toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van Huis, M.A.; Figuerola, A.; Fang, C.; Béché, A.; Zandbergen, H.W.; Manna, L. doi  openurl
  Title Letter Chemical transformation of Au-tipped CdS nanorods into AuS/Cd core/shell particles by electron beam irradiation Type A1 Journal article
  Year (up) 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 11 Issue 11 Pages 4555-4561  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that electron irradiation of colloidal CdS nanorods carrying Au domains causes their evolution into AuS/Cd core/shell nanoparticles as a result of a concurrent chemical and morphological transformation. The shrinkage of the CdS nanorods and the growth of the Cd shell around the Au tips are imaged in real time, while the displacement of S atoms from the CdS nanorod to the Au domains is evidenced by high-sensitivity energy-dispersive X-ray (EDX) spectroscopy. The various nanodomains display different susceptibility to the irradiation, which results in nanoconfigurations that are very different from those obtained after thermal annealing. Such physical manipulations of colloidal nanocrystals can be exploited as a tool to access novel nanocrystal heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000296674700009 Publication Date 2011-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 25 Open Access  
  Notes Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:93710 Serial 1814  
Permanent link to this record
 

 
Author Béché, A.; Rouvière, J.L.; Barnes, J.P.; Cooper, D. doi  openurl
  Title Dark field electron holography for strain measurement Type A1 Journal article
  Year (up) 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 3 Pages 227-238  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000288638200007 Publication Date 2010-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:136368 Serial 4496  
Permanent link to this record
 

 
Author Cooper, D.; de la Peña, F.; Béché, A.; Rouvière, J.-L.; Servanton, G.; Pantel, R.; Morin, P. doi  openurl
  Title Field mapping with nanometer-scale resolution for the next generation of electronic devices Type A1 Journal article
  Year (up) 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 11 Issue 11 Pages 4585-4590  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to improve the performance of todays nanoscaled semiconductor devices, characterization techniques that can provide information about the position and activity of dopant atoms and the strain fields are essential. Here we demonstrate that by using a modern transmission electron microscope it is possible to apply multiple techniques to advanced materials systems in order to provide information about the structure, fields, and composition with nanometer-scale resolution. Off-axis electron holography has been used to map the active dopant potentials in state-of-the-art semiconductor devices with 1 nm resolution. These dopant maps have been compared to electron energy loss spectroscopy maps that show the positions of the dopant atoms. The strain fields in the devices have been measured by both dark field electron holography and nanobeam electron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000296674700014 Publication Date 2011-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access  
  Notes Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:136369 Serial 4499  
Permanent link to this record
 

 
Author Cooper, D.; Rouvière, J.-L.; Béché, A.; Kadkhodazadeh, S.; Semenova, E.S.; Dunin-Borkowsk, R. doi  openurl
  Title Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography Type A1 Journal article
  Year (up) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue Pages 261911-261913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAsquantum dotsgrown in InP with a spatial resolution of 1 nm. A strain value of 5.4% ± 0.1% has been determined which is consistent with both measurements made by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images and with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000298638500027 Publication Date 2012-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:136428 Serial 4507  
Permanent link to this record
 

 
Author Denneulin, T.; Rouvière, J.L.; Béché, A.; Py, M.; Barnes, J.P.; Rochat, N.; Hartmann, J.M.; Cooper, D. pdf  doi
openurl 
  Title The reduction of the substitutional C content in annealed Si/SiGeC superlattices studied by dark-field electron holography Type A1 Journal article
  Year (up) 2011 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 26 Issue 12 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si/Si(1 − x − y)GexCy superlattices are used in the construction of new microelectronic architectures such as multichannel transistors. The introduction of carbon in SiGe allows for compensation of the strain and to avoid plastic relaxation. However, the formation of incoherent β-SiC clusters during annealing limits the processability of SiGeC. This precipitation leads to a modification of the strain in the alloy due to the reduction of the substitutional carbon content. Here, we investigated the strain in annealed Si/Si0.744Ge0.244C0.012 superlattices grown by reduced pressure chemical vapour deposition using dark-field electron holography. The variation of the substitutional C content was calculated by correlating the results with finite-element simulations. The obtained values were then compared with Fourier-transformed infrared spectrometry measurements. It was shown that after annealing for 2 min at 1050 °C carbon no longer has any influence on strain in the superlattice, which behaves like pure SiGe. However, a significant proportion of substitutional C atoms remain in a third-nearest neighbour (3nn) configuration. It was deduced that the influence of 3nn C on strain is negligible and that only isolated atoms have a significant contribution. It was also proposed that the 3nn configuration is an intermediary step during the formation of SiC clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000300151300010 Publication Date 2011-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited Open Access  
  Notes Approved Most recent IF: 2.305; 2011 IF: 1.723  
  Call Number UA @ lucian @ c:irua:136427 Serial 4508  
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; van den Broek, W. pdf  doi
openurl 
  Title A holographic method to measure the source size broadening in STEM Type A1 Journal article
  Year (up) 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 120 Issue Pages 35-40  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Source size broadening is an important resolution limiting effect in modern STEM experiments. Here, we propose an alternative method to measure the source size broadening making use of a holographic biprism to create interference patterns in an empty Ronchigram. This allows us to measure the exact shape of the source size broadening with a much better sampling than previously possible. We find that the shape of the demagnified source deviates considerably from a Gaussian profile that is often assumed. We fit the profile with a linear combination of a Gaussian and a bivariate Cauchy distribution showing that even though the full width at half maximum is similar to previously reported measurements, the tails of the profile are considerable wider. This is of fundamental importance for quantitative comparison of STEM simulations with experiments as these tails make the image contrast dependent on the interatomic distance, an effect that cannot be reproduced by a single Gaussian profile of fixed width alone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308082600005 Publication Date 2012-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 29 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 246791 COUNTATOMS and ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. W. Van den Broek acknowledges funding from the Condor project, a project under the supervision of the Embedded Systems Institute (ESI) and FEI. This project is partially supported by the Dutch Ministry of Economic Affairs under the BSIK program. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:100466UA @ admin @ c:irua:100466 Serial 1483  
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Béché, A. pdf  doi
openurl 
  Title A new way of producing electron vortex probes for STEM Type A1 Journal article
  Year (up) 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 113 Issue Pages 83-87  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A spiral holographic aperture is used in the condensor plane of a scanning transmission electron microscope to produce a focussed electron vortex probe carrying a topological charge of either −1, 0 or +1. The spiral aperture design has a major advantage over the previously used forked aperture in that the three beams with topological charge m=−1, 0, and 1 are not side by side in the specimen plane, but rather on top of each other, focussed at different heights. This allows us to have only one selected beam in focus on the sample while the others contribute only to a background signal. In this paper we describe the working principle as well as first experimental results demonstrating atomic resolution HAADF STEM images obtained with electron vortex probes. These results pave the way for atomic resolution magnetic information when combined with electron energy loss spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300554400002 Publication Date 2011-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 62 Open Access  
  Notes J.V. wants to thank Miles Padgett for suggesting this setup and pointing to the relevant optics literature. Peter Schattschneider is acknowledged for in depth discussions on related topics. J.V acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 46791-COUN-TATOMS and ERC Starting Grant no. 278510 VORTEX. The Qu-Ant-EM microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:93624UA @ admin @ c:irua:93624 Serial 2336  
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B. doi  openurl
  Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
  Year (up) 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 2 Pages 265-267  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303382700005 Publication Date 2011-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number UA @ lucian @ c:irua:136430 Serial 4497  
Permanent link to this record
 

 
Author Cooper, D.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping for the silicon-on-insulator generation of semiconductor devices by high-angle annular dark field scanning electron transmission microscopy Type A1 Journal article
  Year (up) 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue Pages 233121  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The strain in pMOS p-type metal-oxide-semiconductor devicesgrown on silicon-on-insulator substrates has been measured by using the geometrical phase analysis of high angle annular dark field scanning electron microscopy. We show that by using the latest generations of electron microscopes, the strain can now be quantitatively measured with a large field of view, a spatial resolution as low as 1 nm with a sensitivity as good as 0.15%. This technique is extremely flexible, provides both structural and strain information, and can be applied to all types of nanoscale materials both quickly and easily.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 2012-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136432 Serial 4509  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
  Year (up) 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue Pages 124505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312829400128 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136433 Serial 4510  
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Lubk, A.; Mazilu, M.; Van Boxem, R.; Verbeeck, J. url  doi
openurl 
  Title Exploiting lens aberrations to create electron-vortex beams Type A1 Journal article
  Year (up) 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 6 Pages 064801-64805  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A model for a new electron-vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condenser plane. Experimental results are found to be in good agreement with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322921200009 Publication Date 2013-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 66 Open Access  
  Notes Vortex; Esteem2; Countatoms; FWO; Esteem2jra3 ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:109340UA @ admin @ c:irua:109340 Serial 1148  
Permanent link to this record
 

 
Author Tan, H.; Egoavil, R.; Béché, A.; Martinez, G.T.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Rotella, H.; Boullay, P.; Pautrat, A.; Prellier, W. url  doi
openurl 
  Title Mapping electronic reconstruction at the metal-insulator interface in LaVO3/SrVO3 heterostructures Type A1 Journal article
  Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 15 Pages 155123-155126  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A (LaVO3)6/(SrVO3)(3) superlattice is studied with a combination of sub-A resolved scanning transmission electron microscopy and monochromated electron energy-loss spectroscopy. The V oxidation state is mapped with atomic spatial resolution enabling us to investigate electronic reconstruction at the LaVO3/SrVO3 interfaces. Surprisingly, asymmetric charge distribution is found at adjacent chemically symmetric interfaces. The local structure is proposed and simulated with a double channeling calculation which agrees qualitatively with our experiment. We demonstrate that local strain asymmetry is the likely cause of the electronic asymmetry of the interfaces. The electronic reconstruction at the interfaces extends much further than the chemical composition, varying from 0.5 to 1.2 nm. This distance corresponds to the length of charge transfer previously found in the (LaVO3)./(SrVO3). metal/insulating and the (LaAlO3)./(SrTiO3). insulating/insulating interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326087100003 Publication Date 2013-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO; GOA XANES meets ELNES; esteem2jra3 ECASJO; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112733UA @ admin @ c:irua:112733 Serial 1944  
Permanent link to this record
 

 
Author Béché, A.; Rouviere, J.L.; Barnes, J.P.; Cooper, D. doi  openurl
  Title Strain measurement at the nanoscale : comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography Type A1 Journal article
  Year (up) 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 131 Issue Pages 10-23  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Convergent beam electron diffraction (CBED), nano-beam electron diffraction (NBED or NBD), high resolution imaging (HRTEM and HRSTEM) and dark field electron holography (DFEH or HoloDark) are five TEM based techniques able to quantitatively measure strain at the nanometer scale. In order to demonstrate the advantages and disadvantages of each technique, two samples composed of epitaxial silicon-germanium layers embedded in a silicon matrix have been investigated. The five techniques are then compared in terms of strain precision and accuracy, spatial resolution, field of view, mapping abilities and ease of performance and analysis. (C) 2013 Elsevier By. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000322631200002 Publication Date 2013-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 73 Open Access  
  Notes Approved Most recent IF: 2.843; 2013 IF: 2.745  
  Call Number UA @ lucian @ c:irua:109774 Serial 3171  
Permanent link to this record
 

 
Author Jones, E.; Cooper, D.; Rouvière, J.-L.; Béché, A.; Azize, M.; Palacios, T.; Gradecak, S. doi  openurl
  Title Towards rapid nanoscale measurement of strain in III-nitride heterostructures Type A1 Journal article
  Year (up) 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue Pages 231904  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the structural and compositional nanoscale characterization of InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the use of geometric phase analysis (GPA) and nanobeam electron diffraction (NBED). The strain distribution in the HEMT layer is quantified and compared to the expected strain profile for the nominal structure predicted by finite element analysis (FEA). Using the experimental strain results, the actual structure is determined and used to modify the FEA model. The improved fit of the model demonstrates that GPA and NBED provide a powerful platform for routine and rapid characterization of strain in III-V semiconducting device systems leading to insights into device evolution during processing and future device optimization.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328634900025 Publication Date 2013-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136443 Serial 4513  
Permanent link to this record
 

 
Author Rouvière, J.-L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D. doi  openurl
  Title Improved strain precision with high spatial resolution using nanobeam precession electron diffraction Type A1 Journal article
  Year (up) 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue Pages 241913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10−4 is obtained with a probe size approaching 1 nm in diameter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328706500031 Publication Date 2013-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 53 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136442 Serial 4502  
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A. pdf  url
doi  openurl
  Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
  Year (up) 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 5653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347227700003 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 197 Open Access  
  Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166  
Permanent link to this record
 

 
Author Li, K.; Béché, A.; Song, M.; Sha, G.; Lu, X.; Zhang, K.; Du, Y.; Ringer, S.P.; Schryvers, D. doi  openurl
  Title Atomistic structure of Cu-containing \beta" precipitates in an Al-Mg-Si-Cu alloy Type A1 Journal article
  Year (up) 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 75 Issue Pages 86-89  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The beta '' precipitates in a peak-aged Al-Mg-Si-Cu alloy were measured with an average composition of 28.6Al-38.7Mg-26.5Si-5.17Cu (at.%) using atom probe tomography. High-angle annular dark-field observations revealed that Cu incompletely substitutes for the Mg-1 and Si-3 columns, preferentially for one column in each pair of Si-3. Cu-free Si columns form a parallelogram-shaped network that constitutes the basis of subsequent precipitates in the system, with a = 0.37 nm, b = 0.38 nm, gamma = 113 degrees and c = 0.405 nm. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000331025200022 Publication Date 2013-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.747; 2014 IF: 3.224  
  Call Number UA @ lucian @ c:irua:115749 Serial 201  
Permanent link to this record
 

 
Author Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J. url  doi
openurl 
  Title Magnetic monopole field exposed by electrons Type A1 Journal article
  Year (up) 2014 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 10 Issue 1 Pages 26-29  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328940100012 Publication Date 2013-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 131 Open Access  
  Notes Vortex; Countatoms; Fwo ECASJO_; Approved Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885  
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Measuring the orbital angular momentum of electron beams Type A1 Journal article
  Year (up) 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 89 Issue Pages 025803  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000332224100014 Publication Date 2014-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 42 Open Access  
  Notes Vortex; FP7; Countatoms; ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:114577UA @ admin @ c:irua:114577 Serial 1972  
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
  Year (up) 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 89 Issue 5 Pages 053818  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000335826300012 Publication Date 2014-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 23 Open Access  
  Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758  
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
  Year (up) 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 15 Issue 2-3 Pages 190-199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000334013600009 Publication Date 2014-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 22 Open Access  
  Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035  
  Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992  
Permanent link to this record
 

 
Author Jones, L.; Martinez, G.T.; Béché, A.; Van Aert, S.; Nellist, P.D. doi  openurl
  Title Getting the best from an imperfect detector : an alternative normalisation procedure for quantitative HAADF STEM Type A1 Journal article
  Year (up) 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 20 Issue S3 Pages 126-127  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record  
  Impact Factor 1.891 Times cited Open Access  
  Notes Approved Most recent IF: 1.891; 2014 IF: 1.877  
  Call Number UA @ lucian @ c:irua:136445 Serial 4500  
Permanent link to this record
 

 
Author de Backer, A.; Martinez, G.T.; MacArthur, K.E.; Jones, L.; Béché, A.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting Type A1 Journal article
  Year (up) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 151 Issue 151 Pages 56-61  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800008 Publication Date 2014-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 29 Open Access  
  Notes 312483 Esteem2; 278510 Vortex; Fwo G039311; G006410; G037413; esteem2ta; ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:123927 c:irua:123927 Serial 753  
Permanent link to this record
 

 
Author Béché, A.; Winkler, R.; Plank, H.; Hofer, F.; Verbeeck, J. pdf  url
doi  openurl
  Title Focused electron beam induced deposition as a tool to create electron vortices Type A1 Journal article
  Year (up) 2015 Publication Micron Abbreviated Journal Micron  
  Volume 80 Issue 80 Pages 34-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Focused electron beam induced deposition (FEBID) is a microscopic technique that allows geometrically controlled material deposition with very high spatial resolution. This technique was used to create a spiral aperture capable of generating electron vortex beams in a transmission electron microscope (TEM). The vortex was then fully characterized using different TEM techniques, estimating the average orbital angular momentum to be approximately 0.8variant Planck's over 2pi per electron with almost 60% of the beam ending up in the l=1 state.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366770100006 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 21 Open Access  
  Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V., R.W., H.P. and F.H. acknowledge financial support from the European Union under the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). R.W and H.P also acknowledge financial support by the COST action CELINA (Nr. CM1301) and the EUROSTARS project TRIPLE-S (Nr. E!8213). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government.; esteem2jra3 ECASJO; Approved Most recent IF: 1.98; 2015 IF: 1.988  
  Call Number c:irua:129203 c:irua:129203UA @ admin @ c:irua:129203 Serial 3946  
Permanent link to this record
 

 
Author Egoavil, R.; Huehn, S.; Jungbauer, M.; Gauquelin, N.; Béché, A.; Van Tendeloo, G.; Verbeeck; Moshnyaga, V. pdf  url
doi  openurl
  Title Phase problem in the B-site ordering of La2CoMnO6 : impact on structure and magnetism Type A1 Journal article
  Year (up) 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 9835-9843  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial double perovskite La2CoMnO6 (LCMO) films were grown by metalorganic aerosol deposition on SrTiO3(111) substrates. A high Curie temperature, T-C = 226 K, and large magnetization close to saturation, M-S(5 K) = 5.8 mu(B)/f.u., indicate a 97% degree of B-site (Co,Mn) ordering within the film. The Co/Mn ordering was directly imaged at the atomic scale by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX). Local electron-energy-loss spectroscopy (EELS) measurements reveal that the B-sites are predominantly occupied by Co2+ and Mn4+ ions in quantitative agreement with magnetic data. Relatively small values of the (1/2 1/2 1/2) superstructure peak intensity, obtained by X-ray diffraction (XRD), point out the existence of ordered domains with an arbitrary phase relationship across the domain boundary. The size of these domains is estimated to be in the range 35-170 nm according to TEM observations and modelling the magnetization data. These observations provide important information towards the complexity of the cation ordering phenomenon and its implications on magnetism in double perovskites, and similar materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354983100060 Publication Date 2015-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 37 Open Access  
  Notes 312483 ESTEEM2; FWO G004413N; 246102 IFOX; Hercules; esteem2_jra3 Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:126423 c:irua:126423 Serial 2586  
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Juchtmans, R.; Van Boxem, R.; Mazilu, M.; Verbeeck, J. pdf  url
doi  openurl
  Title Prospects for versatile phase manipulation in the TEM : beyond aberration correction Type A1 Journal article
  Year (up) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 151 Issue 151 Pages 85-93  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose׳s legacy in aberration correction and electron optics in general would open an exciting field of research and applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800012 Publication Date 2014-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 19 Open Access  
  Notes 278510 Vortex; Fwo; 312483 Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:121405 c:irua:121405UA @ admin @ c:irua:121405 Serial 2731  
Permanent link to this record
 

 
Author Martinez, G.T.; Jones, L.; de Backer, A.; Béché, A.; Verbeeck, J.; Van Aert, S.; Nellist, P.D. pdf  url
doi  openurl
  Title Quantitative STEM normalisation : the importance of the electron flux Type A1 Journal article
  Year (up) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 159 Issue 159 Pages 46-58  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Annular dark-field (ADF) scanning transmission electron microscopy (STEM) has become widely used in quantitative studies based on the opportunity to directly compare experimental and simulated images. This comparison merely requires the experimental data to be normalised and expressed in units of fractional beam-current. However, inhomogeneities in the response of electron detectors can complicate this normalisation. The quantification procedure becomes both experiment and instrument specific, requiring new simulations for the particular response of each instrument's detector, and for every camera-length used. This not only impedes the comparison between different instruments and research groups, but can also be computationally very time consuming. Furthermore, not all image simulation methods allow for the inclusion of an inhomogeneous detector response. In this work, we propose an alternative method for normalising experimental data in order to compare these with simulations that consider a homogeneous detector response. To achieve this, we determine the electron flux distribution reaching the detector by means of a camera-length series or a so-called atomic column cross-section averaged convergent beam electron diffraction (XSACBED) pattern. The result is then used to determine the relative weighting of the detector response. Here we show that the results obtained by this new electron flux weighted (EFW) method are comparable to the currently used method, while considerably simplifying the needed simulation libraries. The proposed method also allows one to obtain a metric that describes the quality of the detector response in comparison with the ideal detector response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000366220000006 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 27 Open Access  
  Notes 246791 Countatoms; 278510 Vortex; 312483 Esteem2; Fwo G036815; G036915; G037413; G004413; esteem2ta ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:127293 c:irua:127293UA @ admin @ c:irua:127293 Serial 2762  
Permanent link to this record
 

 
Author Lubk, A.; Béché, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Electron Microscopy of Probability Currents at Atomic Resolution Type A1 Journal article
  Year (up) 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 115 Issue 115 Pages 176101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic resolution transmission electron microscopy records the spatially resolved scattered electron density to infer positions, density, and species of atoms. These data are indispensable for studying the relation between structure and properties in solids. Here, we show how this signal can be augmented by the lateral probability current of the scattered electrons in the object plane at similar resolutions and fields of view. The currents are reconstructed from a series of three atomic resolution TEM images recorded under a slight difference of perpendicular line foci. The technique does not rely on the coherence of the electron beam and can be used to reveal electric, magnetic, and strain fields with incoherent electron beams as well as correlations in inelastic transitions, such as electron magnetic chiral dichroism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363023700011 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 12 Open Access  
  Notes J. V. and A. B. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. The Qu-Ant- EM microscope was partly funded by the Hercules fund from the Flemish Government. All authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. J. V. acknowledges funding from the FWO under Project No. G.0044.13N.; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 8.462; 2015 IF: 7.512  
  Call Number c:irua:129190 c:irua:129190UA @ admin @ c:irua:129190 Serial 3954  
Permanent link to this record
 

 
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E. url  doi
openurl 
  Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
  Year (up) 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 6771-6778  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362920700037 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 50 Open Access OpenAccess  
  Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950  
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J. url  doi
openurl 
  Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 094112  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352017000002 Publication Date 2015-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 54 Open Access  
  Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125512 c:irua:125512 Serial 3825  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: