toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vodolazov, D.Y.; Peeters, F.M. url  doi
openurl 
  Title Temporary cooling of quasiparticles and delay in voltage response of superconducting bridges after abruptly switching on the supercritical current Type A1 Journal article
  Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 9 Pages 094504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We revisit the problem of the dynamic response of a superconducting bridge after abruptly switching on the supercritical current. In contrast to previous theoretical works we take into account spatial gradients and use both the local temperature approach and the kinetic equation for the distribution function of quasiparticles. We find that the temperature dependence of the finite delay time t(d) in the voltage response is model dependent and relatively large t(d) is connected with temporary cooling of quasiparticles during decay of superconducting order parameter vertical bar Delta vertical bar in time. It turns out that the presence of even small inhomogeneities in the bridge or finite length of the homogenous bridge favors a local suppression of vertical bar Delta vertical bar during the dynamic response. It results in a decrease of the delay time, in comparison with the spatially uniform model, due to the diffusion of nonequilibrium quasiparticles from the region with locally suppressed vertical bar Delta vertical bar. In the case when the current density is maximal near the edge of a not very wide bridge the delay time is mainly connected with the time needed for the nucleation (entrance) of the first vortex and t(d) could be tuned by a weak external magnetic field. We also find that a short alternating current pulse (sinusoidlike) with zero time average may result in a nonzero time- averaged voltage response where its sign depends on the phase of the ac current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342103600002 Publication Date 2014-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; This work was partially supported by the Russian Foundation for Basic Research (Project No. 12-02-00509), by the Ministry of Education and Science of the Russian Federation (the agreement of August 27, 2013, No. 02.B.49.21.0003, between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod) and by the European Science Foundation (ESF) within the framework of the activity entitled “Exploring the Physics of Small Devices (EPSD)” (Project No. 4327). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:119908 Serial 3504  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K. doi  openurl
  Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
  Year (up) 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 044505-44508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800113 Publication Date 2014-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 26 Open Access  
  Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115800 Serial 3505  
Permanent link to this record
 

 
Author Kundu, S.; Kundu, P.; Van Tendeloo, G.; Ravishankar, N. pdf  doi
openurl 
  Title Au2Sx/CdS nanorods by cation exchange : mechanistic insights into the competition between cation-exchange and metal ion reduction Type A1 Journal article
  Year (up) 2014 Publication Small Abbreviated Journal Small  
  Volume 10 Issue 19 Pages 3895-3900  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thumbnail image of graphical abstract It is well known that metals with higher electron affinity like Au tend to undergo reduction rather than cation-exchange. It is experimentally shown that under certain conditions cation-exchange is dominant over reduction. Thermodynamic calculation further consolidates the understanding and paves the way for better predictability of cation-exchange/reduction reactions for other systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000344451900011 Publication Date 2014-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 8 Open Access  
  Notes countatoms Approved Most recent IF: 8.643; 2014 IF: 8.368  
  Call Number UA @ lucian @ c:irua:118010 Serial 3514  
Permanent link to this record
 

 
Author Setareh, M.; Farnia, M.; Maghari, A.; Bogaerts, A. pdf  doi
openurl 
  Title CF4 decomposition in a low-pressure ICP : influence of applied power and O2 content Type A1 Journal article
  Year (up) 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 35 Pages 355205  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper focuses on the investigation of CF4 decomposition in a low-pressure inductively coupled plasma by means of a global model. The influence of O2 on the CF4 decomposition process is studied for conditions used in semiconductor manufacturing processes. The model is applied for different powers and O2 contents ranging between 2% and 98% in the CF4/O2 gas mixture. The model includes the reaction mechanisms in the gas phase coupled with the surface reactions and sticking probabilities of the species at the walls. The calculation results are first compared with experimental results from the literature (for the electron density, temperature and F atom density) at a specific power, in the entire range of CF4/O2 gas mixture ratios, and the obtained agreements indicate the validity of the model. The main products of the gas mixture, obtained from this model, include CO, CO2 and COF2 together with a low fraction of F2. The most effective reactions for the formation and loss of the various species in this process are also determined in detail. Decomposition of CF4 produces mostly CF3 and F radicals. These radicals also contribute to the backward reactions, forming again CF4. This study reveals that the maximum decomposition efficiency of CF4 is achieved at a CF4/O2 ratio equal to 1, at the applied power of 300 W.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000341353800017 Publication Date 2014-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:118327 Serial 3521  
Permanent link to this record
 

 
Author Clima, S.; Govoreanu, B.; Jurczak, M.; Pourtois, G. pdf  doi
openurl 
  Title HfOx as RRAM material : first principles insights on the working principles Type A1 Journal article
  Year (up) 2014 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 120 Issue Pages 13-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract First-principles simulations were employed to gain atomistic insights on the working principles of amorphous HfO2 based Resistive Random Access Memory stack: the nature of the defect responsible for the switching between the High and Low Resistive States has been unambiguously identified to be the substoichiometric Hf sites (commonly called oxygen vacancy-V-O) and the kinetics of the process have been investigated through the study of O diffusion. Also the role of each material layer in the TiN/HfO2/Hf/TiN RRAM stack and the impact of the deposition techniques have been examined: metallic Hf sputtering is needed to provide an oxygen exchange layer that plays the role of defect buffer. TiN shall be a good defect barrier for O but a bad defect buffer layer. A possible scenario to explain the device degradation (switching failure) mechanism has been proposed – the relaxation of the metastable amorphous phase towards crystalline structure leads to denser, more structured cluster that can increase the defect migration barriers. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000336697300004 Publication Date 2013-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 22 Open Access  
  Notes Approved Most recent IF: 1.806; 2014 IF: 1.197  
  Call Number UA @ lucian @ c:irua:117767 Serial 3535  
Permanent link to this record
 

 
Author Leus, K.; Liu, Y.-Y.; Meledina, M.; Turner, S.; Van Tendeloo, G.; van der Voort, P. pdf  doi
openurl 
  Title A MoVI grafted metal organic framework : synthesis, characterization and catalytic investigations Type A1 Journal article
  Year (up) 2014 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 316 Issue Pages 201-209  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present the post-modification of a gallium based Metal Organic Framework, COMOC-4, with a Mo-complex. The resulting Mo@COMOC-4 was characterized by means of N2 sorption, XRPD, DRIFT, TGA, XRF, XPS and TEM analysis. The results demonstrate that even at high Mo-complex loadings on the framework, no aggregation or any Mo or Mo oxide species are formed. Moreover, the Mo@COMOC-4 was evaluated as a catalyst in the epoxidation of cyclohexene, cyclooctene and cyclododecene employing TBHP in decane as oxidant. The post-modified COMOC-4 exhibits a very high selectivity toward the epoxide (up to 100%). Regenerability and stability tests have been carried out demonstrating that the catalyst can be recycled without leaching of Mo or loss of crystallinity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, Calif. Editor  
  Language Wos 000340853800020 Publication Date 2014-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 36 Open Access  
  Notes European Research Council under the Seventh Framework Program (FP7); ; ERC Grant No. 246791 – COUNTATOMS; Hercules; FWO Approved Most recent IF: 6.844; 2014 IF: 6.921  
  Call Number UA @ lucian @ c:irua:117416 Serial 3546  
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title Pb5Fe3TiO11Cl : a rare example of Ti(IV) in a square pyramidal oxygen coordination Type A1 Journal article
  Year (up) 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 215 Issue Pages 245-252  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new oxychloride Pb5Fe3TiO11Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb5Fe3TiO11Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb5Fe3TiO11Cl is a new n=4 member of the oxychloride perovskite-based homologous series An+1BnO3n−1Cl. The structure is built of truncated Pb3Fe3TiO11 quadruple perovskite blocks separated by CsCl-type Pb2Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O6 octahedra sandwiched between two layers of (Fe,Ti)O5 square pyramids. The Ti4+ cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti4+ in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb5Fe3TiO11Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μB and 3.86(5) μB on the octahedral and square-pyramidal sites, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000336891300037 Publication Date 2014-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 4 Open Access  
  Notes Fwo G.0184.09n. Approved Most recent IF: 2.299; 2014 IF: 2.133  
  Call Number UA @ lucian @ c:irua:117066 Serial 3551  
Permanent link to this record
 

 
Author Zakharova, E.Y.; Kazakov, S.M.; Isaeva, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Kuznetsov, A.N. doi  openurl
  Title Pd5InSe and Pd8In2Se : new metal-rich homological selenides with 2D palladium-indium fragments : synthesis, structure and bonding Type A1 Journal article
  Year (up) 2014 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 589 Issue Pages 48-55  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Two new metal-rich palladium-indium selenides, Pd5InSe and Pd8In2Se, were synthesized using a high-temperature ampoule technique. Their crystal structures were determined from Rietveld analysis of powder diffraction data, supported by energy-dispersive X-ray spectroscopy and selected area electron diffraction. Both compounds crystallize in tetragonal system with P4/mmm space group (Pd5InSe: a = 4.0290(3) angstrom, c = 6.9858(5) angstrom, Z = 1; Pd8In2Se: a = 4.0045(4) angstrom, c = 10.952(1) angstrom, Z = 1). The first compound belongs to the Pd5TlAs structure type, while the second one – to a new structure type. Main structural units in both selenides are indium-centered [Pd12In] cuboctahedra of the tetragonally distorted Cu3Au type, single-and double-stacked along the c axis in Pd5InSe and Pd8In2Se, respectively, alternating with [Pd8Se] rectangular prisms. DFT electronic structure calculations predict both compounds to be 3D metallic conductors and Pauli-like paramagnets. According to the bonding analysis based on the electron localization function topology, both compounds feature multi-centered palladium-indium interactions in their heterometallic fragments. (C) 2013 Elsevier B. V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000330181400008 Publication Date 2013-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.133; 2014 IF: 2.999  
  Call Number UA @ lucian @ c:irua:114840 Serial 3552  
Permanent link to this record
 

 
Author Mooij, L.; Perkisas, T.; Palsson, G.; Schreuders, H.; Wolff, M.; Hjorvarsson, B.; Bals, S.; Dam, B. pdf  doi
openurl 
  Title The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers Type A1 Journal article
  Year (up) 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 39 Issue 30 Pages 17092-17103  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoconfined magnesium hydride can be simultaneously protected and thermodynamically destabilized when interfaced with materials such as Ti and Fe. We study the hydrogenation of thin layers of Mg (<14 nm) nanoconfined in one dimension within thin film Fe/Mg/Fe/Pd multilayers by the optical technique Hydrogenography. The hydrogenation of nanosized magnesium layers in Fe/Mg/Fe multilayers surprisingly shows the presence of multiple plateau pressures, whose nature is thickness dependent. In contrast, hydrogen desorption occurs via a single plateau which does not depend on the Mg layer thickness. From structural and morphological analyses with X-ray diffraction/reflectometry and cross-section TEM, we find that the Mg layer roughness is large when deposited on Fe and furthermore contains high-angle grain boundaries (GB's). When grown on Ti, the Mg layer roughness is low and no high-angle GB's are detected. From a Ti/Mg/Fe multilayer, in which the Mg layer is flat and has little or no GB's, we conclude that MgH2 is indeed destabilized by the interface with Fe. In this case, both the ab- and desorption plateau pressures are increased by a factor two compared to the hydrogenation of Mg within Ti/Mg/Ti multilayers. We hypothesize that the GB's in the Fe/Mg/Fe multilayer act as diffusion pathways for Pd, which is known to greatly alter the hydrogenation behavior of Mg when the two materials share an interface. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000343839000031 Publication Date 2014-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.582 Times cited 15 Open Access Not_Open_Access  
  Notes COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313  
  Call Number UA @ lucian @ c:irua:121175 Serial 3575  
Permanent link to this record
 

 
Author Lao, M.; Eisterer, M.; Stadel, O.; Meledin, A.; Van Tendeloo, G. url  doi
openurl 
  Title The effect of Y2O3 and YFeO3 additions on the critical current density of YBCO coated conductors Type P1 Proceeding
  Year (up) 2014 Publication 1-4 Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The pinning mechanism of MOCVD-grown YBCO coated conductors with Y2O3 precipitates was investigated by angle-resolved transport measurement of Je in a wide range of temperature and magnetic fields. Aside from the Y2O3 nanoprecipitates, a-axis grains and threading dislocation along the c-axis were found in the YBCO layer. The Y2O3 precipitates are less effective pinning centers at lower temperature. The tapes with precipitates show a higher anisotropy with larger J(c) at H parallel to ab than H parallel to c. This behavior was attributed to the preferred alignment of the nanoprecipitates along the ab-plane.  
  Address  
  Corporate Author Thesis  
  Publisher Iop publishing ltd Place of Publication Bristol Editor  
  Language Wos 000350818300068 Publication Date 2014-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 507 Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes eurotapes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:125444 Serial 3577  
Permanent link to this record
 

 
Author Battle, P.D.; Avdeev, M.; Hadermann, J. doi  openurl
  Title The interplay of microstructure and magnetism in La3Ni2SbO9 Type A1 Journal article
  Year (up) 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 220 Issue Pages 163-166  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La3Ni2SbO9 adopts a perovskite-related structure in which the six-coordinate cation sites are occupied alternately by Ni2+ and a disordered arrangement of Ni2+/Sb5+. A polycrystalline sample has been studied by neutron diffraction in applied magnetic fields of 0 <= H/kOe <= 50 at 5 K. In 0 kOe, weak magnetic Bragg scattering consistent with the adoption of a G-type ferrimagnetic structure is observed; the ordered component of the magnetic moment was found to be 0.89(7) mu(B) per Ni2+ cation. This increased to 1.60(3) mu(B) in a field of 50 kOe. Transmission electron microscopy revealed variations in the Ni:Sb ratio across crystallites of the sample. It is proposed that these composition variations disrupt the magnetic superexchange interactions within the compound, leading to domain formation and a reduced average moment. The application of a magnetic field aligns the magnetisation vectors across the crystal and the average moment measured by neutron diffraction increases accordingly. The role played by variations in the local chemical composition in determining the magnetic properties invites comparison with the behaviour of relaxor ferroelectrics. (C) 2014 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000343346100024 Publication Date 2014-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.299; 2014 IF: 2.133  
  Call Number UA @ lucian @ c:irua:121134 Serial 3588  
Permanent link to this record
 

 
Author Wang, H.; Picot, T.; Houben, K.; Moorkens, T.; Grigg, J.; Van Haesendonck, C.; Biermans, E.; Bals, S.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J.; pdf  doi
openurl 
  Title The superconducting proximity effect in epitaxial Al/Pb nanocomposites Type A1 Journal article
  Year (up) 2014 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 27 Issue 1 Pages 015008-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have investigated the superconducting properties of Pb nanoparticles with a diameter ranging from 8 to 20 nm, synthesized by Pb+ ion implantation in a crystalline Al matrix. A detailed structural characterization of the nanocomposites reveals the highly epitaxial relation between the Al crystalline matrix and the Pb nanoparticles. The Al/Pb nanocomposites display a single superconducting transition, with the critical temperature T-c increasing with the Pb content. The dependence of T-c on the Pb/Al volume ratio was compared with theoretical models of the superconducting proximity effect based on the bulk properties of Al and Pb. A very good correspondence with the strong-coupling proximity effect model was found, with an electron-phonon coupling constant in the Pb nanoparticles slightly reduced compared to bulk Pb. Our result differs from other studies on Pb nanoparticle based proximity systems where weak-coupling models were found to better describe the T-c dependence. We infer that the high interface quality resulting from the ion implantation synthesis method is a determining factor for the superconducting properties. Critical field and critical current measurements support the high quality of the nanocomposite superconducting films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000328275000010 Publication Date 2013-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 2 Open Access Not_Open_Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO), the KU Leuven BOF Concerted Research Action programs (GOA/09/006, the KU Leuven BOF CREA/12/015 project, and GOA/14/007) and the EU FP7 program SPIRIT (227012). TP and KH are postdoctoral research fellow and doctoral fellow of the FWO. ; Approved Most recent IF: 2.878; 2014 IF: 2.325  
  Call Number UA @ lucian @ c:irua:112833 Serial 3599  
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas’ev, V.V.; Stesmans, A.; doi  openurl
  Title Theoretical aspects of graphene-like group IV semiconductors Type A1 Journal article
  Year (up) 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 291 Issue Pages 98-103  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1) Ag surfaces, focusing on the (4 x 4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices. (C) 2013 Elsevier B. V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000329327700022 Publication Date 2013-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 20 Open Access  
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711  
  Call Number UA @ lucian @ c:irua:113765 Serial 3603  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
  Year (up) 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 4962  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342984800018 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 36 Open Access  
  Notes ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:121121 Serial 3628  
Permanent link to this record
 

 
Author Engelmann, Y.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Thermodynamics at the nanoscale : phase diagrams of nickel-carbon nanoclusters and equilibrium constants for face transitions Type A1 Journal article
  Year (up) 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue Pages 11981-11987  
  Keywords A1 Journal article; PLASMANT  
  Abstract Using reactive molecular dynamics simulations, the melting behavior of nickelcarbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickelcarbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000343000800049 Publication Date 2014-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 20 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:119408 Serial 3636  
Permanent link to this record
 

 
Author Engelmann; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions Type A1 Journal article
  Year (up) 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 20 Pages 11981-11987  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000343000800049 Publication Date 2014-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 20 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:121106 Serial 3637  
Permanent link to this record
 

 
Author Leusink, D.P.; Coneri, F.; Hoek, M.; Turner, S.; Idrissi, H.; Van Tendeloo, G.; Hilgenkamp, H. pdf  url
doi  openurl
  Title Thin films of the spin ice compound Ho2Ti2O7 Type A1 Journal article
  Year (up) 2014 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 2 Issue 3 Pages 032101-32107  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The pyrochlore compounds Ho2Ti2O7 and Dy2Ti2O7 show an exotic form of magnetism called the spin ice state, resulting from the interplay between geometrical frustration and ferromagnetic coupling. A fascinating feature of this state is the appearance of magnetic monopoles as emergent excitations above the degenerate ground state. Over the past years, strong effort has been devoted to the investigation of these monopoles and other properties of the spin ice state in bulk crystals. Here, we report the fabrication of Ho2Ti2O7 thin films using pulsed laser deposition on yttria-stabilized ZrO2 substrates. We investigated the structural properties of these films by X-ray diffraction, scanning transmission electron microscopy, and atomic force microscopy, and the magnetic properties by vibrating sample magnetometry at 2 K. The films not only show a high crystalline quality, but also exhibit the hallmarks of a spin ice: a pronounced magnetic anisotropy and an intermediate plateau in the magnetization along the [111] crystal direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000334220300002 Publication Date 2014-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 18 Open Access  
  Notes The authors acknowledge support from the Dutch FOM and NWO foundations and from the European Union under the Framework 7 program under a contract from an Integrated Infrastructure Initiative (Reference 312483 ESTEEM2). G.V.T. acknowledges the ERC Grant N246791- COUNTATOMS. S.T. gratefully acknowledges financial support from the Fund for Scientific Research Flanders (FWO). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. The authors acknowledge fruitful interactions with A. Brinkman, M. G. Blamire, M. Egilmez, F. J. G. Roesthuis, J. N. Beukers, C. G. Molenaar, M. Veldhorst, and X. Renshaw Wang; esteem2_ta Approved Most recent IF: 4.335; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:115555 Serial 3641  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Liz-Marzan, L.M.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography Type A1 Journal article
  Year (up) 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 40 Pages 10600-10610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three-dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three-dimensional information can be obtained even at the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000342761500006 Publication Date 2014-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 58 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:121093 Serial 3646  
Permanent link to this record
 

 
Author Goris, B.; Turner, S.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Three-dimensional valency mapping in ceria nanocrystals Type A1 Journal article
  Year (up) 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 10 Pages 10878-10884  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Using electron tomography combined with electron energy loss spectroscopy (EELS), we are able to map the valency of the Ce ions in CeO2-x nanocrystals in three dimensions. Our results show a clear facet-dependent reduction shell at the surface of ceria nanoparticles; {111} surface facets show a low surface reduction, whereas at {001} surface facets, the cerium ions are more likely to be reduced over a larger surface shell. Our generic tomographic technique allows a full 3D data cube to be reconstructed, containing an EELS spectrum in each voxel. This possibility enables a three-dimensional investigation of a plethora of material-specific physical properties such as valency, chemical composition, oxygen coordination, or bond lengths, triggering the synthesis of nanomaterials with improved properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343952600126 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 85 Open Access OpenAccess  
  Notes 335078 Colouratom; 246791 Countatoms; Fwo; 312483 Esteem2; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:121219 Serial 3656  
Permanent link to this record
 

 
Author de Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Topological confinement in trilayer graphene Type A1 Journal article
  Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 3 Pages 035420-35425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the spectrum of states that are localized at the interface between two regions of opposite bias in trilayer graphene (TLG). These potential profiles, also known as potential kinks, have been predicted to support two different branches of localized states for the case of bilayer graphene, and show similarities to the surface states of topological insulators. On the other hand, we found that ABC stacked TLG exhibits three different unidimensional branches of states in each valley that are confined to the kink interface. They have the property E(k(y)) = -E(-k(y)) when belonging to the same valley and E-K(k(y)) = -E-K' (-k(y)). A kink-antikink potential profile opens a gap in the spectrum of these one-dimensional states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332220800005 Publication Date 2014-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Brazilian Council for Research (CNPq-PRONEX), the Flemish Science Foundation (FWO-Vl), and the Bilateral project between CNPq and FWO-Vl and the Brazilian program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115830 Serial 3676  
Permanent link to this record
 

 
Author Yan, Y.; Liao, Z.M.; Ke, X.; Van Tendeloo, G.; Wang, Q.; Sun, D.; Yao, W.; Zhou, S.; Zhang, L.; Wu, H.C.; Yu, D.P.; pdf  doi
openurl 
  Title Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons Type A1 Journal article
  Year (up) 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 8 Pages 4389-4394  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The photothermoelectric effect in topological insulator Bi2Se3 nanoribbons is studied. The topological surface states are excited to be spin-polarized by circularly polarized light. Because the direction of the electron spin is locked to its momentum for the spin-helical surface states, the photothermoelectric effect is significantly enhanced as the oriented motions of the polarized spins are accelerated by the temperature gradient. The results are explained based on the microscopic mechanisms of a photon induced spin transition from the surface Dirac cone to the bulk conduction band. The as-reported enhanced photothermoelectric effect is expected to have potential applications in a spin-polarized power source.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000340446200028 Publication Date 2014-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access  
  Notes European Research Council under the Seventh Framework Program (FP7); ERC Advanced Grant No. 246791-COUNTATOMS. Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:118128 Serial 3678  
Permanent link to this record
 

 
Author Heyer, S.; Janssen, W.; Turner, S.; Lu, Y.-G.; Yeap, W.S.; Verbeeck, J.; Haenen, K.; Krueger, A. pdf  doi
openurl 
  Title Toward deep blue nano hope diamonds : heavily boron-doped diamond nanoparticles Type A1 Journal article
  Year (up) 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 6 Pages 5757-5764  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 1060 nm with a boron content of approximately 2.3 × 1021 cm3. Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000338089200039 Publication Date 2014-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 71 Open Access  
  Notes the Research Foundation Flanders (FWO-Vlaanderen) (G.0555.10N;G.0568.10N; G.0456.12; G0044.13N and a postdoctoral scholarship for S.T.); EU FP7 through Marie Curie ITN “MATCON” (PITNGA-127 2009-238201)the Collaborative Project “DINAMO” (No. 245122) Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2.; esteem2_jra3 Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:117599 Serial 3683  
Permanent link to this record
 

 
Author Spyrou, K.; Potsi, G.; Diamanti, E.K.; Ke, X.; Serestatidou, E.; Verginadis, I.I.; Velalopoulou, A.P.; Evangelou, A.M.; Deligiannakis, Y.; Van Tendeloo, G.; Gournis, D.; Rudolf, P.; doi  openurl
  Title Towards Novel Multifunctional Pillared Nanostructures: Effective Intercalation of Adamantylamine in Graphene Oxide and Smectite Clays Type A1 Journal article
  Year (up) 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 37 Pages 5841-5850  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multifunctional pillared materials are synthesized by the intercalation of cage-shaped adamantylamine (ADMA) molecules into the interlayer space of graphite oxide (GO) and aluminosilicate clays. The physicochemical and structural properties of these hybrids, determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman and X-ray photoemission (XPS) spectroscopies and transmission electron microscopy (TEM) show that they can serve as tunable hydrophobic/hydrophilic and stereospecific nanotemplates. Thus, in ADMA-pillared clay hybrids, the phyllomorphous clay provides a hydrophilic nanoenvironment where the local hydrophobicity is modulated by the presence of ADMA moieties. On the other hand, in the ADMA-GO hybrid, both the aromatic rings of GO sheets and the ADMA molecules define a hydrophobic nanoenvironment where sp(3)-oxo moieties (epoxy, hydroxyl and carboxyl groups), present on GO, modulate hydrophilicity. As test applications, these pillared nanostructures are capable of selective/stereospecific trapping of small chlorophenols or can act as cytotoxic agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000342794500008 Publication Date 2014-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 19 Open Access  
  Notes Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:121085 Serial 3686  
Permanent link to this record
 

 
Author Goris, B.; Freitag, B.; Zanaga, D.; Bladt, E.; Altantzis, T.; Ringnalda, J.; Bals, S. pdf  url
doi  openurl
  Title Towards quantitative EDX results in 3 dimensions Type A1 Journal article
  Year (up) 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 20 Issue S:3 Pages 766-767  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record  
  Impact Factor 1.891 Times cited Open Access OpenAccess  
  Notes 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 1.891; 2014 IF: 1.877  
  Call Number UA @ lucian @ c:irua:125381 Serial 3687  
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Shabadi, R.; Li, Z.; Grünewald, W.; Addad, A.; Schryvers, D.; Zhang, D. pdf  doi
openurl 
  Title Triple ion beam cutting of diamond/Al composites for interface characterization Type A1 Journal article
  Year (up) 2014 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 89 Issue Pages 132-137  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel triple ion beam cutting technique was employed to prepare high-quality surfaces of diamond/Al composites for interfacial characterization, which has been unachievable so far. Near-perfect and artifact-free surfaces were obtained without mechanical pre-polishing. Hence, the as-prepared surfaces are readily available for further study and also, ready to be employed in a focus ion beam system for preferential selection of transmission electron microscopy samples. Dramatically different diamond/Al interface configurations – sub-micrometer Al2O3 particles and clean interfaces were unambiguously revealed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000333513400015 Publication Date 2014-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 9 Open Access  
  Notes Fwo Approved Most recent IF: 2.714; 2014 IF: 1.845  
  Call Number UA @ lucian @ c:irua:113394 Serial 3735  
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Tuning of the electronic and optical properties of single-layer black phosphorus by strain Type A1 Journal article
  Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 20 Pages 205421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations we showed that the electronic and optical properties of single-layer black phosphorus (BP) depend strongly on the applied strain. Due to the strong anisotropic atomic structure of BP, its electronic conductivity and optical response are sensitive to the magnitude and the orientation of the applied strain. We found that the inclusion of many body effects is essential for the correct description of the electronic properties of monolayer BP; for example, while the electronic gap of strainless BP is found to be 0.90 eV by using semilocal functionals, it becomes 2.31 eV when many-body effects are taken into account within the G(0)W(0) scheme. Applied tensile strain was shown to significantly enhance electron transport along zigzag direction of BP. Furthermore, biaxial strain is able to tune the optical band gap of monolayer BP from 0.38 eV (at -8% strain) to 2.07 eV (at 5.5%). The exciton binding energy is also sensitive to the magnitude of the applied strain. It is found to be 0.40 eV for compressive biaxial strain of -8%, and it becomes 0.83 eV for tensile strain of 4%. Our calculations demonstrate that the optical response of BP can be significantly tuned using strain engineering which appears as a promising way to design novel photovoltaic devices that capture a broad range of solar spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345642000015 Publication Date 2014-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 219 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122203 Serial 3752  
Permanent link to this record
 

 
Author Charkin, D.O.; Demchyna, R.; Prots, Y.; Borrmann, H.; Burkhardt, U.; Schwarz, U.; Schnelle, W.; Plokhikh, I.V.; Kazakov, S.M.; Abakumov, A.M.; Batuk, D.; Verchenko, V.Y.; Tsirlin, A.A.; Curfs, C.; Grin, Y.; Shevelkov, A.V.; doi  openurl
  Title Two New Arsenides, Eu7Cu44As23 and Sr7Cu44As23, With a New Filled Variety of the BaHg11 Structure Type A1 Journal article
  Year (up) 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 20 Pages 11173-11184  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two new ternary arsenides, namely, Eu7Cu44As23 and Sr7Cu44As23, were synthesized from elements at 800 degrees C. Their crystal structure represents a new filled version of the BaHg11 motif with cubic voids alternately occupied by Eu(Sr) and As atoms, resulting in a 2 x 2 x 2 superstructure of the aristotype: space group Fm (3) over barm, a = 16.6707(2) angstrom and 16.7467(2) angstrom, respectively. The Eu derivative exhibits ferromagnetic ordering below 17.5 K. In agreement with band structure calculations both compounds are metals, exhibiting relatively low thermopower, but high electrical and low thermal conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000343527700049 Publication Date 2014-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 9 Open Access  
  Notes Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:121141 Serial 3784  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. pdf  doi
openurl 
  Title Understanding plasma catalysis through modelling and simulation : a review Type A1 Journal article
  Year (up) 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 22 Pages 224010  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis holds great promise for environmental applications, provided that the process viability can be maximized in terms of energy efficiency and product selectivity. This requires a fundamental understanding of the various processes taking place and especially the mutual interactions between plasma and catalyst. In this review, we therefore first examine the various effects of the plasma on the catalyst and of the catalyst on the plasma that have been described in the literature. Most of these studies are purely experimental. The urgently needed fundamental understanding of the mechanisms underpinning plasma catalysis, however, may also be obtained through modelling and simulation. Therefore, we also provide here an overview of the modelling efforts that have been developed already, on both the atomistic and the macroscale, and we identify the data that can be obtained with these models to illustrate how modelling and simulation may contribute to this field. Last but not least, we also identify future modelling opportunities to obtain a more complete understanding of the various underlying plasma catalytic effects, which is needed to provide a comprehensive picture of plasma catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Iop publishing ltd Place of Publication Bristol Editor  
  Language Wos 000336207900011 Publication Date 2014-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 130 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:116920 Serial 3803  
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F. pdf  doi
openurl 
  Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
  Year (up) 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 22 Pages 224007  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000336207900008 Publication Date 2014-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:116919 Serial 3804  
Permanent link to this record
 

 
Author Bothner, D.; Seidl, R.; Misko, V.R.; Kleiner, R.; Koelle, D.; Kemmler, M. pdf  doi
openurl 
  Title Unusual commensurability effects in quasiperiodic pinning arrays induced by local inhomogeneities of the pinning site density Type A1 Journal article
  Year (up) 2014 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 27 Issue 6 Pages 065002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We experimentally investigate the magnetic field dependence of the critical current I-c(B) of superconducting niobium thin films patterned with periodic and quasiperiodic antidot arrays on the submicron scale. For this purpose we monitor current-voltage characteristics at different values of B and temperature T. We investigate samples with antidots positioned at the vertices of two different tilings with quasiperiodic symmetry, namely the Shield Tiling and the Tuebingen Triangle Tiling. For reference we investigate a sample with a triangular antidot lattice. We find modulations of the critical current for both quasiperiodic tilings, which have partly been predicted by numerical simulations but not observed in experiments yet. The particularity of these commensurability effects is that they correspond to magnetic field values slightly above an integer multiple of the matching field. The observed matching effects can be explained by the caging of interstitial vortices in quasiperiodically distributed cages and the formation of symmetry-induced giant vortices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000336494900003 Publication Date 2014-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 7 Open Access  
  Notes ; This work has been supported by the European Research Council via SOCATHES and by the Deutsche Forschungsgemeinschaft via the SFB/TRR 21. DB gratefully acknowledges support by the Evangelisches Studienwerk e.V. Villigst. MK gratefully acknowledges support by the Carl-Zeiss Stiftung. VRM gratefully acknowledges support by the 'Odysseus' Program of the Flemish Government and the Flemish Science Foundation (FWO-VI). The authors thank Franco Nori for fruitful discussions on quasiperiodic pinning arrays. ; Approved Most recent IF: 2.878; 2014 IF: 2.325  
  Call Number UA @ lucian @ c:irua:117763 Serial 3817  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: