toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mayda, S.; Monico, L.; Krishnan, D.; De Meyer, S.; Cotte, M.; Garrevoet, J.; Falkenberg, G.; Sandu, I.C.A.; Partoens, B.; Lamoen, D.; Romani, A.; Miliani, C.; Verbeeck, J.; Janssens, K. pdf  doi
openurl 
  Title (up) A combined experimental and computational approach to understanding CdS pigment oxidation in a renowned early 20th century painting Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 24 Pages 10403-10415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Cadmium sulfide (CdS)-based yellow pigments have been used in a number of early 20th century artworks, including The Scream series painted by Edvard Munch. Some of these unique paintings are threatened by the discoloration of these CdS-based yellow oil paints because of the oxidation of the original sulfides to sulfates. The experimental data obtained here prove that moisture and cadmium chloride compounds play a key role in promoting such oxidation. To clarify how these two factors effectively prompt the process, we studied the band alignment between CdS, CdCl2, and Cd-(OH)Cl as well as the radicals center dot OH and H3O center dot by density functional theory (DFT) methods. Our results show that a stack of several layers of Cd-(OH)Cl creates a pocket of positive holes at the Cl-terminated surface and a pocket of electrons at the OH-terminated surface by leading in a difference in ionization energy at both surfaces. The resulting band alignment indicates that Cd-(OH)Cl can indeed play the role of an oxidative catalyst for CdS in a moist environment, thus providing an explanation for the experimental evidence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001133000900001 Publication Date 2023-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes The experimental research on the cadmium yellow powders/paint mock-ups and The Scream (ca. 1910) was financially supported by the European Union, research projects IPERION-CH (H2020-INFRAIA-2014-2015, GA no. 654028) and IPERION-HS (H2020-INFRAIA-2019-1, GA no. 871034) and the project AMIS within the program Dipartimenti di Eccellenza 2018-2022 (funded by MUR and the University of Perugia). For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiments HG64 and HG95), the DESY-P06 beamline, a member of the Helmholtz Association HGF (experiments I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the GA no. 730872 from the E.U. Framework Programme for Research and Innovation Horizon 2020. All of the staff of the MUNCH Museum (Conservation Department) is acknowledged for their collaboration. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO – Vlaanderen and the Flemish Government, Department EWI. Approved no  
  Call Number UA @ admin @ c:irua:202836 Serial 8999  
Permanent link to this record
 

 
Author Momot, A.; Amini, M.N.; Reekmans, G.; Lamoen, D.; Partoens, B.; Slocombe, D.R.; Elen, K.; Adriaensens, P.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title (up) A novel explanation for the increased conductivity in annealed Al-doped ZnO: an insight into migration of aluminum and displacement of zinc Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 40 Pages 27866-27877  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A combined experimental and first-principles study is performed to study the origin of conductivity in

ZnO:Al nanoparticles synthesized under controlled conditions via a reflux route using benzylamine as a

solvent. The experimental characterization of the samples by Raman, nuclear magnetic resonance (NMR)

and conductivity measurements indicates that upon annealing in nitrogen, the Al atoms at interstitial

positions migrate to the substitutional positions, creating at the same time Zn interstitials. We provide

evidence for the fact that the formed complex of AlZn and Zni corresponds to the origin of the Knight

shifted peak (KS) we observe in 27Al NMR. As far as we know, the role of this complex has not been

discussed in the literature to date. However, our first-principles calculations show that such a complex is

indeed energetically favoured over the isolated Al interstitial positions. In our calculations we also

address the charge state of the Al interstitials. Further, Zn interstitials can migrate from Al_Zn and possibly

also form Zn clusters, leading to the observed increased conductivity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413290500073 Publication Date 2017-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 26 Open Access OpenAccess  
  Notes We want to thank the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office (BELSPO) for the financial support. We also acknowledge the Research Foundation Flanders (FWO-Vlaanderen) for support via the MULTIMAR WOG project and under project No. G018914. The computational parts were carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules foundation and the Flemish Government (EWI Department). Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @c:irua:146878 Serial 4760  
Permanent link to this record
 

 
Author Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M.N.; Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title (up) A simplified approach to the band gap correction of defect formation energies : Al, Ga, and In-doped ZnO Type A1 Journal article
  Year 2013 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 74 Issue 1 Pages 45-50  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the HeydScuseriaErnzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000311062500009 Publication Date 2012-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.059 Times cited 36 Open Access  
  Notes Fwo; Bof-Nio Approved Most recent IF: 2.059; 2013 IF: 1.594  
  Call Number UA @ lucian @ c:irua:101782 Serial 3004  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D. doi  openurl
  Title (up) A technique for the sp2/sp3 characterization of carbon materials Type A1 Journal article
  Year 2004 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A  
  Volume 201 Issue Pages 2492  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000224152700019 Publication Date 2004-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:49656 Serial 3472  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. url  doi
openurl 
  Title (up) Ab initio based atomic scattering amplitudes and {002} electron structure factors of InxGa1-xAs/GaAs quantum wells Type A1 Journal article
  Year 2010 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 209 Issue 1 Pages 012040,1-012040,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The atomic scattering amplitudes of the various atoms of the systems Ga1−xInxAs, GaAs1−xNx and InAs1−xNx are calculated using the density functional theory (DFT) approach. The scattering amplitudes of N, Ga, As and In in the model systems are compared with the frequently used Doyle and Turner values. Deviation from the latter values is found for small scattering vectors (s<0.3Å−1) and for these scattering vectors dependence on the orientation of the scattering vector and the chemical environment is reported. We suggest a parametrization of these modified scattering amplitudes (MASAs) for small scattering vectors (s<1.0Å−1). The MASAs are exploited within zero pressure classical Metropolis Monte Carlo (MC), finite temperature calculations to investigate the effect of quantum well size on the electron {002} structure factor (SF) of Ga1−xInxAs quantum wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000283739100040 Publication Date 2010-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85760 Serial 28  
Permanent link to this record
 

 
Author Dadsetani, M.; Titantah, J.T.; Lamoen, D. doi  openurl
  Title (up) Ab initio calculation of the energy-loss near-edge structure of some carbon allotropes: comparison with n-diamond Type A1 Journal article
  Year 2010 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 19 Issue 1 Pages 73-77  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The energy-loss near-edge structure (ELNES) spectra of several carbon allotropes (non-hydrogenated and hydrogenated face-centered cubic (FCC) carbon, rhombohedral carbon, glitter, hexagonite and lonsdaleite) are calculated within the supercell-core-excited density functional theory approach. In particular an experimental ELNES spectrum of new diamond (n-diamond) [Konyashin et al., Diamond Relat. Mater. 10, (2001) 99102] is compared with the ELNES spectra of FCC carbon, rhombohedral carbon and the so-called glitter structure. Our calculations show that the ELNES spectrum considered in that publication cannot be that of FCC carbon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000274234500013 Publication Date 2009-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 11 Open Access  
  Notes Goa; Esteem 026019 Approved Most recent IF: 2.561; 2010 IF: 1.825  
  Call Number UA @ lucian @ c:irua:79444 Serial 29  
Permanent link to this record
 

 
Author Nivesanond, K.; Peeters, A.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title (up) Ab initio calculation of the interaction energy in the P2 binding pocket of HIV-1 protease Type A1 Journal article
  Year 2005 Publication International Journal Of Quantum Chemistry Abbreviated Journal Int J Quantum Chem  
  Volume 105 Issue 3 Pages 292-299  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000232232300009 Publication Date 2005-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7608;1097-461X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.92 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.92; 2005 IF: 1.192  
  Call Number UA @ lucian @ c:irua:54919 Serial 30  
Permanent link to this record
 

 
Author Schowalter, M.; Titantah, J.T.; Lamoen, D.; Kruse, P. doi  openurl
  Title (up) Ab initio computation of the mean inner Coulomb potential of amorphous carbon structures Type A1 Journal article
  Year 2005 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 86 Issue Pages 112102  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000228050700042 Publication Date 2005-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.411; 2005 IF: 4.127  
  Call Number UA @ lucian @ c:irua:51764 Serial 31  
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kruse, P.; Gerthsen, D. openurl 
  Title (up) Ab initio computation of the mean inner Coulomb potential of technological important semiconductors Type A1 Journal article
  Year 2005 Publication Abbreviated Journal  
  Volume 1007 Issue Pages 233-236  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:72915 Serial 32  
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kruse, P.; Gerthsen, D. doi  openurl
  Title (up) Ab initio computation of the mean inner Coulomb potential of wurtzite-type semiconductors and gold Type A1 Journal article
  Year 2006 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 88 Issue 23 Pages Artn 232108  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000238914500031 Publication Date 2006-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.411; 2006 IF: 3.977  
  Call Number UA @ lucian @ c:irua:60581 Serial 33  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title (up) Ab initio study of shallow acceptors in bixbyite V2O3 Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 015703  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the results of our study on p-type dopability of bixbyite V2O3 using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) within the density functional theory (DFT) formalism. We study vanadium and oxygen vacancies as intrinsic defects and substitutional Mg, Sc, and Y as extrinsic defects. We find that Mg substituting V acts as a shallow acceptor, and that oxygen vacancies are electrically neutral. Hence, we predict Mg-doped V2O3 to be a p-type conductor. Our results also show that vanadium vacancies are relatively shallow, with a binding energy of 0.14 eV, so that they might also lead to p-type conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000347958600067 Publication Date 2015-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:122728 Serial 35  
Permanent link to this record
 

 
Author Turner, S.; Shenderova, O.; da Pieve, F.; Lu, Y.-G.; Yücelen, E.; Verbeeck, J.; Lamoen, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond Type A1 Journal article
  Year 2013 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 210 Issue 10 Pages 1976-1984  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Aberration-corrected transmission electron microscopy, electron energy-loss spectroscopy, and density functional theory (DFT) calculations are used to solve several key questions about the surface structure, the particle morphology, and the distribution and nature of nitrogen impurities in detonation nanodiamond (DND) cleaned by a recently developed ozone treatment. All microscopy and spectroscopy measurements are performed at a lowered acceleration voltage (80/120kV), allowing prolonged and detailed experiments to be carried out while minimizing the risk of knock-on damage or surface graphitization of the nanodiamond. High-resolution TEM (HRTEM) demonstrates the stability of even the smallest nanodiamonds under electron illumination at low voltage and is used to image the surface structure of pristine DND. High resolution electron energy-loss spectroscopy (EELS) measurements on the fine structure of the carbon K-edge of nanodiamond demonstrate that the typical * pre-peak in fact consists of three sub-peaks that arise from the presence of, amongst others, minimal fullerene-like reconstructions at the nanoparticle surfaces and deviations from perfect sp(3) coordination at defects in the nanodiamonds. Spatially resolved EELS experiments evidence the presence of nitrogen within the core of DND particles. The nitrogen is present throughout the whole diamond core, and can be enriched at defect regions. By comparing the fine structure of the experimental nitrogen K-edge with calculated energy-loss near-edge structure (ELNES) spectra from DFT, the embedded nitrogen is most likely related to small amounts of single substitutional and/or A-center nitrogen, combined with larger nitrogen clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329299700025 Publication Date 2013-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 37 Open Access  
  Notes 262348 ESMI; 246791 COUNTATOMS; FWO; Hercules; GOA XANES meets ELNES Approved Most recent IF: 1.775; 2013 IF: 1.525  
  Call Number UA @ lucian @ c:irua:110821UA @ admin @ c:irua:110821 Serial 41  
Permanent link to this record
 

 
Author Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F. pdf  url
doi  openurl
  Title (up) Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 15 Pages 5900-5908  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480826900060 Publication Date 2019-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:161814 Serial 5291  
Permanent link to this record
 

 
Author Saniz, R.; Vercauteren, S.; Lamoen, D.; Partoens, B.; Barbiellini, B. pdf  doi
openurl 
  Title (up) Accurate description of the van der Waals interaction of an electron-positron pair with the surface of a topological insulator Type P1 Proceeding
  Year 2014 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 505 Issue Pages 012002  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Positrons can be trapped in localized states at the surface of a material, and thus quite selectively interact with core or valence surface electrons. Hence, advanced surface positron spectroscopy techniques can present the ideal tools to study a topological insulator, where surface states play a fundamental role. We analyze the problem of a positron at a TI surface, assuming that it is a weakly physisorbed positronium (Ps) atom. To determine if the surface of interest in a material can sustain such a physisorption, an accurate description of the underlying van der Waals (vdW) interaction is essential. We have developed a first-principles parameterfree method, based on the density functional theory, to extract key parameters determining the vdW interaction potential between a Ps atom and the surface of a given material. The method has been successfully applied to quartz and preliminary results on Bi2Te2Se indicate the existence of a positron surface state. We discuss the robustness of our predictions versus the most relevant approximations involved in our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000338216500002 Publication Date 2014-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; We thank A. Weiss for very useful conversations. We acknowledge financial support from FWO-Vlaanderen (projectG.0150.13). This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), adivision of the Flemish Supercomputer Center (VSC), funded by the Hercules foundation and the Flemish Government (EWI Department). B. B. is supported by DOE grants Nos. DE-FG02-07ER46352 and DE-AC02-05CH11231 for theory support at ALS, Berkeley, and a NERSC computer time allocation. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:118264 Serial 46  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. doi  openurl
  Title (up) Accurate pseudopotential description of the GW bandstructure of ZnO Type A1 Journal article
  Year 2011 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 182 Issue 9 Pages 2029-2031  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the GW band structure of ZnO in its wurtzite (WZ), zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. We have used a Zn20+ pseudopotential which is essential for the adequate treatment of the exchange interaction in the self-energy. The accuracy of the pseudopotential used is also discussed. The effect of the pd hybridization on the GW corrections to the band gap is correlated by comparing the ZB and RS phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000292675100062 Publication Date 2011-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 3.936; 2011 IF: 3.268  
  Call Number UA @ lucian @ c:irua:90761 Serial 51  
Permanent link to this record
 

 
Author Lamoen, D.; Persson, B.N.J. doi  openurl
  Title (up) Adsorption of potassium and oxygen on graphite: a theoretical study Type A1 Journal article
  Year 1998 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 108 Issue Pages 3332-3341  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000074379600032 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 91 Open Access  
  Notes Approved Most recent IF: 2.965; 1998 IF: 3.147  
  Call Number UA @ lucian @ c:irua:19420 Serial 64  
Permanent link to this record
 

 
Author Soldatov, A.; Yalovega, G.; Smolentsev, G.; Kravtsova, A.; Lamoen, D.; Balasubramanian, C.; Marcelli, A.; Cinque, G.; Bellucci, S. doi  openurl
  Title (up) ALN nanoparticles XANES analysis: local atomic and electronic structure Type A1 Journal article
  Year 2007 Publication Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment Abbreviated Journal Nucl Instrum Meth A  
  Volume 575 Issue 1/2 Pages 85-87  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Amsterdam Editor  
  Language Wos 000247146600021 Publication Date 2007-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.362 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.362; 2007 IF: 1.114  
  Call Number UA @ lucian @ c:irua:64755 Serial 89  
Permanent link to this record
 

 
Author Rosenauer, A.; Schowalter, M.; Titantah, J.T.; Lamoen, D. doi  openurl
  Title (up) An emission-potential multislice approximation to simulate thermal diffuse scattering in high-resolution transmission electron microscopy Type A1 Journal article
  Year 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 108 Issue 12 Pages 1504-1513  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thermal diffuse scattered electrons significantly contribute to high-resolution transmission electron microscopy images. Their intensity adds to the background and is peaked at positions of atomic columns. In this paper we suggest an approximation to simulate intensity of thermal diffuse scattered electrons in plane-wave illumination transmission electron microscopy using an emission-potential multislice algorithm which is computationally less intensive than the frozen lattice approximation or the mutual intensity approach. Intensity patterns are computed for Au and InSb for different crystal orientations. These results are compared with intensities from the frozen lattice approximation based on uncorrelated vibration of atoms as well as with the frozen phonon approximation for Au. The frozen phonon method uses a detailed phonon model based on force constants we computed by a density functional theory approach. The comparison shows that our suggested emission-potential method is in close agreement with both the frozen lattice and the frozen phonon approximations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000260808300002 Publication Date 2008-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.843; 2008 IF: 2.629  
  Call Number UA @ lucian @ c:irua:72919 Serial 1033  
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title (up) An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
  Year 2020 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 49 Issue 30 Pages 10486-10497  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000555330900018 Publication Date 2020-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029  
  Call Number UA @ admin @ c:irua:171149 Serial 6450  
Permanent link to this record
 

 
Author Jacobs, W.; Reynaerts, C.; Andries, S.; van den Akker, S.; Moonen, N.; Lamoen, D. pdf  url
doi  openurl
  Title (up) Analyzing the dispersion of cargo vapors around a ship’s superstructure by means of wind tunnel experiments Type A1 Journal article
  Year 2016 Publication Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan  
  Volume 21 Issue 21 Pages 758-766  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In a previous study, it was found that cargo tank operations like cleaning and venting, lead to higher cargo vapor concentrations around the ship’s superstructure. Can wind tunnel experiments confirm these findings? Is there an improvement when using higher outlets at high velocities compared to lower outlets with a low outlet velocity? Is there a relation between relative wind speed and measured concentration? These questions were investigated in the Peutz wind tunnel. By using a tracer gas for the wind tunnel experiments, concentration coefficients have been calculated for various settings. The study shows that using high-velocity outlets is an efficient way to keep concentrations as low as possible. The only exception is for relative wind directions from the bow. In this last case using a manhole as ventilation outlet leads to lower concentrations. With increasing wind speeds the building downwash effect resulted in higher concentration coefficients near the main deck. This study confirms our on-board measurements and suggests the lowering of the ventilation inlet of the accommodation, so that the high-velocity outlet can be used safely at all times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388260200015 Publication Date 2016-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.838 Times cited 2 Open Access  
  Notes The authors would like to thank Peutz bv. at Molenhoek, the Netherlands, for providing the wind tunnel facilities and their assistance during the various stages of this research. Approved Most recent IF: 0.838  
  Call Number EMAT @ emat @ c:irua:138728 Serial 4326  
Permanent link to this record
 

 
Author Schouteden, K.; Govaerts, K.; Debehets, J.; Thupakula, U.; Chen, T.; Li, Z.; Netsou, A.; Song, F.; Lamoen, D.; Van Haesendonck, C.; Partoens, B.; Park, K. pdf  url
doi  openurl
  Title (up) Annealing-Induced Bi Bilayer on Bi2Te3 Investigated via Quasi-Particle-Interference Mapping Type A1 Journal article
  Year 2016 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 10 Issue 10 Pages 8778-8787  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a “second” cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.  
  Address Department of Physics, Virginia Tech , Blacksburg, Virginia 24061, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000384399300073 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 15 Open Access  
  Notes The research in Leuven and Antwerp was supported by the Research FoundationFlanders (FWO, Belgium). The research in Leuven received additional support from the Flemish Concerted Research Action Program (BOF KULeuven, Project GOA/14/007) and the KULeuven Project GOA “Fundamental Challenges in Semiconductor Research”. Z.L. acknowledges the support from the China Scholarship Council (2011624021) and from KU Leuven Internal Funds (PDM). K.S. and J.D. acknowledge additional support from the FWO. T.C. and F.S. acknowledge the financial support of the National Key Projects for Basic Research of China (Grants 2013CB922103 and 2011CB922103), the National NaturalScience Foundation of China (Grant s 91421109, 11134005,11522432, and 11274003), the Natural Science Foundation ofJiangsu Province (Grant BK20130054), and the FundamentalResearch Funds for the Central Universities. K.P. wassupported by the U.S. National Science Foundation (DMR-1206354) and San Diego Supercomputer Center (SDSC)Comet and Gordon (DMR060009N). Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @ c:irua:136269 Serial 4294  
Permanent link to this record
 

 
Author Howard, I.A.; Zutterman, F.; Deroover, G.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title (up) Approaches to calculation of exciton interaction energies for a molecular dimer Type A1 Journal article
  Year 2004 Publication Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B  
  Volume 108 Issue Pages 19155-19162  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000225695100015 Publication Date 2004-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.177; 2004 IF: 3.834  
  Call Number UA @ lucian @ c:irua:50259 Serial 147  
Permanent link to this record
 

 
Author Caglak, E.; Govers, K.; Lamoen, D.; Labeau, P.-E.; Verwerft, M. pdf  url
doi  openurl
  Title (up) Atomic scale analysis of defect clustering and predictions of their concentrations in UO2+x Type A1 Journal article
  Year 2020 Publication Journal Of Nuclear Materials Abbreviated Journal J Nucl Mater  
  Volume 541 Issue Pages 152403  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The physical properties of uranium dioxide vary greatly with stoichiometry. Oxidation towards hyperstoichiometric UO2 – UO2+x – might be encountered at various stages of the nuclear fuel cycle if oxidative conditions are met; the impact of stoichiometry changes upon physical properties should therefore be properly assessed to ensure safe and reliable operations. These physical properties are intimately linked to the arrangement of atomic defects in the crystalline structure. The evolution of the defect concentration with environmental parameters – oxygen partial pressure and temperature – were evaluated by means of a point defect model where the reaction energies are derived from atomic-scale simulations. To this end, various configurations and net charge states of oxygen interstitial clusters in UO2 have been calculated. Various methodologies have been tested to determine the optimum cluster configurations and a rigid lattice approach turned out to be the most useful strategy to optimize defect configuration structures. Ultimately, results from the point defect model were discussed and compared to experimental measurements of stoichiometry dependence on oxygen partial pressure and temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000575165800006 Publication Date 2020-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes This work is dedicated to the memory of Prof. Alain Dubus, ULB, Bruxelles, Belgium. Financial support from the SCK CEN is gratefully acknowledged. Approved Most recent IF: 3.1; 2020 IF: 2.048  
  Call Number EMAT @ emat @c:irua:172464 Serial 6402  
Permanent link to this record
 

 
Author Matsubara, M.; Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B. url  doi
openurl 
  Title (up) Attracting shallow donors : hydrogen passivation in (Al,Ga,In)-doped ZnO Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 16 Pages 165207  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The hydrogen interstitial and the substitutional AlZn, GaZn, and InZn are all shallow donors in ZnO and lead to n-type conductivity. Although shallow donors are expected to repel each other, we show by first-principles calculations that in ZnO these shallow donor impurities attract and form a complex, leading to a donor level deep in the band gap. This puts a limit on the n-type conductivity of (Al,Ga,In)-doped ZnO in the presence of hydrogen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310131300008 Publication Date 2012-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101780 Serial 202  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. doi  openurl
  Title (up) Bond length variation in Ga1-xInxAs crystals from the Tersoff potential Type A1 Journal article
  Year 2007 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 101 Issue 12 Pages 123508,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000247625700034 Publication Date 2007-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 19 Open Access  
  Notes Approved Most recent IF: 2.068; 2007 IF: 2.171  
  Call Number UA @ lucian @ c:irua:67460 Serial 247  
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Titantah, J.T.; Lamoen, D. openurl 
  Title (up) Calculation of Debye-Waller temperature factors for GaAs Type A1 Journal article
  Year 2008 Publication Springer proceedings in physics Abbreviated Journal  
  Volume 120 Issue Pages 195-198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:73966 Serial 266  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D. doi  openurl
  Title (up) Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles Type A1 Journal article
  Year 2007 Publication Diamond And Related Materials Abbreviated Journal Diam Relat Mater  
  Volume 16 Issue 3 Pages 581-588  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000244827100028 Publication Date 2007-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 77 Open Access  
  Notes Approved Most recent IF: 2.561; 2007 IF: 1.788  
  Call Number UA @ lucian @ c:irua:63842 Serial 277  
Permanent link to this record
 

 
Author da Pieve, F.; Hogan, C.; Lamoen, D.; Verbeeck, J.; Vanmeert, F.; Radepont, M.; Cotte, M.; Janssens, K.; Gonze, X.; Van Tendeloo, G. url  doi
openurl 
  Title (up) Casting light on the darkening of colors in historical paintings Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 20 Pages 208302-208305  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The degradation of colors in historical paintings affects our cultural heritage in both museums and archeological sites. Despite intensive experimental studies, the origin of darkening of one of the most ancient pigments known to humankind, vermilion (α-HgS), remains unexplained. Here, by combining many-body theoretical spectroscopy and high-resolution microscopic x-ray diffraction, we clarify the composition of the damaged paint work and demonstrate possible physicochemical processes, induced by illumination and exposure to humidity and air, that cause photoactivation of the original pigment and the degradation of the secondary minerals. The results suggest a new path for the darkening process which was never considered by previous studies and prompt a critical examination of their findings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000327244500003 Publication Date 2013-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 30 Open Access  
  Notes Vortex; ERC FP7; COUNTATOMS; ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:111396UA @ admin @ c:irua:111396 Serial 287  
Permanent link to this record
 

 
Author Leinders, G.; Baldinozzi, G.; Ritter, C.; Saniz, R.; Arts, I.; Lamoen, D.; Verwerft, M. pdf  url
doi  openurl
  Title (up) Charge Localization and Magnetic Correlations in the Refined Structure of U3O7 Type A1 Journal article
  Year 2021 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 60 Issue 14 Pages 10550-10564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin–orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) “oxo-type” bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 μB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675430900049 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD – Spent Fuel CORrosion MODeling). This work was performed in part using HPC resources from GENCI-IDRIS (Grants 2020-101450 and 2020-101601), and in part by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. GL thanks E. Suard and C. Schreinemachers for assistance during the neutron scattering experiments at the ILL. GB acknowledges V. Petříček for suggestions on using JANA2006. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:179907 Serial 6801  
Permanent link to this record
 

 
Author Saniz, R.; Baldinozzi, G.; Arts, I.; Lamoen, D.; Leinders, G.; Verwerft, M. pdf  url
doi  openurl
  Title (up) Charge order, frustration relief, and spin-orbit coupling in U3O8 Type A1 Journal Article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 5 Pages 054410  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Research efforts on the description of the low-temperature magnetic order and electronic properties of U3O8 have been inconclusive so far. Reinterpreting neutron scattering results, we use group representation theory to show that the ground state presents collinear out-of-plane magnetic moments, with antiferromagnetic coupling both in-layer and between layers. Charge order relieves the initial geometric frustration, generating a slightly distorted honeycomb sublattice with Néel-type order. The precise knowledge of the characteristics of this magnetic ground state is then used to explain the fine features of the band gap. In this system, spin-orbit coupling (SOC) is of critical importance, as it strongly affects the electronic structure, narrowing the gap by ∼38%, compared to calculations neglecting SOC. The predicted electronic structure actually explains the salient features of recent optical absorption measurements, further demonstrating the excellent agreement between the calculated ground state properties and experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041429800007 Publication Date 2023-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD Spent Fuel CORrosion MODeling).Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:197043 Serial 8796  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: