toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Breynaert, E.; Emmerich, J.; Mustafa, D.; Bajpe, S.R.; Altantzis, T.; Van Havenbergh, K.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.; pdf  url
doi  openurl
  Title Enhanced self-assembly of metal oxides and metal-organic frameworks from precursors with magnetohydrodynamically induced long-lived collective spin states Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 30 Pages 5173-5178  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Magneto-hydrodynamic generation of long-lived collective spin states and their impact on crystal morphology is demonstrated for three different, technologically relevant materials: COK-16 metal organic framework, manganese oxide nanotubes, and vanadium oxide nano-scrolls.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000340546300015 Publication Date 2014-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 7 Open Access OpenAccess  
  Notes IAP-PAI; Marie Curie IEF; 262348 ESMI; 335078 COLOURATOM; 246791 COUNTATOMS; IWT; Methusalem; FWO; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:118827 Serial 1053  
Permanent link to this record
 

 
Author (up) Hayasaka, K.; Liang, D.; Huybrechts, W.; De Waele, B.R.; Houthoofd, K.J.; Eloy, P.; Gaigneaux, E.M.; Van Tendeloo, G.; Thybaut, J.W.; Marin, G.B.; Denayer, J.F.M.; Baron, G.V.; Jacobs, P.A.; Kirschhock, C.E.A.; Martens, J.A.; doi  openurl
  Title Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods Type A1 Journal article
  Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 13 Issue 36 Pages 10070-10077  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000251855200006 Publication Date 2007-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 52 Open Access  
  Notes Approved Most recent IF: 5.317; 2007 IF: 5.330  
  Call Number UA @ lucian @ c:irua:67320 Serial 1268  
Permanent link to this record
 

 
Author (up) Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; url  doi
openurl 
  Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 49 Pages 25650-25657  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000338434500025 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 3 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:125382 Serial 3027  
Permanent link to this record
 

 
Author (up) Lueangchaichaweng, W.; Brooks, N.R.; Fiorilli, S.; Gobechiya, E.; Lin, K.; Li, L.; Parres-Esclapez, S.; Javon, E.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.; Jacobs, P.A.; Pescarmona, P.P.; pdf  url
doi  openurl
  Title Gallium oxide nanorods : novel, template-free synthesis and high catalytic activity in epoxidation reactions Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 6 Pages 1585-1589  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330558400021 Publication Date 2014-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 61 Open Access OpenAccess  
  Notes START 1; Methusalem; Prodex; IAP-PAI; and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:115726 Serial 1314  
Permanent link to this record
 

 
Author (up) Verheyen, E.; Jo, C.; Kurttepeli, M.; Vanbutsele, G.; Gobechiya, E.; Korányi, T.I.; Bals, S.; Van Tendeloo, G.; Ryoo, R.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking Type A1 Journal article
  Year 2013 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 300 Issue Pages 70-80  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract MFI zeolite nanosheets with thickness of 2 and 8 nm were synthesized, transformed into bifunctional catalysts by loading with platinum and tested in n-decane isomerization and hydrocracking. Detailed analysis of skeletal isomers and hydrocracked products revealed that the MFI nanosheets display transition-state shape-selectivity similar to bulk MFI zeolite crystals. The suppressed formation of bulky skeletal isomers and C5 cracking products are observed both in the nanosheets and the bulk crystals grown in three dimensions. This is typical for restricted transition-state shape-selectivity, characteristic for the MFI type pores. It is a first clear example of transition-state shape-selectivity inside a zeolitic nanosheet. Owing to the short diffusion path across the sheets, expression of diffusion-based discrimination of reaction products in the MFI nanosheets was limited. The 2-methylnonane formation among monobranched C10 isomers and 2,7-dimethyloctane among dibranched C10 isomers, which in MFI zeolite are favored by product diffusion, was much less favored on the nanosheets compared to the reference bulk ZSM-5 material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, Calif. Editor  
  Language Wos 000317558000009 Publication Date 2013-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 121 Open Access  
  Notes Methusalem; IAP; Countatoms Approved Most recent IF: 6.844; 2013 IF: 6.073  
  Call Number UA @ lucian @ c:irua:106186 Serial 2181  
Permanent link to this record
 

 
Author (up) Verheyen, E.; Joos, L.; Van Havenbergh, K.; Breynaert, E.; Kasian, N.; Gobechiya, E.; Houthoofd, K.; Martineau, C.; Hinterstein, M.; Taulelle, F.; Van Speybroeck, V.; Waroquier, M.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Design of zeolite by inverse sigma transformation Type A1 Journal article
  Year 2012 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 11 Issue 12 Pages 1059-1064  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although the search for new zeolites has traditionally been based on trial and error, more rational methods are now available. The theoretical concept of inverse transformation of a zeolite framework to generate a new structure by removal of a layer of framework atoms and contraction has for the first time been achieved experimentally. The reactivity of framework germanium atoms in strong mineral acid was exploited to selectively remove germanium-containing four-ring units from an UTL type germanosilicate zeolite. Annealing of the leached framework through calcination led to the new all-silica COK-14 zeolite with intersecting 12- and 10-membered ring channel systems. An intermediate stage of this inverse transformation with dislodged germanate four-rings still residing in the pores could be demonstrated. Inverse transformation involving elimination of germanium-containing structural units opens perspectives for the synthesis of many more zeolites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311432600025 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 140 Open Access  
  Notes Fwo Approved Most recent IF: 39.737; 2012 IF: 35.749  
  Call Number UA @ lucian @ c:irua:101783 Serial 661  
Permanent link to this record
 

 
Author (up) Wee, L.H.; Wiktor, C.; Turner, S.; Vanderlinden, W.; Janssens, N.; Bajpe, S.R.; Houthoofd, K.; Van Tendeloo, G.; De Feyter, S.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by keggin polyoxometallate ions Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 26 Pages 10911-10919  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variation of synthesis parameters of microporous networks, such as, for example, zeolites or metal organic frameworks (MOFs). Here, we show the rational development of an hierarchical variant of the microporous cubic Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate) HKUST-1 MOF having strictly repetitive S inn wide mesopores separated by uniform microporous walls in a single crystal structure. This new material coined COK-15 (COK = Centrum voor Oppervlaktechemie en Katalyse) was synthesized via a dual-templating approach. Stability was enhanced by Keggin type phosphotungstate (HPW) systematically occluded in the cavities constituting the walls between the mesopores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305863900037 Publication Date 2012-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 83 Open Access  
  Notes Iap; Fwo Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:100330 Serial 514  
Permanent link to this record
 

 
Author (up) Aerts, A.; Follens, L.R.A.; Biermans, E.; Bals, S.; Van Tendeloo, G.; Loppinet, B.; Kirschhock, C.E.A.; Martens, J.A. pdf  doi
openurl 
  Title Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization Type A1 Journal article
  Year 2011 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 13 Issue 10 Pages 4318-4325  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synchrotron small angle X-ray scattering (SAXS) was used to characterize silicalite-1 zeolite crystallization from TEOS/TPAOH/water clear sol. SAXS patterns were recorded over a broad range of length scales, enabling the simultaneous monitoring of nanoparticles and crystals occurring at various stages of the synthesis. A simple two-population model accurately described the patterns. Nanoparticles were modeled by polydisperse coreshell spheres and crystals by monodisperse oblate ellipsoids. These models were consistent with TEM images. The SAXS results, in conjunction with in situ light scattering, showed that nucleation of crystals occurred in a short period of time. Crystals were uniform in size and shape and became increasingly anisotropic during growth. In the presence of nanoparticles, crystal growth was fast. During crystal growth, the number of nanoparticles decreased gradually but their size was constant. These observations suggested that the nanoparticles were growth units in an aggregative crystal growth mechanism. Crystals grown in the presence of nanoparticles developed a faceted habit and intergrowths. In the final stages of growth, nanoparticles were depleted. Concurrently, the crystal growth rate decreased significantly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000287584700017 Publication Date 2011-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 22 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 4.123; 2011 IF: 3.573  
  Call Number UA @ lucian @ c:irua:87602 Serial 2155  
Permanent link to this record
 

 
Author (up) Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E. pdf  doi
openurl 
  Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 13 Pages 4769-4773  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264806300050 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 58 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:76393 Serial 2767  
Permanent link to this record
 

 
Author (up) de Clippel, F.; Harkiolakis, A.; Vosch, T.; Ke, X.; Giebeler, L.; Oswald, S.; Houthoofd, K.; Jammaer, J.; Van Tendeloo, G.; Martens, J.A.; Jacobs, P.A.; Baron, G.V.; Sels, B.F.; Denayer, J.F.M. pdf  doi
openurl 
  Title Graphitic nanocrystals inside the pores of mesoporous silica : synthesis, characterization and an adsorption study Type A1 Journal article
  Year 2011 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 144 Issue 1/3 Pages 120-133  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work presents a new carbonsilica hybrid material, denoted as CSM, with remarkable sorption properties. It consists of intraporous graphitic nanocrystals grown in the pores of mesoporous silica. CSM is obtained by a subtle incipient wetness impregnation of Al-containing mesoporous silica with furfuryl alcohol (FA)/hemelitol solutions. Both the volume match of the impregnation solution with that of the silica template pore volume, and the presence of Al3+ in the silica, are crucial to polymerize FA selectively inside the mesopores. Carbonization of the intraporous polymer was then performed by pyrolysis under He up to 1273 K. The resulting CSMs were examined by SEM, HRTEM, 27Al MAS NMR, N2 adsorption, XRD, TGA, TPD, XPS, pycnometry and Raman spectroscopy. Mildly oxidized graphitic-like carbon nanoblocks, consisting of a few graphene-like sheets, were thus identified inside the template mesopores. Random stacking of these carbon crystallites generates microporosity resulting in biporous materials at low carbon content and microporous materials at high carbon loadings. Very narrow pore distributions were obtained when pyrolysis was carried out under slow heating rate, viz. 1 K min−1. Adsorption and shape selective properties of the carbon filled mesoporous silica were studied by performing pulse chromatography and breakthrough experiments, and by measuring adsorption isotherms of linear and branched alkanes. Whereas the parent mesoporous silica shows unselective adsorption, their CSM analogues preferentially adsorb linear alkanes. The sorption capacity and selectivity can be adjusted by changing the pore size of the template or by varying the synthesis conditions. A relation between the carbon crystallites size and the shape selective behaviour of the corresponding CSM for instance is demonstrated. Most interestingly, CSM shows separation factors for linear and branched alkanes up to values comparable to those of zeolitic molecular sieves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000293435400016 Publication Date 2011-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.615; 2011 IF: 3.285  
  Call Number UA @ lucian @ c:irua:92325 Serial 1380  
Permanent link to this record
 

 
Author (up) Dendooven, J.; Ramachandran, R.K.; Solano, E.; Kurttepeli, M.; Geerts, L.; Heremans, G.; Ronge, J.; Minjauw, M.M.; Dobbelaere, T.; Devloo-Casier, K.; Martens, J.A.; Vantomme, A.; Bals, S.; Portale, G.; Coati, A.; Detavernier, C. url  doi
openurl 
  Title Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 1074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Synthetic methods that allow for the controlled design of well-defined Pt nanoparticles are highly desirable for fundamental catalysis research. In this work, we propose a strategy that allows precise and independent control of the Pt particle size and coverage. Our approach exploits the versatility of the atomic layer deposition (ALD) technique by combining two ALD processes for Pt using different reactants. The particle areal density is controlled by tailoring the number of ALD cycles using trimethyl(methylcyclopentadienyl) platinum and oxygen, while subsequent growth using the same Pt precursor in combination with nitrogen plasma allows for tuning of the particle size at the atomic level. The excellent control over the particle morphology is clearly demonstrated by means of in situ and ex situ X-ray fluorescence and grazing incidence small angle X-ray scattering experiments, providing information about the Pt loading, average particle dimensions, and mean center-to-center particle distance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413353500023 Publication Date 2017-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 88 Open Access OpenAccess  
  Notes ; This research was funded by the Research Foundation-Flanders (FWO), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the Flemish Government (Medium-scale research infrastructure funding-Hercules funding). J. D., T. D. and M. M. M. acknowledge the FWO for a research fellowship. S. B. acknowledges the European Research Council, ERC grant no. 335078-Colouratom. For the GISAXS and XRF measurements at SOLEIL, the authors received funding from the European Community's Trans National Access Program CALIPSO. We are also grateful to the SOLEIL and ESRF staff for smoothly running the facilities. The authors thank G. Verellen for his help with drawing the 3D sketches. ; ecas_Sara Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:146668UA @ admin @ c:irua:146668 Serial 4786  
Permanent link to this record
 

 
Author (up) Deng, S.; Kurttepeli, M.; Deheryan, S.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Van Tendeloo, G.; Detavernier, C. pdf  url
doi  openurl
  Title Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 12 Pages 6939-6944  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The formation of a 3D network composed of free standing and interconnected Pt nanowires is achieved by a two-step method, consisting of conformal deposition of Pt by atomic layer deposition (ALD) on a forest of carbon nanotubes and subsequent removal of the carbonaceous template. Detailed characterization of this novel 3D nanostructure was carried out by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The characterization showed that this pure 3D nanostructure of platinum is self-supported and offers an enhancement of the electrochemically active surface area by a factor of 50.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000337143900086 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 14 Open Access OpenAccess  
  Notes The authors wish to thank the Research Foundation – Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERCgrant agreement N°239865-COCOON, N°246791-COUNTATOMS and N°335078–COLOURATOM). The authors would also want to thank the support from UGENT-GOA-01G01513, IWT-SBO SOSLion and the Belgian government through Interuniversity Attraction Poles (IAPPAI).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:118393 Serial 3454  
Permanent link to this record
 

 
Author (up) Deng, S.; Verbruggen, S.W.; He, Z.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Lenaerts, S.; Detavernier, C. doi  openurl
  Title Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue 23 Pages 11648-11653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles ([similar]12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photoactive under UV light because of their well crystallized anatase phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332470000017 Publication Date 2014-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 45 Open Access Not_Open_Access  
  Notes ; The authors wish to thank the Research Foundation – Flanders (FWO) and UGENT-GOA-01G01513 for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 239865-COCOON and no. 246791-COUNTATOMS. JAM acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:117298 Serial 168  
Permanent link to this record
 

 
Author (up) Deng, S.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Van den Berghe, S.; Devloo-Casier, K.; Devulder, W.; Dendoover, J.; Deduytsche, D.; Detavernier, C. doi  openurl
  Title Controllable nitrogen doping in as deposited TiO2 film and its effect on post deposition annealing Type A1 Journal article
  Year 2014 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 32 Issue 1 Pages 01a123  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In order to narrow the band gap of TiO2, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO2 and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO2 and PEALD TiN, the as synthesized TiOxNy films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO2 films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO2 along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335847600023 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 10 Open Access  
  Notes ; The authors wish to thank the Research Foundation-Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nos. 239865-COCOON and 246791-COUNTATO. The authors also acknowledge the support from UGENT-GOA-01G01513 and IWT-SBO SOSLion. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). J.D. acknowledges the Flemisch FWO for a postdoctoral fellowship. ; Approved Most recent IF: 1.374; 2014 IF: 2.322  
  Call Number UA @ admin @ c:irua:117296 Serial 5936  
Permanent link to this record
 

 
Author (up) Gagea, B.C.; Liang, D.; Van Tendeloo, G.; Martens, J.A.; Jacobs, P.A. doi  openurl
  Title Synthesis and characterization of nanocrystal zeolite/mesoporous matrix composite material Type P1 Proceeding
  Year 2006 Publication Studies in surface science and catalysis Abbreviated Journal  
  Volume 162 Issue Pages 259-266  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000283580900033 Publication Date 2007-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-2991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 8 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99275 Serial 3413  
Permanent link to this record
 

 
Author (up) Geerts, L.; Geerts-Claes, H.; Skorikov, A.; Vermeersch, J.; Vanbutsele, G.; Galvita, V.; Constales, D.; Chandran, C.V.; Radhakrishnan, S.; Seo, J.W.; Breynaert, E.; Bals, S.; Sree, S.P.; Martens, J.A. url  doi
openurl 
  Title Spherical core–shell alumina support particles for model platinum catalysts Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 7 Pages 4221-4232  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract γ- and δ-alumina are popular catalyst support materials. Using a hydrothermal synthesis method starting from aluminum nitrate and urea in diluted solution, spherical core–shell particles with a uniform particle size of about 1 μm were synthesized. Upon calcination at 1000 °C, the particles adopted a core–shell structure with a γ-alumina core and δ-alumina shell as evidenced by 2D and 3D electron microscopy and<sup>27</sup>Al magic angle spinning nuclear magnetic resonance spectroscopy. The spherical alumina particles were loaded with Pt nanoparticles with an average size below 1 nm using the strong electrostatic adsorption method. Electron microscopy and energy dispersive X-ray spectroscopy revealed a homogeneous platinum dispersion over the alumina surface. These platinum loaded alumina spheres were used as a model catalyst for bifunctional catalysis. Physical mixtures of Pt/alumina spheres and spherical zeolite particles are equivalent to catalysts with platinum deposited on the zeolite itself facilitating the investigation of the catalyst components individually. The spherical alumina particles are very convenient supports for obtaining a homogeneous distribution of highly dispersed platinum nanoparticles. Obtaining such a small Pt particle size is challenging on other support materials such as zeolites. The here reported and well-characterized Pt/alumina spheres can be combined with any zeolite and used as a bifunctional model catalyst. This is an interesting strategy for the examination of the acid catalytic function without the interference of the supported platinum metal on the investigated acid material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621767000026 Publication Date 2021-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 3 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G0A5417N G038116N ; Vlaamse regering, Methusalem ; Hercules Foundation, AKUL/13/19 ; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:176021 Serial 6679  
Permanent link to this record
 

 
Author (up) Hauchecorne, B.; Terrens, D.; Verbruggen, S.; Martens, J.A.; van Langenhove, H.; Demeestere, K.; Lenaerts, S. pdf  doi
openurl 
  Title Elucidating the photocatalytic degradation pathway of acetaldehyde : an FTIR in situ study under atmospheric conditions Type A1 Journal article
  Year 2011 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 106 Issue 3/4 Pages 630-638  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, new insights of the photocatalytic oxidation pathway of acetaldehyde are obtained by means of an in-house constructed FTIR in situ reactor. It is shown that there are generally three different intermediates present: acetic acid, formic acid and formaldehyde. By means of FTIR in situ spectroscopy, this study revealed that these intermediates are bound on the TiO2 surface in different ways, resulting in the presence of more intermediate species, such as molecularly adsorbed acetic acid, bidentate acetate, molecularly adsorbed formic acid, monodentate formate, bidentate formate, formaldehyde and dioxymethylene. Furthermore, spectroscopic evidence is obtained concerning the formation of 3-hydroxybutanal and crotonaldehyde upon adsorption of acetaldehyde on TiO2 prior to UV illumination. The presented results thus give new insights in the photocatalytic oxidation pathway of acetaldehyde.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294092400042 Publication Date 2011-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 46 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for the funding of this research. ; Approved Most recent IF: 9.446; 2011 IF: 5.625  
  Call Number UA @ admin @ c:irua:92433 Serial 5948  
Permanent link to this record
 

 
Author (up) Hollevoet, L.; Jardali, F.; Gorbanev, Y.; Creel, J.; Bogaerts, A.; Martens, J.A. pdf  url
doi  openurl
  Title Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction Type A1 Journal article
  Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ammonia is an industrial large-volume chemical, with its main application in fertilizer production. It also attracts increasing attention as a green-energy vector. Over the past century, ammonia production has been dominated by the Haber-Bosch process, in which a mixture of nitrogen and hydrogen gas is converted to ammonia at high temperatures and pressures. Haber-Bosch processes with natural gas as the source of hydrogen are responsible for a significant share of the global CO(2)emissions. Processes involving plasma are currently being investigated as an alternative for decentralized ammonia production powered by renewable energy sources. In this work, we present the PNOCRA process (plasma nitrogen oxidation and catalytic reduction to ammonia), combining plasma-assisted nitrogen oxidation and lean NO(x)trap technology, adopted from diesel-engine exhaust gas aftertreatment technology. PNOCRA achieves an energy requirement of 4.6 MJ mol(-1)NH(3), which is more than four times less than the state-of-the-art plasma-enabled ammonia synthesis from N(2)and H(2)with reasonable yield (>1 %).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580489400001 Publication Date 2020-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access  
  Notes ; We gratefully acknowledge the financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). ; Approved Most recent IF: 16.6; 2020 IF: 11.994  
  Call Number UA @ admin @ c:irua:173589 Serial 6634  
Permanent link to this record
 

 
Author (up) Hollevoet, L.; Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A.; Martens, J.A. pdf  url
doi  openurl
  Title Energy‐Efficient Small‐Scale Ammonia Synthesis Process with Plasma‐enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NOx Type A1 Journal article
  Year 2022 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Industrial ammonia production without CO2 emission and with low energy consumption is one of the technological grand challenges of this age. Current Haber-Bosch ammonia mass production processes work with a thermally activated iron catalyst needing high pressure. The need for large volumes of hydrogen gas and the continuous operation mode render electrification of Haber-Bosch plants difficult to achieve. Electrochemical solutions at low pressure and temperature are faced with the problematic inertness of the nitrogen molecule on electrodes. Direct reduction of N2 to ammonia is only possible with very reactive chemicals such as lithium metal, the regeneration of which is energy intensive. Here, the attractiveness of an oxidative route for N2 activation was presented. N2 conversion to NOx in a plasma reactor followed by reduction with H2 on a heterogeneous catalyst at low pressure could be an energy-efficient option for small-scale distributed ammonia production with renewable electricity and without intrinsic CO2 footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000772893400001 Publication Date 2022-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Vlaamse regering, HBC.2019.0108 ; Vlaamse regering; KU Leuven, C3/20/067 ; We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). J.A.M. © 2022 Wiley-VCH GmbH Approved Most recent IF: 8.4  
  Call Number PLASMANT @ plasmant @c:irua:187251 Serial 7054  
Permanent link to this record
 

 
Author (up) Jammaer, J.; Aprile, C.; Verbruggen, S.W.; Lenaerts, S.; Pescarmona, P.P.; Martens, J.A. doi  openurl
  Title A non-aqueous synthesis of TiO2SiO2 composites in supercritical CO2 for the photodegradation of pollutants Type A1 Journal article
  Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 4 Issue 10 Pages 1457-1463  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Titania/silica composites with different Ti/Si ratios are synthesized via a nonconventional synthesis route. The synthesis involves non-aqueous reaction of metal alkoxides and formic acid at 75 °C in supercritical carbon dioxide. The as-prepared composite materials contain nanometer-sized anatase crystallites and amorphous silica. Large specific surface areas are obtained. The composites are evaluated in the photocatalytic degradation of phenol in aqueous medium, and in the elimination of acetaldehyde from air. The highest photocatalytic activity in both processes is achieved with a composite containing 40 wt % TiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296497400010 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 15 Open Access  
  Notes ; The authors acknowledge sponsorship from CECAT and Methusalem (long-term financing of the Flemish government). We thank Dr. E. Gobechiya for assistance with XRD measurements and A. Lemaire for assistance with mercury porosimetry measurements. ; Approved Most recent IF: 7.226; 2011 IF: 6.827  
  Call Number UA @ admin @ c:irua:93363 Serial 5973  
Permanent link to this record
 

 
Author (up) Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A. pdf  url
doi  openurl
  Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 5161-5169  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359499100003 Publication Date 2015-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127758 Serial 3977  
Permanent link to this record
 

 
Author (up) Kertik, A.; Wee, L.H.; Pfannmöller, M.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. pdf  url
doi  openurl
  Title Highly selective gas separation membrane using in situ amorphised metal-organic frameworks Type A1 Journal article
  Year 2017 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci  
  Volume 10 Issue 10 Pages 2342-2351  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional carbon dioxide (CO2) separation in the petrochemical industry via cryogenic distillation is energy intensive and environmentally unfriendly. Alternatively, polymer membrane-based separations are of significant interest owing to low production cost, low-energy consumption and ease of upscaling. However, the implementation of commercial polymeric membranes is limited by their permeability and selectivity trade-off and the insufficient thermal and chemical stability. Herein, a novel type of amorphous mixed matrix membrane (MMM) able to separate CO2/CH4 mixtures with the highest selectivities ever reported for MOF based MMMs is presented. The MMM consists of an amorphised metal-organic framework (MOF) dispersed in an oxidatively cross-linked matrix achieved by fine tuning of the thermal treatment temperature in air up to 350 degrees C which drastically boosts the separation properties of the MMM. Thanks to the protection of the surrounding polymer, full oxidation of this MOF (i.e. ZIF-8) is prevented, and amorphisation of the MOF is realized instead, thus in situ creating a molecular sieve network. In addition, the treatment also improves the filler-polymer adhesion and induces an oxidative cross-linking of the polyimide matrix, resulting in MMMs with increased stability or plasticization resistance at high pressure up to 40 bar, marking a new milestone as new molecular sieve MOF MMMs for challenging natural gas purification applications. A new field for the use of amorphised MOFs and a variety of separation opportunities for such MMMs are thus opened.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414774500007 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 122 Open Access OpenAccess  
  Notes ; A.K. acknowledges financial support from the Erasmus-Mundus Doctorate in Membrane Engineering (EUDIME) Programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N). M. P. acknowledges financial support by the FP7 European project SUNFLOWER (FP7 #287594). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J. A. M. gratefully acknowledges financial supports from the Flemish Government for long-term Methusalem funding. J. A. M. and I. F. J. V. acknowledge the Belgian Government for IAP-PAI networking. A. K. would also like to thank Frank Mathijs for the mechanical tests, Roy Bernstein for the XPS analysis and Lien Telen and Bart Goderis for the DSC measurements. We thank Verder Scientific Benelux for providing the service of ZIF-8 ball milling. ; ecas_sara Approved Most recent IF: 29.518  
  Call Number UA @ lucian @ c:irua:147399UA @ admin @ c:irua:147399 Serial 4879  
Permanent link to this record
 

 
Author (up) Kertik, A.; Wee, L.H.; Şentosun, K.; Navarro, J.A.R.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. url  doi
openurl 
  Title High-performance CO2-selective hybrid membranes by exploiting MOF-breathing effects Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 12 Issue 2 Pages 2952-2961  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional CO2 separation in the petrochemical industry via cryogenic distillation or amine-based absorber-stripper units is energy-intensive and environmentally unfriendly. Membrane-based gas separation technology, in contrast, has contributed significantly to the development of energy-efficient systems for processes such as natural gas purification. The implementation of commercial polymeric membranes in gas separation processes is restricted by their permeability-selectivity trade-off and by their insufficient thermal and chemical stability. Herein, we present the fabrication of a Matrimid-based membrane loaded with a breathing metal-organic framework (MOF) (NH2-MIL-53(Al)) which is capable of separating binary CO2/CH4 gas mixtures with high selectivities without sacrificing much of its CO2 permeabilities. NH2-MIL-53(Al) crystals were embedded in a polyimide (PI) matrix, and the mixed-matrix membranes (MMMs) were treated at elevated temperatures (up to 350 degrees C) in air to trigger PI cross-linking and to create PI-MOF bonds at the interface to effectively seal the grain boundary. Most importantly, the MOF transitions from its narrow-pore form to its large-pore form during this treatment, which allows the PI chains to partly penetrate the pores and cross-link with the amino functions at the pore mouth of the NH2-MIL-53(Al) and stabilizes the open-pore form of NH2-MIL-53(Al). This cross-linked MMM, with MOF pore entrances was made more selective by the anchored PI-chains and achieves outstanding CO2/CH4 selectivities. This approach provides significant advancement toward the design of selective MMMs with enhanced thermal and chemical stabilities which could also be applicable for other potential applications, such as separation of hydrocarbons (olefin/paraffin or isomers), pervaporation, and solvent-resistant nanofiltration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508464500108 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 26 Open Access OpenAccess  
  Notes ; A.K. is grateful to the Erasmus Mundus Doctorate in Membrane Engineering (EUDIME) programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number 12M1418N. We thank Methusalem and IAP-PAI for research funding. S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). We are also grateful to Frank Mathijs (KU Leuven) for the mechanical tests, Bart Goderis and Olivier Verkinderen for the DSC measurements, and Huntsman (Switzerland) for providing the Matrimid polymer. ; Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number UA @ admin @ c:irua:166576 Serial 6534  
Permanent link to this record
 

 
Author (up) Keulemans, M.; Verbruggen, S.W.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Activity versus selectivity in photocatalysis : morphological or electronic properties tipping the scale Type A1 Journal article
  Year 2016 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 344 Issue Pages 221-228  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper a structure-activity and structure-selectivity relation is established for three commercial TiO2 sources (P25, P90, and PC500). Morphological and electronic parameters of the photocatalysts are determined using widely applicable and inexpensive characterization procedures. More specifically, the electronic properties are rigorously characterized using an electron titration method yielding quantitative information on the amount of defect sites present in the catalyst. Surface photovoltage measurements on the other hand provide complementary information on the charge carrier recombination process. As model reaction, the degradation of a solid layer of stearic acid is studied using an in situ FTIR reaction cell that enables to investigate the catalyst surface and possible formation of reaction intermediates while the reactions are ongoing. We show that the order of photocatalytic conversion is PC500 > P90 > P25, matching the order of favorable morphological properties. In terms of selectivity to CO2 formation (complete mineralization), however, this trend is reversed: P25 > P90 > PC500, now matching the order of advantageous electronic properties, i.e. low charge carrier recombination and high charge carrier generation. With this we intend to provide new mechanistic insights using a wide variety of physical, (wet) chemical and operando analysis methods that aid the development of performant (self-cleaning) photocatalytic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390182800022 Publication Date 2016-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 10 Open Access  
  Notes ; M.K. acknowledges Flemish Agency for Innovation & Entrepreneurship for the doctoral scholarship. S.W.V. acknowledges the Fonds Wetenschappelijk Onderzoek (FWO) for a post-doctoral fellowship. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 6.844  
  Call Number UA @ admin @ c:irua:136339 Serial 5926  
Permanent link to this record
 

 
Author (up) Kirschhock, C.E.A.; Kremer, S.P.B.; Vermant, J.; Van Tendeloo, G.; Jacobs, P.A.; Martens, J.A. doi  openurl
  Title Design and synthesis of hierarchical materials from ordered zeolitic building units Type A1 Journal article
  Year 2005 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 11 Issue 15 Pages 4306-4313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000230761400001 Publication Date 2005-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 93 Open Access  
  Notes Approved Most recent IF: 5.317; 2005 IF: 4.907  
  Call Number UA @ lucian @ c:irua:60019 Serial 658  
Permanent link to this record
 

 
Author (up) Kirschhock, C.E.A.; Liang, D.; Aerts, A.; Aerts, C.A.; Kremer, S.P.B.; Jacobs, P.A.; Van Tendeloo, G.; Martens, J.A. doi  openurl
  Title On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1 : reply Type L1 Letter to the editor
  Year 2004 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 43 Issue 35 Pages 4562-4564  
  Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000224008400003 Publication Date 2004-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access  
  Notes Fwo; Iap-Pai Approved Most recent IF: 11.994; 2004 IF: 9.161  
  Call Number UA @ lucian @ c:irua:103253 Serial 2457  
Permanent link to this record
 

 
Author (up) Kirschhock, C.E.A.; Liang, D.; Van Tendeloo, G.; Fécant, A.; Hastoye, G.; Vanbutsele, G.; Bats, N.; Guillon, E.; Martens, J.A. pdf  doi
openurl 
  Title Ordered end-member of ZSM-48 zeolite family Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 2 Pages 371-380  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZSM-48 and related zeolites are considered to be highly disordered structures. Different polytypes can be clearly distinguished by simulation of high-resolution electron microscopy images. Synthesis of phase-pure polytypes was attempted. One of the investigated samples crystallized via seeding designated as COK-8 consisted of nanoscopic, needlelike crystals with a very large length/width ratio, growing along the pore direction. These specimens are phase-pure polytype 6 (PT6, numbering according to Lobo and van Koningsveld). Aggregates of these nanoneedles occasionally contained a second polytype: PT1. The latter polytype occurred more abundantly in larger crystal rods in an IZM-1 sample crystallized in ethylene glycol. Here too, the isolated crystallites mainly consist of large, defect-free regions of PT6. A simulation of polytype lattice energies offers a rational explanation for the observed polytypical intergrowth formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000262605200026 Publication Date 2008-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 30 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:76032 Serial 2503  
Permanent link to this record
 

 
Author (up) Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Aerts, C.A.; Houthoofd, K.J.; Grobet, P.J.; Jacobs, P.A.; Lebedev, O.I.; Van Tendeloo, G.; Martens, J.A. pdf  doi
openurl 
  Title Zeotile-2: a microporous analogue of MCM-48 Type A1 Journal article
  Year 2005 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume 7 Issue 7 Pages 861-867  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000230259500006 Publication Date 2005-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.811; 2005 IF: 1.708  
  Call Number UA @ lucian @ c:irua:54702 Serial 3931  
Permanent link to this record
 

 
Author (up) Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Villani, K.; Martens, J.A.; Lebedev, O.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Tiling silicalite-1 nanoslabs into 3D mosaics Type A1 Journal article
  Year 2003 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 15 Issue 20 Pages 1705-1707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000186425600003 Publication Date 2003-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 82 Open Access  
  Notes Approved Most recent IF: 19.791; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:54810 Serial 3662  
Permanent link to this record
 

 
Author (up) Liang, D.; Follens, L.R.A.; Aerts, A.; Martens, J.A.; Van Tendeloo, G.; Kirschhock, C.E.A. pdf  doi
openurl 
  Title TEM observation of aggregation steps in room-temperature silicalite-1 zeolite formation Type A1 Journal article
  Year 2007 Publication Journal of physical chemistry C Abbreviated Journal J Phys Chem C  
  Volume 111 Issue 39 Pages 14283-14285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000249838300002 Publication Date 2007-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 41 Open Access  
  Notes ESA; IWT – Flanders; FWO Approved Most recent IF: 4.536; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:66617 Serial 3481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: