS2 and open up more opportunities for MoS2 and GQD particles with broader applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076998800001 Publication Date 2023-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200284 Serial 9033  
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T. pdf  doi
openurl 
  Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
  Year 2015 Publication 2D materials Abbreviated Journal (up) 2D Mater  
  Volume 2 Issue 2 Pages 044002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000368936600005 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 20 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 6.937; 2015 IF: NA  
  Call Number UA @ lucian @ c:irua:131602 Serial 4169  
Permanent link to this record
 

 
Author Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M.I.; Peeters, F.M.; Tongay, S. doi  openurl
  Title Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal (up) Acs Nano  
  Volume 9 Issue 9 Pages 5326-5332  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of group VI transition metal dichalcogenides possess direct gaps in the visible spectrum with the exception of MoTe2, where its gap is suitably located in the infrared region but its stability is of particular interest, as tellurium compounds are acutely sensitive to oxygen exposure. Here, our environmental (time-dependent) measurements reveal two distinct effects on MoTe2 monolayers: For weakly luminescent monolayers, photoluminescence signal and optical contrast disappear, as if they are decomposed, but yet remain intact as evidenced by AFM and Raman measurements. In contrast, strongly luminescent monolayers retain their optical contrast for a prolonged amount of time, while their PL peak blue-shifts and PL intensity saturates to slightly lower values. Our X-ray photoelectron spectroscopy measurements and DFT calculations suggest that the presence of defects and functionalization of these defect sites with O-2 molecules strongly dictate their material properties and aging response by changing the excitonic dynamics due to deep or shallow states that are created within the optical band gap. Presented results not only shed light on environmental effects on fundamental material properties and excitonic dynamics of MoTe2 monolayers but also highlight striking material transformation for metastable 20 systems such as WTe2, silicone, and phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355383000068 Publication Date 2015-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 150 Open Access  
  Notes ; This work was supported by the Arizona State University seeding program. The authors thank Hui Cai and Kedi Wu for useful discussions. We gratefully acknowledge the use of facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:126441 Serial 1068  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Koch, R.; Speck, F.; Ostler, M.; Nagel, P.; Merz, M.; Schupler, S.; Moreschini, L.; Chang, Y.J.; Seyller, T.; Peeters, F.M.; Horn, K.; Rotenberg, E.; doi  openurl
  Title Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal (up) Acs Nano  
  Volume 8 Issue 8 Pages 7801-7808  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable “ground-state” phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a “boat” structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000340992300025 Publication Date 2014-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 23 Open Access  
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:119263 Serial 1857  
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Senger, R.T.; Peeters, F.M. doi  openurl
  Title Formation and diffusion characteristics of Pt clusters on Graphene, 1H-MoS2 and 1T-TaS2 Type A1 Journal article
  Year 2014 Publication Annalen der Physik Abbreviated Journal (up) Ann Phys-Berlin  
  Volume 526 Issue 9-10 Pages 423-429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Many experiments have revealed that the surfaces of graphene and graphene-like structures can play an active role as a host surface for clusterization of transition metal atoms. Motivated by these observations, we investigate theoretically the adsorption, diffusion and magnetic properties of Pt clusters on three different two-dimensional atomic crystals using first principles density functional theory. We found that monolayers of graphene, molybdenum disulfide (1H-MoS2) and tantalum disulfide (1T-TaS2) provide different nucleation characteristics for Pt cluster formation. At low temperatures, while the bridge site is the most favorable site where the growth of a Pt cluster starts on graphene, top-Mo and top-Ta sites are preferred on 1H-MoS2 and 1T-TaS2, respectively. Ground state structures and magnetic properties of Pt-n clusters (n= 2,3,4) on three different monolayer crystal structures are obtained. We found that the formation of Pt-2 dimer and a triangle-shaped Pt-3 cluster perpendicular to the surface are favored over the three different surfaces. While bent rhombus shaped Pt-4 is formed on graphene, the formation of tetrahedral shaped clusters are more favorable on 1H-MoS2 and 1T-TaS2. Our study of the formation of Pt-n clusters on three different monolayers provides a gateway for further exploration of nanocluster formations on various surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Leipzig Editor  
  Language Wos 000343873700015 Publication Date 2014-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3804; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.039 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.039; 2014 IF: 3.048  
  Call Number UA @ lucian @ c:irua:121180 Serial 1247  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. url  doi
openurl 
  Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal (up) Apl Mater  
  Volume 2 Issue 9 Pages 092801  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342568000020 Publication Date 2014-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:119950 Serial 82  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Singh, S.K.; Peeters, F.M. doi  openurl
  Title Stable half-metallic monolayers of FeCl2 Type A1 Journal article
  Year 2015 Publication Applied physics letters Abbreviated Journal (up) Appl Phys Lett  
  Volume 106 Issue 106 Pages 192404  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural, electronic, and magnetic properties of single layers of Iron Dichloride (FeCl2) were calculated using first principles calculations. We found that the 1T phase of the single layer FeCl2 is 0.17 eV/unit cell more favorable than its 1H phase. The structural stability is confirmed by phonon calculations. We found that 1T-FeCl2 possess three Raman-active (130, 179, and 237 cm(-1)) and one infrared-active (279 cm(-1)) phonon branches. The electronic band dispersion of the 1T-FeCl2 is calculated using both gradient approximation of Perdew-Burke-Ernzerhof and DFT-HSE06 functionals. Both functionals reveal that the 1T-FeCl2 has a half-metallic ground state with a Curie temperature of 17 K. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000355008100020 Publication Date 2015-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 84 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.411; 2015 IF: 3.302  
  Call Number c:irua:126411 Serial 3143  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Nanoribbons: From fundamentals to state-of-the-art applications Type A1 Journal article
  Year 2016 Publication Applied physics reviews Abbreviated Journal (up) Appl Phys Rev  
  Volume 3 Issue 3 Pages 041302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomically thin nanoribbons (NRs) have been at the forefront of materials science and nanoelectronics in recent years. State-of-the-art research on nanoscale materials has revealed that electronic, magnetic, phononic, and optical properties may differ dramatically when their one-dimensional forms are synthesized. The present article aims to review the recent advances in synthesis techniques and theoretical studies on NRs. The structure of the review is organized as follows: After a brief introduction to low dimensional materials, we review different experimental techniques for the synthesis of graphene nanoribbons (GNRs) with their advantages and disadvantages. In addition, theoretical investigations on width and edge-shape-dependent electronic and magnetic properties, functionalization effects, and quantum transport properties of GNRs are reviewed. We then devote time to the NRs of the transition metal dichalcogenides (TMDs) family. First, various synthesis techniques, E-field-tunable electronic and magnetic properties, and edge-dependent thermoelectric performance of NRs of MoS2 and WS2 are discussed. Then, strongly anisotropic properties, growth-dependent morphology, and the weakly width-dependent bandgap of ReS2 NRs are summarized. Next we discuss TMDs having a T-phase morphology such as TiSe2 and stable single layer NRs of mono-chalcogenides. Strong edge-type dependence on characteristics of GaS NRs, width-dependent Seebeck coefficient of SnSe NRs, and experimental analysis on the stability of ZnSe NRs are reviewed. We then focus on the most recently emerging NRs belonging to the class of transition metal trichalcogenides which provide ultra-high electron mobility and highly anisotropic quasi-1D properties. In addition, width-, edge-shape-, and functionalization-dependent electronic and mechanical properties of blackphosphorus, a monoatomic anisotropic material, and studies on NRs of group IV elements (silicene, germanene, and stanene) are reviewed. Observation of substrate-independent quantum well states, edge and width dependent properties, the topological phase of silicene NRs are reviewed. In addition, H-2 concentration-dependent transport properties and anisotropic dielectric function of GeNRs and electric field and strain sensitive I-V characteristics of SnNRs are reviewed. We review both experimental and theoretical studies on the NRs of group III-V compounds. While defect and N-termination dependent conductance are highlighted for boron nitride NRs, aluminum nitride NRs are of importance due to their dangling bond, electric field, and strain dependent electronic and magnetic properties. Finally, superlattice structure of NRs of GaN/AlN, Si/Ge, G/BN, and MoS2/WS2 is reviewed. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Amer inst physics Place of Publication Melville Editor  
  Language Wos 000390443800013 Publication Date 2016-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.667 Times cited 63 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges the support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through Project No. 114F397. F.M.P. was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 13.667  
  Call Number UA @ lucian @ c:irua:140299 Serial 4457  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H. pdf  doi
openurl 
  Title Quantum properties and applications of 2D Janus crystals and their superlattices Type A1 Journal article
  Year 2020 Publication Applied Physics Reviews Abbreviated Journal (up) Appl Phys Rev  
  Volume 7 Issue 1 Pages 011311-11316  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) Janus materials are a new class of materials with unique physical, chemical, and quantum properties. The name “Janus” originates from the ancient Roman god which has two faces, one looking to the future while the other facing the past. Janus has been used to describe special types of materials which have two faces at the nanoscale. This unique atomic arrangement has been shown to present rather exotic properties with applications in biology, chemistry, energy conversion, and quantum sciences. This review article aims to offer a comprehensive review of the emergent quantum properties of Janus materials. The review starts by introducing 0D Janus nanoparticles and 1D Janus nanotubes, and highlights their difference from classical ones. The design principles, synthesis, and the properties of graphene-based and chalcogenide-based Janus layers are then discussed. A particular emphasis is given to colossal built-in potential in 2D Janus layers and resulting quantum phenomena such as Rashba splitting, skyrmionics, excitonics, and 2D magnetic ordering. More recent theoretical predictions are discussed in 2D Janus superlattices when Janus layers are stacked onto each other. Finally, we discuss the tunable quantum properties and newly predicted 2D Janus layers waiting to be experimentally realized. The review serves as a complete summary of the 2D Janus library and predicted quantum properties in 2D Janus layers and their superlattices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519611500001 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 107 Open Access  
  Notes ; S.T. acknowledges support from NSF Contract Nos. DMR 1552220, DMR 1904716, and NSF CMMI 1933214. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. Part of this work was supported by the FLAG-ERA project TRANS2D-TMD. ; Approved Most recent IF: 15; 2020 IF: 13.667  
  Call Number UA @ admin @ c:irua:167712 Serial 6591  
Permanent link to this record
 

 
Author Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R.T.; Sahin, H.; Selamet, Y. doi  openurl
  Title Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes Type A1 Journal article
  Year 2018 Publication Applied Surface Science Abbreviated Journal (up) Appl Surf Sci  
  Volume 428 Issue 428 Pages 1010-1017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4“bis(diphenylamino)-1, 1':3”-terpheny1-5' carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-y1-1,1':3'1'-terpheny1-5' carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13,1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as n-n interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000415227000128 Publication Date 2017-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access  
  Notes ; This work was supported by TUBITAK (The Scientific and Technical Research Council of Turkey) with project number 112T946. We also thank AQuReC (Applied Quantum Research Center) for Raman measurements. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.387  
  Call Number UA @ lucian @ c:irua:154608UA @ admin @ c:irua:154608 Serial 5101  
Permanent link to this record
 

 
Author Sozen, Y.; Eren, I.; Ozen, S.; Yagmurcukardes, M.; Sahin, H. pdf  url
doi  openurl
  Title Interaction of Ge with single layer GaAs : from Ge-island nucleation to formation of novel stable monolayers Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal (up) Appl Surf Sci  
  Volume 505 Issue Pages 144218-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, reactivity of single-layer GaAs against Ge atoms is studied by means of ab initio density functional theory calculations. Firstly, it is shown that Ge atoms interact quite strongly with the GaAs layer which allows the formation of Ge islands while it hinders the growth of detached germanene monolayers. It is also predicted that adsorption of Ge atoms on GaAs single-layer lead to formation of two novel stable single-layer crystal structures, namely 1H-GaGeAs and 1H(A)-GaGeAs. Both the total energy optimizations and the calculated vibrational spectra indicate the dynamical stability of both single layer structures. Moreover, although both structures crystallize in 1H phase, 1H-GaGeAs and 1H(A)-GaGeAs exhibit distinctive vibrational features in their Raman spectra which is quite important for distinguishing the structures. In contrast to the semiconducting nature of single-layer GaAs, both polytypes of GaGeAs exhibit metallic behavior confirmed by the electronic band dispersions. Furthermore, the linear-elastic constants, in-plane stiffness and Poisson ratio, reveal the ultrasoft nature of the GaAs and GaGeAs structures and the rigidity of GaAs is found to be slightly enhanced via Ge adsorption. With their stable, ultra-thin and metallic properties, predicted single-layer GaGeAs structures can be promising candidates for nanoscale electronic and mechanical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510846500026 Publication Date 2019-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:167733 Serial 6548  
Permanent link to this record
 

 
Author Baskurt, M.; Eren, I.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Vanadium dopant- and strain-dependent magnetic properties of single-layer VI₃ Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal (up) Appl Surf Sci  
  Volume 508 Issue Pages 144937-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional VI3 [Kong et al. Adv. Mater. 31, 1808074 (2019)], we investigate the effect of V doping on the magnetic and electronic properties of monolayer VI3 by means of first-principles calculations. The dynamically stable semiconducting ferromagnetic (FM) and antiferromagnetic (AFM) phases of monolayer VI3 are found to display distinctive vibrational features that the magnetic state can be distinguished by Raman spectroscopy. In order to clarify the effect of experimentally observed excessive V atoms, the magnetic and electronic properties of the V-doped VI3 structures are analyzed. Our findings indicate that partially doped VI3 structures display FM ground state while the fully-doped structure exhibits AFM ground state. The fully-doped monolayer VI3 is found to be a semiconductor with a relatively larger band gap than its pristine structure. In addition, strain-dependent electronic and magnetic properties of fully- and partially-doped VI3 structures reveal that pristine monolayer displays a FM-to-AFM phase transition with robust semiconducting nature for 5% of compressive strain, while fully-doped monolayer VI3 structure possesses AFM-to-FM semiconducting transition at tensile strains larger than 4%. In contrast, the partially-doped VI3 monolayers are found to display robust FM ground state under biaxial strain. Its dopant and strain tunable electronic and magnetic nature makes monolayer VI3 a promising material for applications in nanoscale spintronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516818700040 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 10 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:168595 Serial 6652  
Permanent link to this record
 

 
Author Kahraman, Z.; Baskurt, M.; Yagmurcukardes, M.; Chaves, A.; Sahin, H. pdf  doi
openurl 
  Title Stable Janus TaSe₂ single-layers via surface functionalization Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal (up) Appl Surf Sci  
  Volume 538 Issue Pages 148064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculations are performed in order to investigate the formation of Janus structures of single layer TaSe2. The structural optimizations and phonon band dispersions reveal that the formation and stability of hydrogenated (HTaSe2), fluorinated (FTaSe2), and the one-side hydrogenated and one-side fluorinated (Janus-HTaSe2F) single-layers are feasible in terms of their phonon band dispersions. It is shown that bare metallic single-layer TaSe2 can be turned into a semiconductor as only one of its surface is functionalized while it remains as a metal via its two surfaces functionalization. In addition, the semiconducting nature of single-layers HTaSe2 and FTaSe2 and the metallic behavior of Janus TaSe2 are found to be robust under applied uniaxal strains. Further analysis on piezoelectric properties of the predicted single-layers reveal the enhanced in-plane and out of-plane piezoelectricity via formed Janus-HTaSe2F. Our study indicates that single-layer TaSe2 is a suitable host material for surface functionalization via fluorination and hydrogenation which exhibit distinctive electronic and vibrational properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595860900001 Publication Date 2020-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). HS acknowledges support from Turkiye Bilimler Akademisi -Turkish Academy of Sciences under the GEBIP program. This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174964 Serial 6699  
Permanent link to this record
 

 
Author Yayak, Y.O.; Sozen, Y.; Tan, F.; Gungen, D.; Gao, Q.; Kang, J.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title First-principles investigation of structural, Raman and electronic characteristics of single layer Ge3N4 Type A1 Journal article
  Year 2022 Publication Applied surface science Abbreviated Journal (up) Appl Surf Sci  
  Volume 572 Issue Pages 151361  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By means of density functional theory-based first-principle calculations, the structural, vibrational and electronic properties of single-layer Ge3N4 are investigated. Structural optimizations and phonon band dispersions reveal that single-layer ultrathin form of Ge3N4 possesses a dynamically stable buckled structure with large hexagonal holes. Predicted Raman spectrum of single-layer Ge3N4 indicates that the buckled holey structure of the material exhibits distinctive vibrational features. Electronic band dispersion calculations indicate the indirect band gap semiconducting nature of single-layer Ge3N4. It is also proposed that single-layer Ge3N4 forms type-II vertical heterostructures with various planar and puckered 2D materials except for single-layer GeSe which gives rise to a type-I band alignment. Moreover, the electronic properties of single-layer Ge3N4 are investigated under applied external in-plane strain. It is shown that while the indirect gap behavior of Ge3N4 is unchanged by the applied strain, the energy band gap increases (decreases) with tensile (compressive) strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723664000006 Publication Date 2021-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:184752 Serial 6993  
Permanent link to this record
 

 
Author Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H. pdf  url
doi  openurl
  Title Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
  Year 2016 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal (up) Chemphyschem  
  Volume 17 Issue 17 Pages 3985-3991  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000389534800018 Publication Date 2016-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 12 Open Access  
  Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075  
  Call Number UA @ lucian @ c:irua:140245 Serial 4458  
Permanent link to this record
 

 
Author Zhang, S.; Sahin, H.; Torun, E.; Peeters, F.; Martien, D.; DaPron, T.; Dilley, N.; Newman, N. pdf  doi
openurl 
  Title Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics Type A1 Journal article
  Year 2017 Publication Journal of the American Ceramic Society Abbreviated Journal (up) J Am Ceram Soc  
  Volume 100 Issue 100 Pages 1508-1516  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The temperature coefficient of resonant frequency ((f)) of a microwave resonator is determined by three materials parameters according to the following equation: (f)=-(1/2 (epsilon) + 1/2 + (L)), where (L), (epsilon), and are defined as the linear temperature coefficients of the lattice constant, dielectric constant, and magnetic permeability, respectively. We have experimentally determined each of these parameters for Ba(Zn1/3Ta2/3)O-3, 0.8 at.% Ni-doped Ba(Zn1/3Ta2/3)O-3, and Ba(Ni1/3Ta2/3)O-3 ceramics. These results, in combination with density functional theory calculations, have allowed us to develop a much improved understanding of the fundamental physical mechanisms responsible for the temperature coefficient of resonant frequency, (f).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Columbus, Ohio Editor  
  Language Wos 000399610800034 Publication Date 2017-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.841 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 2.841  
  Call Number UA @ lucian @ c:irua:143682 Serial 4597  
Permanent link to this record
 

 
Author Sen, H.S.; Sahin, H.; Peeters, F.M.; Durgun, E. doi  openurl
  Title Monolayers of MoS2 as an oxidation protective nanocoating material Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal (up) J Appl Phys  
  Volume 116 Issue 8 Pages 083508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS2 monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS2 monolayer is prevented by a very high diffusion barrier indicating that MoS2 can serve as a protective layer for oxidation. The analysis is extended to WS2 and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS2 and WS2 monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000342821600017 Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 52 Open Access  
  Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). E.D. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. H.S. is supported by an FWO Pegasus-long Marie Curie Fellowship. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:121101 Serial 2194  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F.M.; Senger, R.T. doi  openurl
  Title Pentagonal monolayer crystals of carbon, boron nitride, and silver azide Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal (up) J Appl Phys  
  Volume 118 Issue 118 Pages 104303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B2N4 and p-B4N2), and silver azide (p-AgN3) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN3 are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B2N4 and p-B4N2 have negative Poisson's ratio values. On the other hand, the p-AgN3 has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B2N4 are stable, but p-AgN3 and p-B4N2 are vulnerable against vibrational excitations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000361636900028 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 79 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge the support from TUBITAK through Project No. 114F397. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128415 Serial 4223  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Cahangirov, S.; Rubio, A.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic electronic, mechanical, and optical properties of monolayer WTe2 Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal (up) J Appl Phys  
  Volume 119 Issue 7 Pages 074307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we investigate the electronic, mechanical, and optical properties of monolayer WTe2. Atomic structure and ground state properties of monolayer WTe2 (T-d phase) are anisotropic which are in contrast to similar monolayer crystals of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, WSe2, and MoTe2, which crystallize in the H-phase. We find that the Poisson ratio and the in-plane stiffness is direction dependent due to the symmetry breaking induced by the dimerization of the W atoms along one of the lattice directions of the compound. Since the semimetallic behavior of the T-d phase originates from this W-W interaction (along the a crystallographic direction), tensile strain along the dimer direction leads to a semimetal to semiconductor transition after 1% strain. By solving the Bethe-Salpeter equation on top of single shot G(0)W(0) calculations, we predict that the absorption spectrum of T-d-WTe2 monolayer is strongly direction dependent and tunable by tensile strain. (C) 2016 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000375158000022 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 62 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. S.C. and A.R. acknowledge the financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, European Research Council (ERC-2010-AdG-267374), Spanish grant (FIS2013-46159-C3-1-P), Grupos Consolidados (IT578-13), and AFOSR Grant No. FA2386-15-1-0006 AOARD 144088, H2020-NMP-2014 project MOSTOPHOS, GA No. SEP-210187476, and COST Action MP1306 (EUSpec). S.C. acknowledges the support from The Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:144747 Serial 4640  
Permanent link to this record
 

 
Author Kandemir, A.; Peeters, F.M.; Sahin, H. pdf  doi
openurl 
  Title Monitoring the effect of asymmetrical vertical strain on Janus single layers of MoSSe via spectrum Type A1 Journal article
  Year 2018 Publication The journal of chemical physics Abbreviated Journal (up) J Chem Phys  
  Volume 149 Issue 8 Pages 084707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations, we study the structural and phononic properties of the recently synthesized Janus type single layers of molybdenum dichalcogenides. The Janus MoSSe single layer possesses 2H crystal structure with two different chalcogenide sides that lead to out-of-plane anisotropy. By virtue of the asymmetric structure of the ultra-thin Janus type crystal, we induced the out-of-plane anisotropy to show the distinctive vertical pressure effect on the vibrational properties of the Janus material. It is proposed that for the corresponding Raman active optical mode of the Janus structure, the phase modulation and the magnitude ratio of the strained atom and its first neighbor atom adjust the distinctive change in the eigen-frequencies and Raman activity. Moreover, a strong variation in the Raman activity of the Janus structure is obtained under bivertical and univertical strains. Not only eigen-frequency shifts but also Raman activities of the optical modes of the Janus structure exhibit distinguishable features. This study reveals that the vertical anisotropic feature of the Janus structure under Raman measurement allows us to distinguish which side of the Janus crystal interacts with the externals (substrate, functional adlayers, or dopants). Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000444035800044 Publication Date 2018-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 11 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from TUBITAK under Project No. 117F095. F.M.P. was supported by the FLAG-ERA-TRANS<INF>2D</INF>TMD. ; Approved Most recent IF: 2.965  
  Call Number UA @ lucian @ c:irua:153711UA @ admin @ c:irua:153711 Serial 5115  
Permanent link to this record
 

 
Author Baskurt, M.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. pdf  doi
openurl 
  Title Stable single-layers of calcium halides (CaX₂, X = F, Cl, Br, I) Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal (up) J Chem Phys  
  Volume 152 Issue 16 Pages 164116-164118  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By means of density functional theory based first-principles calculations, the structural, vibrational, and electronic properties of 1H- and 1T-phases of single-layer CaX2 (X = F, Cl, Br, or I) structures are investigated. Our results reveal that both the 1H- and 1T-phases are dynamically stable in terms of their phonon band dispersions with the latter being the energetically favorable phase for all single-layers. In both phases of single-layer CaX2 structures, significant phonon softening occurs as the atomic radius increases. In addition, each structural phase exhibits distinctive Raman active modes that enable one to characterize either the phase or the structure via Raman spectroscopy. The electronic band dispersions of single-layer CaX2 structures reveal that all structures are indirect bandgap insulators with a decrease in bandgaps from fluorite to iodide crystals. Furthermore, the calculated linear elastic constants, in-plane stiffness, and Poisson ratio indicate the ultra-soft nature of CaX2 single-layers, which is quite important for their nanoelastic applications. Overall, our study reveals that with their dynamically stable 1T- and 1H-phases, single-layers of CaX2 crystals can be alternative ultra-thin insulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000531819100001 Publication Date 2020-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited 10 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the TUBITAK under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 4.4; 2020 IF: 2.965  
  Call Number UA @ admin @ c:irua:169543 Serial 6615  
Permanent link to this record
 

 
Author Ghosh, S.; Tongay, S.; Hebard, A.F.; Sahin, H.; Peeters, F.M. doi  openurl
  Title Ferromagnetism in stacked bilayers of Pd/C60 Type A1 Journal article
  Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal (up) J Magn Magn Mater  
  Volume 349 Issue Pages 128-134  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We provide experimental evidence for the existence of ferromagnetism in bilayers of Pd/C-60 which is supported by theoretical calculations based on density functional theory (DFT). The observed ferromagnetism is surprising as C-60 and Pd films are both non-ferromagnetic in the non-interacting limit. Magnetization (M) versus applied field (H) data acquired at different temperatures (T) show magnetic hysteresis with typical coercive fields (H-c) on the order of 50 Oe. From the temperature-dependent magnetization M(T) we extract a Curie temperature (T-c >= 550 K) using Bloch-like power law extrapolations to high temperatures. Using DFT calculations we investigated all plausible scenarios for the interaction between the C-60 molecules and the Pd slabs, Pd single atoms and Pd clusters. DFT shows that while the C-60 molecules are nonmagnetic, Pd films have a degenerate ground state that subject to a weak perturbation, can become ferromagnetic. Calculations also show that the interaction of C-60 molecules with excess Pd atoms and with sharp edges of a Pd slab is the most likely configuration that render the system ferromagnetic Interestingly, the calculated charge transfer (0.016 e per surface Pd atom, 0.064 e per Pd for intimate contact region) between C-60 and Pd does not appear to play an important role. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000326037600022 Publication Date 2013-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 8 Open Access  
  Notes ; We thank Prof. Amlan Biswas and Daniel Grant for Atomic Force Microscopy measurements. This work is supported by the National Science Foundation (NSF) under Contract Number 1005301 (AFH). The authors also thank S. Ciraci for fruitful discussions. All the computational resources have been provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. Sahin is also supported by a FWO Pegasus Marie Curie Long Fellowship during the study. ; Approved Most recent IF: 2.63; 2014 IF: 1.970  
  Call Number UA @ lucian @ c:irua:112214 Serial 1184  
Permanent link to this record
 

 
Author Ozcan, M.; Ozen, S.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Structural, electronic and vibrational properties of ultra-thin octahedrally coordinated structure of EuO2 Type A1 Journal article
  Year 2020 Publication Journal Of Magnetism And Magnetic Materials Abbreviated Journal (up) J Magn Magn Mater  
  Volume 493 Issue 493 Pages 165668  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Novel stable ultra-thin phases of europium oxide are investigated by means of state-of-the-art first principles calculations. Total energy calculations show that single layers of EuO2 and Eu(OH)(2) can be stabilized in an octahedrally coordinated (1T) atomic structure. However, phonon calculations reveal that although both structures are energetically feasible, only the 1T-EuO2 phase has dynamical stability. The phonon spectrum of 1T-EuO2 displays three Raman active modes; a non-degenerate out-of-plane A(1g) mode at 353.5 cm(-1) and two doubly-degenerate in-plane E-g modes at 304.3 cm(-1). Furthermore, magnetic ground state and electronic band dispersion calculations show that the single layer EuO2 is a metal with net magnetic moment of 5(mu B) per unitcell resulting in a half-metallic ferrimagnetic behavior. Moreover, robustness of the half-metallic ferrimagnetic characteristics of EuO2 is confirmed by the application of electric field and charging. Single layer 1T-EuO2, with its stable ultra-thin structure and half-metallic ferrimagnetic feature, is a promising novel material for nanoscale electronic and spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486397800003 Publication Date 2019-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 117F095. MY is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 2.7; 2020 IF: 2.63  
  Call Number UA @ admin @ c:irua:162755 Serial 6323  
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal (up) J Mater Chem C  
  Volume 6 Issue 8 Pages 2019-2025  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426483800015 Publication Date 2018-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 16 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952  
Permanent link to this record
 

 
Author Kahraman, Z.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Functionalization of single-layer TaS₂ and formation of ultrathin Janus structures Type A1 Journal article
  Year 2020 Publication Journal Of Materials Research Abbreviated Journal (up) J Mater Res  
  Volume 35 Issue 11 Pages 1397-1406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio calculations are performed to investigate the structural, vibrational, electronic, and piezoelectric properties of functionalized single layers of TaS2. We find that single-layer TaS2 is a suitable host material for functionalization via fluorination and hydrogenation. The one-side fluorinated (FTaS2) and hydrogenated (HTaS2) single layers display indirect gap semiconducting behavior in contrast to bare metallic TaS2. On the other hand, it is shown that as both surfaces of TaS2 are saturated anti-symmetrically, the formed Janus structure is a dynamically stable metallic single layer. In addition, it is revealed that out-of-plane piezoelectricity is created in all anti-symmetric structures. Furthermore, the Janus-type single-layer has the highest specific heat capacity to which longitudinal and transverse acoustical phonon modes have contribution at low temperatures. Our findings indicate that single-layer TaS2 is suitable for functionalization via H and F atoms that the formed, anti-symmetric structures display distinctive electronic, vibrational, and piezoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540764300005 Publication Date 2020-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. Acknowledges financial support from the TUBITAK under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M.Y.). ; Approved Most recent IF: 2.7; 2020 IF: 1.673  
  Call Number UA @ admin @ c:irua:170185 Serial 6525  
Permanent link to this record
 

 
Author Esfahani; Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Structural transitions in monolayer MOS2 by lithium adsorption Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal (up) J Phys Chem C  
  Volume 119 Issue 119 Pages 10602-10609  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Based on first-principles calculations, we study the structural stability of the H and T phases of monolayer MoS2 upon Li doping. Our calculations demonstrate that it is possible to stabilize a distorted T phase of MoS2 over the H phase through adsorption of Li atoms on the MoS2 surface. Through molecular dynamics and phonon calculations, we show that the T phase of MoS2 is dynamically unstable and undergoes considerable distortions. The type of distortion depends on the concentration of adsorbed Li atoms and changes from zigzag-like to diamond-like when increasing the Li doping. There exists a substantial energy barrier to transform the stable H phase to the distorted T phases, which is considerably reduced by increasing the concentration of Li atoms. We show that it is necessary that the Li atoms adsorb on both sides of the MoS2 monolayer to reduce the barrier sufficiently. Two processes are examined that allow for such two-sided adsorption, namely, penetration through the MoS2 layer and diffusion over the MoS2 surface. We show that while there is only a small barrier of 0.24 eV for surface diffusion, the amount of energy needed to pass through a pure MoS2 layer is of the order of similar or equal to 2 eV. However, when the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain to penetrate the layer is drastically reduced and penetration becomes feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354912200051 Publication Date 2015-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 96 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem program of the Flemish government. H. S is supported by an FWO Pegasus-Long Marie Curie fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government department EWI. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126409 Serial 3270  
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M. doi  openurl
  Title Tuning carrier confinement in the MoS2/WS2 lateral heterostructure Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal (up) J Phys Chem C  
  Volume 119 Issue 119 Pages 9580-9586  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract To determine and control the spatial confinement of charge carriers is of importance for nanoscale optoelectronic device applications. Using first-principles calculations, we investigate the tunability of band alignment and Charge localization in lateral and combined lateral vertical heterostructures of MoS2 and WS2. First, we Show that a type-II to type-I band alignment transition takes place when tensile strain is applied on the WS2 region. This band alignment transition is a result of the different response of the band edge states with strain and is caused by their different wave function characters. Then we show that the presence of the grain boundary introduces localized in-gap states. The boundary at the armchair interface significantly modifies the charge distribution of the valence band maximum (VBM) state, whereas in a heterostructure with tilt grain domains both conducation band maximum (CBM) and VBM are found to be localized around the grain boundary. We also found that the thickness of the constituents in a lateral heterostructure also determines how the electrons and holes are confined. Creating combined lateral vertical heterostructures of MOS2/WS2 provides another way cif tuning the charge confinement. These results provide possible ways to tune the carrier confinement in MoS2/WS2 heterostructures, which are interesting for its practical: applications in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000353930700066 Publication Date 2015-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 73 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship and J.K. by a FWO Pegasus Marie Curie-short Fellowship. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126381 Serial 3747  
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M. doi  openurl
  Title Vacancy formation and oxidation characteristics of single layer TiS3 Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal (up) J Phys Chem C  
  Volume 119 Issue 119 Pages 10709-10715  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The structural, electronic, and magnetic properties of pristine, defective, and oxidized monolayer TiS3 are investigated using first-principles calculations in the framework of density functional theory. We found that a single layer of TiS3 is a direct band gap semiconductor, and the bonding nature of the crystal is fundamentally different from other transition metal chalcogenides. The negatively charged surfaces of single layer TiS3 makes this crystal a promising material for lubrication applications. The formation energies of possible vacancies, i.e. S, Ti, TiS, and double S, are investigated via total energy optimization calculations. We found that the formation of a single S vacancy was the most likely one among the considered vacancy types. While a single S vacancy results in a nonmagnetic, semiconducting character with an enhanced band gap, other vacancy types induce metallic behavior with spin polarization of 0.3-0.8 mu(B). The reactivity of pristine and defective TiS3 crystals against oxidation was investigated using conjugate gradient calculations where we considered the interaction with atomic O, O-2, and O-3. While O-2 has the lowest binding energy with 0.05-0.07 eV, O-3 forms strong bonds stable even at moderate temperatures. The strong interaction (3.9-4.0 eV) between atomic O and TiS3 results in dissociative adsorption of some O-containing molecules. In addition, the presence of S-vacancies enhances the reactivity of the surface with atomic O, whereas it had a negative effect on the reactivity with O-2 and O-3 molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354912200063 Publication Date 2015-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 51 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. RI., H.S., and R.T.S. acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126410 Serial 3829  
Permanent link to this record
 

 
Author Badalov, S.V.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Enhanced stability of single-layer w-Gallenene through hydrogenation Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal (up) J Phys Chem C  
  Volume 122 Issue 49 Pages 28302-28309  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory based first-principles calculations, the effect of surface hydrogenation on the structural, dynamical, electronic, and mechanical properties of monolayer washboard-gallenene (w-gallenene) is investigated. It is found that the dynamically stabilized strained monolayer of w-gallenene has a metallic nonmagnetic ground state. Both one-sided and two-sided hydrogenations of w-gallenene suppress its dynamical instability even when unstrained. Unlike one-sided hydrogenated monolayer w-gallenene (os-w-gallenene), two-sided hydrogenated monolayer w-gallenene (ts-w-gallenene) possesses the same crystal structure as w-gallenene. Electronic band structure calculations reveal that monolayers of hydrogenated derivatives of w-gallenene exhibit also metallic nonmagnetic ground state. Moreover, the linear-elastic constants, in-plane stiffness and Poisson ratio, are enhanced by hydrogenation, which is opposite to the behavior of other hydrogenated monolayer crystals. Furthermore, monolayer w-gallenene and ts-w-gallenene remain dynamically stable up to relatively higher biaxial strains as compared to borophene. With its enhanced dynamical stability, robust metallic character, and enhanced linear-elastic properties, hydrogenated monolayer w-gallenene is a potential candidate for nanodevice applications as a two-dimensional flexible metal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453488300053 Publication Date 2018-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work was supported by FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:156229 Serial 5210  
Permanent link to this record
 

 
Author Kahraman, Z.; Kandemir, A.; Yagmurcukardes, M.; Sahin, H. url  doi
openurl 
  Title Single-layer Janus-type platinum dichalcogenides and their heterostructures Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal (up) J Phys Chem C  
  Volume 123 Issue 7 Pages 4549-4557  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Ultrathin two-dimensional Janus-type platinum dichalcogenide crystals formed by two different atoms at opposite surfaces are investigated by performing state-of-the-art density functional theory calculations. First, it is shown that single-layer PtX2 structures (where X = S, Se, or Te) crystallize into the dynamically stable IT phase and are indirect band gap semiconductors. It is also found that the substitutional chalcogen doping in all PtX2 structures is favorable via replacement of surface atoms with a smaller chalcogen atom, and such a process leads to the formation of Janus-type platinum dichalcogenides (XPtY, where X and Y stand for S, Se, or Te) which are novel single-layer crystals. While all Janus structures are indirect band gap semiconductors as their binary analogues, their Raman spectra show distinctive features that stem from the broken out-of-plane symmetry. In addition, it is revealed that the construction of Janus crystals enhances the piezoelectric constants of PtX2 crystals significantly both in the in plane and in the out-of-plane directions. Moreover, it is shown that vertically stacked van der Waals heterostructures of binary and ternary (Janus) platinum dichalcogenides offer a wide range of electronic features by forming bilayer heterojunctions of type-I, type-II, and type-III, respectively. Our findings reveal that Janus-type ultrathin platinum dichalcogenide crystals are quite promising materials for optoelectronic device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459836900071 Publication Date 2019-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. and Z.K. acknowledge financial support from the TUBITAK under the project number 117F095. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M.Y.). H.S. acknowledges support from Turkiye Bilimler Akademisi-Turkish Academy of Sciences under the GEBIP program. ; Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:158617 Serial 5229  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: