toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T.A.L.; Lippertz, G.; Trekels, M.; Menendez, E.; Kremer, F.; Wahl, U.; Costa, A.R.G.; Correia, J.G.; Banerjee, D.; Gunnlaugsson, H.P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M.J.; Hadermann, J.; Araujo, J.P.; Temst, K.; Vantomme, A.; Pereira, L.M.C. url  doi
openurl 
  Title Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in gamma-Fe nanoparticles Type A1 Journal article
  Year (up) 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 17 Pages 174410  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('gamma-Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of gamma-Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mossbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a = 3.76(2) angstrom and c = 3.50(2) angstrom, and a magnetic moment of 2.45(5) mu(B) per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured gamma-Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of gamma-Fe taking tetragonal distortion into account.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000414525200005 Publication Date 2017-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access OpenAccess  
  Notes ; The authors thank the Fund for Scientific Research-Flanders, the Concerted Research Action of the KU Leuven (GOA/14/007), the KU Leuven BOF (STRT/14/002), the Hercules Foundation, the Portuguese Foundation for Science and Technology (CERN/FIS-NUC/0004/2015), and the European Union Seventh Framework through ENSAR2 (European Nuclear Science and Applications Research, Project No. 654002), and SPIRIT (Support of Public and Industrial Research Using Ion Beam Technology, Contract No. 227012). We acknowledge the European Synchrotron Radiation Facility (ESRF) for providing beam time (experiments 26-01-1018, 26-01-1057, 20-02-728, HC-1850, HC-2208), as well as C. Baehtz, N. Boudet, and N. Blancand for support during the experiments. We acknowledge the ISOLDE-CERN facility for providing beam time (experiment IS580) and technical assistance. The authors (L.M.C.P., F.K.) acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Advanced Microscopy, Australian National University. We also acknowledge the contribution of Prof. Mark Ridgway (Australian National University), who passed away before the work was completed. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:147387 Serial 4873  
Permanent link to this record
 

 
Author Tong, Y.; Bohn, B.J.; Bladt, E.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. pdf  url
doi  openurl
  Title From precursor powders to CsPbX3 perovskite nanowires : one-pot synthesis, growth mechanism, and oriented self-assembly Type A1 Journal article
  Year (up) 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 56 Issue 56 Pages 13887-13892  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The colloidal synthesis and assembly of semiconductor nanowires continues to attract a great deal of interest. Herein, we describe the single-step ligand-mediated synthesis of single-crystalline CsPbBr3 perovskite nanowires (NWs) directly from the precursor powders. Studies of the reaction process and the morphological evolution revealed that the initially formed CsPbBr3 nanocubes are transformed into NWs through an oriented-attachment mechanism. The optical properties of the NWs can be tuned across the entire visible range by varying the halide (Cl, Br, and I) composition through subsequent halide ion exchange. Single-particle studies showed that these NWs exhibit strongly polarized emission with a polarization anisotropy of 0.36. More importantly, the NWs can self-assemble in a quasi-oriented fashion at an air/liquid interface. This process should also be easily applicable to perovskite nanocrystals of different morphologies for their integration into nanoscale optoelectronic devices.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000413314800065 Publication Date 2017-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 223 Open Access OpenAccess  
  Notes ; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go hybrid (SolTech)”, the China Scholarship Council (Y.T. and K.W.), the Alexander von Humboldt Stiftung (L.P.), and the Flemish Fund for Scientific Research (FWO Vlaanderen; E.B.). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant 335078-COLOURATOMS). ; ecas_sara Approved Most recent IF: 11.994  
  Call Number UA @ lucian @ c:irua:147434UA @ admin @ c:irua:147434 Serial 4876  
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Pfannmöller, M.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J. pdf  url
doi  openurl
  Title Highly selective gas separation membrane using in situ amorphised metal-organic frameworks Type A1 Journal article
  Year (up) 2017 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci  
  Volume 10 Issue 10 Pages 2342-2351  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conventional carbon dioxide (CO2) separation in the petrochemical industry via cryogenic distillation is energy intensive and environmentally unfriendly. Alternatively, polymer membrane-based separations are of significant interest owing to low production cost, low-energy consumption and ease of upscaling. However, the implementation of commercial polymeric membranes is limited by their permeability and selectivity trade-off and the insufficient thermal and chemical stability. Herein, a novel type of amorphous mixed matrix membrane (MMM) able to separate CO2/CH4 mixtures with the highest selectivities ever reported for MOF based MMMs is presented. The MMM consists of an amorphised metal-organic framework (MOF) dispersed in an oxidatively cross-linked matrix achieved by fine tuning of the thermal treatment temperature in air up to 350 degrees C which drastically boosts the separation properties of the MMM. Thanks to the protection of the surrounding polymer, full oxidation of this MOF (i.e. ZIF-8) is prevented, and amorphisation of the MOF is realized instead, thus in situ creating a molecular sieve network. In addition, the treatment also improves the filler-polymer adhesion and induces an oxidative cross-linking of the polyimide matrix, resulting in MMMs with increased stability or plasticization resistance at high pressure up to 40 bar, marking a new milestone as new molecular sieve MOF MMMs for challenging natural gas purification applications. A new field for the use of amorphised MOFs and a variety of separation opportunities for such MMMs are thus opened.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414774500007 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited 122 Open Access OpenAccess  
  Notes ; A.K. acknowledges financial support from the Erasmus-Mundus Doctorate in Membrane Engineering (EUDIME) Programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N). M. P. acknowledges financial support by the FP7 European project SUNFLOWER (FP7 #287594). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J. A. M. gratefully acknowledges financial supports from the Flemish Government for long-term Methusalem funding. J. A. M. and I. F. J. V. acknowledge the Belgian Government for IAP-PAI networking. A. K. would also like to thank Frank Mathijs for the mechanical tests, Roy Bernstein for the XPS analysis and Lien Telen and Bart Goderis for the DSC measurements. We thank Verder Scientific Benelux for providing the service of ZIF-8 ball milling. ; ecas_sara Approved Most recent IF: 29.518  
  Call Number UA @ lucian @ c:irua:147399UA @ admin @ c:irua:147399 Serial 4879  
Permanent link to this record
 

 
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P. url  doi
openurl 
  Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
  Year (up) 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 29 Pages 9340-9350  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000415911600047 Publication Date 2017-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access OpenAccess  
  Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880  
Permanent link to this record
 

 
Author Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J.P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F. url  doi
openurl 
  Title Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 \mum telecom wavelength Type A1 Journal article
  Year (up) 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 23 Pages 235309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 mu m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418654200009 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft Project No. JA 14-1, the BMBF Projects Q.com-H No. 16KIS0111 and No. 16KIS0112, as well as computational resources from HLRN (Hannover, Berlin). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148505 Serial 4882  
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G. url  doi
openurl 
  Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
  Year (up) 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 20 Pages 8901-8913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000413884900037 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147432 Serial 4886  
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Ogorodnikov, I.I.; Kuznetsov, M.V.; Volykhov, A.A.; Matsui, F.; Callaert, C.; Hadermann, J.; Verbitskiy, N.I.; Koch, R.J.; Varykhalov, A.; Rader, O.; Yashina, L.V. pdf  url
doi  openurl
  Title Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3 Type A1 Journal article
  Year (up) 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 45 Pages 30520-30532  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi2Te3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi2Te3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi2Te3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi2Te3 leading to the formation of septuple layers of Bi3Te4 within a distance of similar to 25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000416054400023 Publication Date 2017-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 4 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support within the bilateral program “Russian-German Laboratory at BESSY II” and thank Helmholtz Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and U49-PGM1. The Supercomputing Center of Lomonosov Moscow State University is gratefully acknowledged for granting access to the “Lomonosov” supercomputer. The work was partially supported by DFG priority program SPP 1666, Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft (Grant No. HRJRG-408) and Russian Foundation for Basic Research (Grants No. 13-02-91327 and No. 16-29-06410). C. C. acknowledges support from the University of Antwerp through the BOF grant 31445. The authors thank Dr Vera Neudachina, Daria Tsukanova, Dr Elmar Kataev and Dr Maria Batuk for their support during the XPS and TEM experiments. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:147659 Serial 4888  
Permanent link to this record
 

 
Author van den Bos, K.H.W. url  openurl
  Title Quantitative atomic resolution transmission electron microscopy for heterogeneous nanomaterials Type Doctoral thesis
  Year (up) 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:147953 Serial 4892  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year (up) 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 9 Pages 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; Girovsky, J.; Martinez-Velarte, M.C.; Manca, N.; Mattoni, G.; Monteiro, A.M.R.V.L.; Gauquelin, N.; Verbeeck, J.; Otte, A.F.; Gabay, M.; Picozzi, S.; Caviglia, A.D. url  doi
openurl 
  Title Spin-orbit semimetal SrIrO3 in the two-dimensional limit Type A1 Journal article
  Year (up) 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 119 Issue 25 Pages 256403  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We investigate the thickness-dependent electronic properties of ultrathin SrIrO3 and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO(3)d is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO3 requires antiferromagnetic order.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000418619100014 Publication Date 2017-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 79 Open Access OpenAccess  
  Notes ; This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program (NanoFront), by the Dutch Foundation for Fundamental Research on Matter (FOM), and by the European Research Council under the European Union's H2020 programme/ERC Grant Agreement No. [677458]. The authors thank R. Claessen, P. Schutz, D. Di Sante, G. Sangiovanni, and A. Santander Syro for useful discussions. M. G. gratefully acknowledges support from the French National Research Agency (ANR) (Project LACUNES No. ANR-13-BS04-0006-01). C. A. and S. P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO”. N. G. and J. V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-AntEM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:148510 Serial 4897  
Permanent link to this record
 

 
Author Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A.M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Synthesis of Li-Rich NMC : a comprehensive study Type A1 Journal article
  Year (up) 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 23 Pages 9923-9936  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Li-rich NMC are considered nowadays as one of the most promising candidates for high energy density cathodes. One significant challenge is nested in adjusting their synthesis conditions to reach optimum electrochemical performance, but no consensus has been reached yet on the ideal synthesis protocol. Herein, we revisited the elaboration of Li-rich NMC electrodes by focusing on the science involved through each synthesis steps using carbonate Ni0.1625Mn0.675Co0.1625CO3 precursor coprecipitation combined with solid state synthesis. We demonstrated the effect of precursors concentration on the kinetics of the precipitation reaction and provided clues to obtain spherically agglomerated NMC carbonates of different sizes. Moreover, we highlighted the strong impact of the Li2CO3/NMC carbonate ratio on the morphology and particles size of Li-rich NMC and subsequently on their electrochemical performance. Ratio of 1.35 was found to reproducibly give the best performance with namely a first discharge capacity of 269 mAh g(-1) and capacity retention of 89.6% after 100 cycles. We hope that our results, which reveal how particle size, morphology, and phase composition affect the materials electrochemical performance, will help in reconciling literature data while providing valuable fundamental information for up scaling approaches.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000418206600010 Publication Date 2017-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 23 Open Access Not_Open_Access  
  Notes ; The authors acknowledge the French Research Network on Electrochemical Energy Storage (RS2E). V.P and J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. The authors are thankful to Dr. G. Rousse for the help on Rietveld refinements. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:148530 Serial 4899  
Permanent link to this record
 

 
Author van der Torren, A.J.H.; Liao, Z.; Xu, C.; Gauquelin, N.; Yin, C.; Aarts, J.; van der Molen, S.J. url  doi
openurl 
  Title Formation of a conducting LaAlO3/SrTiO3 interface studied by low-energy electron reflection during growth Type A1 Journal Article
  Year (up) 2017 Publication Physical Review Materials Abbreviated Journal Phys. Rev. Materials  
  Volume 1 Issue 7 Pages 075001  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The two-dimensional electron gas occurring between the band insulators SrTiO 3 and LaAlO 3 continues to attract considerable interest, due to the possibility of dynamic control over the carrier density, and the ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations, there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO 3 layer at the growth temperature (around 800 ◦ C) in oxygen (pressure around 5 × 10 −5 mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in-situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO 2 -rich surface and a conducting interface; or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418770200003 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links  
  Impact Factor Times cited 2 Open Access Not_Open_Access  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; European Cooperation in Science and Technology, MP 1308 ; We want to acknowledge Ruud Tromp, Daniel Gee- len, Johannes Jobst, Regina Dittmann, Gert Jan Koster, Guus Rijnders and Jo Verbeek for discussions and ad- vice and Ruud van Egmond and Marcel Hesselberth for technical assistance. This work was supported by the Netherlands Organization for Scientific Research (NWO) by means of an ”NWO Groot” grant and by the Leiden- Delft Consortium NanoFront. The work is part of the re- search programmes NWOnano and DESCO, which are fi- nanced by NWO. N.G. acknowledges funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge order- ing). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. We would also like to acknowledge networking support by the COST Action MP 1308 (COST TO-BE). Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4903  
Permanent link to this record
 

 
Author Schryvers, D.; Salje, E.K.H.; Nishida, M.; De Backer, A.; Idrissi, H.; Van Aert, S. pdf  url
doi  openurl
  Title Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations Type A1 Journal article
  Year (up) 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 176 Issue Pages 194-199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403992200026 Publication Date 2017-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Fund for Scientific Research-Flanders (G.0064.10N, G.0393.11N, G.0374.13N, G.0368.15N, G.0369.15N) and the Flemish Hercules 3 program for large infrastructure as well as financial support from the European Union Seventh Framework Programme (FP7/2007 – 2013) under Grant agreement no. 312483 (ESTEEM2). EKHS thanks EPSRC (EP/ K009702/1) and the Leverhulme trust (EM-2016-004) for support. DS and MN acknowledge financial support from the Japan Society for the Promotion of Science (JSPS, Japan) through the Grant-in-Aid for Scientific Research (A: No. 26249090) and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2408). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:149654 Serial 4914  
Permanent link to this record
 

 
Author Perez, A.J.; Jacquet, Q.; Batuk, D.; Iadecola, A.; Saubanere, M.; Rousse, G.; Larcher, D.; Vezin, H.; Doublet, M.-L.; Tarascon, J.-M. doi  openurl
  Title Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4 Type A1 Journal article
  Year (up) 2017 Publication Nature energy Abbreviated Journal Nat Energy  
  Volume 2 Issue 12 Pages 954-962  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g(-1) thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material's instability against O-2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material's maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430218300001 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 55 Open Access Not_Open_Access  
  Notes ; We thank P. Pearce for providing the beta-Li<INF>2</INF>IrO<INF>3</INF> and L. Lemarquis for helping in the DEMS experiment. We are particularly grateful to S. Belin, V. Briois and L. Stievano for helpful discussions on XAS analysis and synchrotron SOLEIL (France) for providing beamtime at the ROCK beamline (financed by the French National Research Agency (ANR) as part of the 'Investissements d'Avenir' programme, reference: ANR-10-EQPX-45). A.J.P and A. I. acknowledge the GdR C(RS) 2 for the workshop organized on a chemometric approach for XAS data analysis. V. Nassif is acknowledged for her help during neutron diffraction experiments performed at Institut Laue Langevin on D1B. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is gratefully acknowledged. This work has been performed with the support of the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116 ARPEMA. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150926 Serial 4962  
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Vandekerkhove, A.; Willhammar, T.; Bals, S.; Maes, A.; Martens, J.A.; Kirschhock, C.E.A.; Breynaert, E. url  doi
openurl 
  Title Postsynthetic high-alumina zeolite crystal engineering in organic free hyper-alkaline media Type A1 Journal article
  Year (up) 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 29 Pages 629-638  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Postsynthetic modification of high -alumina zeolites in hyper alkaline media can be tailored toward alteration of framework topology, crystal size and morphology, or desired Si/A1 ratio. FAU, EMT, MAZ, KFI, HEU, and LTA starting materials were treated with 1.2 M MOH (M = Na, K, RE, or Cs), leading to systematic ordered porosity or fully transformed frameworks with new topology and adjustable Si/Al ratio. In addition to the versatility of this tool for zeolite crystal engineering, these alterations improve understanding of the crystal chemistry. Such knowledge can guide further development in zeolite crystal engineering. Postsynthetic alteration also provides insight on the long-term stability of aluminosilicate zeolites that are used as a sorption sink in concrete -based waste disposal facilities in harsh alkaline conditions.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000392891700021 Publication Date 2016-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 16 Open Access OpenAccess  
  Notes ; This work was supported by long-term structural funding by the Flemish Government (Methusalem grant of Prof. J. Martens) and by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). S.B. acknowledges financial support from European Research Council (ERC Advanced Grant No. 24691-COUNTATOMS, ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:152674UA @ admin @ c:irua:152674 Serial 5145  
Permanent link to this record
 

 
Author Bueken, B.; Van Velthoven, N.; Willhammar, T.; Stassin, T.; Stassen, I.; Keen, D.A.; Baron, G.V.; Denayer, J.F.M.; Ameloot, R.; Bals, S.; De Vos, D.; Bennett, T.D. pdf  url
doi  openurl
  Title Gel-based morphological design of zirconium metal-organic frameworks Type A1 Journal article
  Year (up) 2017 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 8 Issue 8 Pages 3939-3948  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X – H, NH2, NO2, (OH)(2)), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N-2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000400553000077 Publication Date 2017-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 168 Open Access OpenAccess  
  Notes ; B. B., T. S. and I. S. acknowledge the FWO Flanders (doctoral and post-doctoral grants). T. W. acknowledges a post-doctoral grant from the Swedish Research Council. T. D. B. acknowledges the Royal Society (University Research Fellowship) and Trinity Hall (University of Cambridge) for funding. S. B. and D. D. V. are grateful for funding by Belspo (IAP 7/05 P6/27) and by the FWO Flanders. D. D. V. further acknowledges funding from the European Research Council (project H-CCAT). S. B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors acknowledge Arnau Carne and Shuhei Furukawa for assistance with supercritical CO<INF>2</INF> extraction, and Charles Ghesquiere for assistance in synthesis. ; Ecas_Sara Approved Most recent IF: 8.668  
  Call Number UA @ lucian @ c:irua:152643UA @ admin @ c:irua:152643 Serial 5143  
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Macke, S.; Gonnissen, J.; Thomas, S.; Zhong, Z.; Li, L.; Si, L.; Van Aert, S.; Hansmann, P.; Held, K.; Xia, J.; Verbeeck, J.; Van Tendeloo, G.; Sawatzky, G.A.; Koster, G.; Huijben, M.; Rijnders, G. pdf  doi
openurl 
  Title Thickness dependent properties in oxide heterostructures driven by structurally induced metal-oxygen hybridization variations Type A1 Journal article
  Year (up) 2017 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 27 Issue 17 Pages 1606717  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thickness-driven electronic phase transitions are broadly observed in different types of functional perovskite heterostructures. However, uncertainty remains whether these effects are solely due to spatial confinement, broken symmetry, or rather to a change of structure with varying film thickness. Here, this study presents direct evidence for the relaxation of oxygen-2p and Mn-3d orbital (p-d) hybridization coupled to the layer-dependent octahedral tilts within a La2/3Sr1/3MnO3 film driven by interfacial octahedral coupling. An enhanced Curie temperature is achieved by reducing the octahedral tilting via interface structure engineering. Atomically resolved lattice, electronic, and magnetic structures together with X-ray absorption spectroscopy demonstrate the central role of thickness-dependent p-d hybridization in the widely observed dimensionality effects present in correlated oxide heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400449200011 Publication Date 2017-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 55 Open Access  
  Notes M.H., G.K., and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (Grant Nos. G.0044.13N, G.0374.13N, G.0368.15N, and G.0369.15N). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. N.G., J.G., S.V.A., and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which was funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:152640 Serial 5367  
Permanent link to this record
 

 
Author Ramaneti, R.; Sankaran, K.J.; Korneychuk, S.; Yeh, C.J.; Degutis, G.; Leou, K.C.; Verbeeck, J.; Van Bael, M.K.; Lin, I.N.; Haenen, K. url  doi
openurl 
  Title Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties Type A1 Journal article
  Year (up) 2017 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 5 Issue 6 Pages 066102  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A “patterned-seeding technique” in combination with a “nanodiamond masked reactive ion etching process” is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of theDGHnanorods, which contain sp(2)-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404623000002 Publication Date 2017-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 16 Open Access  
  Notes The authors would like to thank the Methusalem “NANO” network for financial support and Mr. B. Ruttens and Professor Jan D'Haen for technical and experimental assistance. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Approved Most recent IF: 4.335  
  Call Number UA @ admin @ c:irua:152633 Serial 5369  
Permanent link to this record
 

 
Author Cao, M.; Xiong, D.-B.; Tan, Z.; Ji, G.; Amin-Ahmadi, B.; Guo, Q.; Fan, G.; Guo, C.; Li, Z.; Zhang, D. pdf  url
doi  openurl
  Title Aligning graphene in bulk copper : nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity Type A1 Journal article
  Year (up) 2017 Publication Carbon Abbreviated Journal  
  Volume 117 Issue Pages 65-74  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Methods used to strengthen metals generally also cause a pronounced decrease in ductility and electrical conductivity. In this work a bioinspired strategy is applied to surmount the dilemma. By assembling copper submicron flakes cladded with in-situ grown graphene, graphene/copper matrix composites with a nanolaminated architecture inspired by a natural nacre have been prepared. Owing to a combined effect-from the bioinspired nanolaminated architecture and improved interfacial bonding, a synergy has been achieved between mechanical strength and ductility as well as electrical conductivity in the graphene/copper matrix composites. With a low volume fraction of only 2.5% of graphene, the composite shows a yield strength and elastic modulus similar to 177% and similar to 25% higher than that of unreinforced copper matrix, respectively, while retains ductility and electrical conductivity comparable to that of pure copper. The bioinspired nanolaminated architecture enhances the efficiencies of two-dimensional (2D) graphene in mechanical strengthening and electrical conducting by aligning graphene to maximize performance for required loading and carrier transporting conditions, and toughens the composites by crack deflection. Meanwhile, in-situ growth of graphene is beneficial for improving interfacial bonding and structural quality of graphene. The strategy sheds light on the development of composites with good combined structural and functional properties. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400212100008 Publication Date 2017-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152635 Serial 7435  
Permanent link to this record
 

 
Author Belik, A.A.; Morozov, V.A.; Deyneko, D.V.; Savon, A.E.; Baryshnikova, O.V.; Zhukovskaya, E.S.; Dorbakov, N.G.; Katsuya, Y.; Tanaka, M.; Stefanovich, S.Y.; Hadermann, J.; Lazoryak, B.I. pdf  url
doi  openurl
  Title Antiferroelectric properties and site occupations ofR3+ cations in Ca8MgR(PO4)7 luminescent host materials Type A1 Journal article
  Year (up) 2017 Publication Journal of alloys and compounds Abbreviated Journal  
  Volume 699 Issue Pages 928-937  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ca8MgR(PO4)(7) = La, Pr, Nd, Sm-Lu, and Y) phosphates with a beta-Ca-3(PO4)(2) related structure were prepared by a standard solid-state method in air. Second-harmonic generation, differential scanning calorimetry, and dielectric measurements led to the conclusion that all Ca8MgR(PO4)(7) are centrosymmetric and go to another centrosymmetric phase in the course of a first-order antiferroelectric phase transition well above room temperature (RT). High-temperature electron diffraction showed that the symmetry changes from R (3) over barc to R (3) over barm during the phase transition. Structures of Ca8MgR(PO4)(7) at RT were refined by the Rietveld method in centrosymmetric space group R (3) over barc. Mg2+ cations occupy the M5 site; the occupancy of the M1 site by R3+ cations increases monotonically from 0.0389 for R = La to 0.1667 for R = Er-Lu, whereas the occupancy of the M3 site by R3+ cations decreases monotonically from 0.1278 for R = La to 0 for R = Er-Lu. In the case of R = Er-Lu, the M3 site is occupied only by Ca2+ cations. P1O(4) tetrahedra and cations at the M3 site are disordered in the R (3) over barc structure of Ca8MgEu(PO4)(7). Using synchrotron X-ray powder diffraction, we found that annealing conditions do not significantly affect the distribution of Ca2+ and Eu3+ cations between the structure positions of Ca8MgEu(PO4)(7). Luminescent properties of CasMgEu(PO4)(7) powder samples were investigated under near-ultraviolet (n-UV) light. Excitation spectra of CasMgEu(PO4)(7) show the strongest absorption at about 395 nm that matches with commercially available n-UV-emitting GaN-based LED chips. Emission spectra show an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393727500129 Publication Date 2016-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152665 Serial 7464  
Permanent link to this record
 

 
Author Takatsu, H.; Hernandez, O.; Yoshimune, W.; Prestipino, C.; Yamamoto, T.; Tassel, C.; Kobayashi, Y.; Batuk, D.; Shibata, Y.; Abakumov, A.M.; Brown, C.M.; Kageyama, H. doi  openurl
  Title Cubic lead perovskite PbMoO3 with anomalous metallic behavior Type A1 Journal article
  Year (up) 2017 Publication Physical review B Abbreviated Journal  
  Volume 95 Issue 15 Pages 155105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A previously unreported Pb-based perovskite PbMoO3 is obtained by high-pressure and high-temperature synthesis. This material crystallizes in the Pm3m cubic structure at room temperature, making it distinct from typical Pb-based perovskite oxides with a structural distortion. PbMoO3 exhibits a metallic behavior down to 0.1 K with an unusual T-sublinear dependence of the electrical resistivity. Moreover, a large specific heat is observed at low temperatures accompanied by a peak in C-P/T-3 around 10 K, in marked contrast to the isostructural metallic system SrMoO3. These transport and thermal properties for PbMoO3, taking into account anomalously large Pb atomic displacements detected through diffraction experiments, are attributed to a low-energy vibrational mode, associated with incoherent off-centering of lone-pair Pb2+ cations. We discuss the unusual behavior of the electrical resistivity in terms of a polaronlike conduction, mediated by the strong coupling between conduction electrons and optical phonons of the local low-energy vibrational mode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440605700001 Publication Date 2017-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:167288 Serial 7743  
Permanent link to this record
 

 
Author Martinez, G.T.; van den Bos, K.H.W.; Alania, M.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Thickness dependence of scattering cross-sections in quantitative scanning transmission electron microscopy Type A1 Journal article
  Year (up) 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 187 Issue Pages 84-92  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428131200011 Publication Date 2018-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access Not_Open_Access: Available from 01.02.2020  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings ( G.0374.13N , G.0369.15N , G.0368.15N and WO.010.16N ) and a PhD grant to K.H.W.v.d.B. The research leading to these results has received funding from the European Union 7th Framework Programme [ FP7 /2007-2013] under Grant agreement no. 312483 (ESTEEM2). The authors are grateful to A. Rosenauer for providing access to the StemSim software. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:149384 Serial 4809  
Permanent link to this record
 

 
Author Charkin, D.O.; Plokhikh, I.V.; Kazakov, S.M.; Kalmykov, S.N.; Akinfiev, V.S.; Gorbachev, A.V.; Batuk, M.; Abakumov, A.M.; Teterin, Y.A.; Maslakov, K.I.; Teterin, A.Y.; Ivanov, K.E. pdf  doi
openurl 
  Title Synthesis and structural characterization of a novel Sillén – Aurivillius bismuth oxyhalide, PbBi3VO7.5Cl, and its derivatives Type A1 Journal article
  Year (up) 2018 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume 75 Issue Pages 27-33  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new Sillen – Aurivillius family of layered bismuth oxyhalides has been designed and successfully constructed on the basis of PbBiO2X(X = halogen) synthetic perites and g-form of Bi2VO5.5 solid elec- trolyte. This demonstrates, for the first time, the ability of the latter to serve as a building block in construction of mixed-layer structures. The parent compound PbBi3VO7.5-dCl (d = 0.05) has been investigated by powder XRD, TEM, XPS methods and magnetic susceptibility measurements. An unexpected but important condition for the formation of the mixed-layer structure is partial (ca. 5%) reduction of VV into VIV which probably suppresses competitive formation of apatite-like Pb – Bi vanadates. This reduction also stabilizes the g polymorphic form of Bi2VO5.5 not only in the intergrowth structure, but in Bi2V1-xMxO5.5-y (M – Nb, Sb) solid solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418566200005 Publication Date 2017-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 1 Open Access Not_Open_Access  
  Notes The work was partially supported by M.V. Lomonosov Moscow State University Program of Development and Russian Science Foundation under Grant No.14-13-00738. We also thank Dr. K.V. Zakharov (MSU) for the magnetic measurements of the PbBi3- VO7.5Cl sample. Approved Most recent IF: 1.811  
  Call Number EMAT @ emat @c:irua:147239 Serial 4769  
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R. pdf  url
doi  openurl
  Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
  Year (up) 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno  
  Volume 18 Issue 3 Pages 1688-1695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426033400022 Publication Date 2018-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.483 Times cited Open Access Not_Open_Access  
  Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483  
  Call Number EMAT @ emat @c:irua:147505 Serial 4775  
Permanent link to this record
 

 
Author Liao, T.-W.; Verbruggen, S.; Claes, N.; Yadav, A.; Grandjean, D.; Bals, S.; Lievens, P. pdf  url
doi  openurl
  Title TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light Type A1 Journal article
  Year (up) 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 8 Issue 8 Pages 30  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, we applied cluster beam deposition (CBD) as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs) produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML) equivalents. Scanning Electron Microscopy (SEM) images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML) and aggregate at higher coverage (8 ML). A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 x 10-6 over a period of 93 h). These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424131600030 Publication Date 2018-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 29 Open Access OpenAccess  
  Notes The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 607417 (Catsense). We also thank the Research Foundation—Flanders (FWO, Belgium), the Flemish Concerted Action (BOF KU Leuven, Project No. GOA/14/007) research program, and the microscope was partly funded by the Hercules Fund from the Flemish Government for the support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:147898UA @ admin @ c:irua:147898 Serial 4805  
Permanent link to this record
 

 
Author Schattschneider, P.; Schachinger, T.; Verbeeck, J. pdf  doi
openurl 
  Title Ein Whirlpool aus Elektronen: Transmissions-Elektronenmikroskopie mit Elektronenwirbeln Type A1 Journal article
  Year (up) 2018 Publication Physik in unserer Zeit Abbreviated Journal Phys. Unserer Zeit  
  Volume 49 Issue 1 Pages 22-28  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Elektronen bewegen sich im feldfreien Raum immer gleichförmig geradlinig, so steht es in den Lehrbüchern. Falsch, sagen wir. Elektronen lassen sich zu Tornados formen, die theoretisch Nanopartikel zerreißen können. In der Elektronenmikroskopie eingesetzt, versprechen sie neue Erkenntnisse in der Festkörperphysik.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2018-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9252 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @c:irua:148159 Serial 4806  
Permanent link to this record
 

 
Author Winckelmans, N.; Altantzis, T.; Grzelczak, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title Multimode Electron Tomography as a Tool to Characterize the Internal Structure and Morphology of Gold Nanoparticles Type A1 Journal article
  Year (up) 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 13522-13528  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Three dimensional (3D) characterization of structural defects in nanoparticles by transmission electron microscopy is far from straightforward. We propose the use of a dose-efficient approach, so-called multimode tomography, during which tilt series of low and high angle annular dark field scanning transmission electron microscopy projection images are acquired simultaneously. In this manner, not only reliable information can be obtained concerning the shape of the nanoparticles, but also the twin planes can be clearly visualized in 3D. As an example, we demonstrate the application of this approach to identify the position of the seeds with respect to the twinning planes in anisotropic gold nanoparticles synthesized using a seed mediated growth approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437811500036 Publication Date 2018-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 23 Open Access OpenAccess  
  Notes S.B. and N.W. acknowledge funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.B. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N and G.0218.14N) and a postdoctoral research grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). L.M.L.-M. and S.B. acknowledge funding from the European Commission (grant EUSMI 731019). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:148164UA @ admin @ c:irua:148164 Serial 4807  
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Bals, S.; Tendeloo, G.V.; Pileni, M.-P. url  doi
openurl 
  Title Do Binary Supracrystals Enhance the Crystal Stability? Type A1 Journal article
  Year (up) 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 13515-13521  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We study the oxygen thermal stability of two binary

systems. The larger particles are magnetic amorphous Co (7.2 nm) or

Fe3O4 (7.5 nm) nanocrystals, whereas the smaller ones (3.7 nm) are

Au nanocrystals. The nanocrystal ordering as well as the choice of the

magnetic nanoparticles very much influence the stability of the binary

system. A perfect crystalline structure is obtained with the Fe3O4/Au

binary supracrystals. For the Co/Au binary system, oxidation of Co

results in the chemical transformation from Co to CoO, where the size

of the amorphous Co nanoparticles increases from 7.2 to 9.8 nm in

diameter. During the volume expansion of the Co nanoparticles, Au

nanoparticles within the binary assemblies coalesce and are at the

origin of the instability of the binary nanoparticle supracrystals. On the

other hand, for the Fe3O4/Au binary system, the oxidation of Fe3O4 to

γ-Fe2O3 does not lead to a size change of the nanoparticles, which

maintains the stability of the binary nanoparticle supracrystals. A similar behavior is observed for an AlB2-type Co−Ag binary

system: The crystalline structure is maintained, whereas in disordered assemblies, coalescence of Ag nanocrystals is observed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437811500035 Publication Date 2018-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:149388UA @ admin @ c:irua:149388 Serial 4812  
Permanent link to this record
 

 
Author Zhong, Z.; Aveyard, R.; Rieger, B.; Bals, S.; Palenstijn, W.J.; Batenburg, K.J. pdf  url
doi  openurl
  Title Automatic correction of nonlinear damping effects in HAADF-STEM tomography for nanomaterials of discrete compositions Type A1 Journal article
  Year (up) 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue 184 Pages 57-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('HAADF-STEM tomography is a common technique for characterizing the three-dimensional morphology of nanomaterials. In conventional tomographic reconstruction algorithms, the image intensity is assumed to be a linear projection of a physical property of the specimen. However, this assumption of linearity is not completely valid due to the nonlinear damping of signal intensities. The nonlinear damping effects increase w.r.t the specimen thickness and lead to so-called \u0022cupping artifacts\u0022, due to a mismatch with the linear model used in the reconstruction algorithm. Moreover, nonlinear damping effects can strongly limit the applicability of advanced reconstruction approaches such as Total Variation Minimization and discrete tomography. In this paper, we propose an algorithm for automatically correcting the nonlinear effects and the subsequent cupping artifacts. It is applicable to samples in which chemical compositions can be segmented based on image gray levels. The correction is realized by iteratively estimating the nonlinear relationship between projection intensity and sample thickness, based on which the projections are linearized. The correction and reconstruction algorithms are tested on simulated and experimental data. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000417779800008 Publication Date 2017-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access OpenAccess  
  Notes ; This research is supported by the Dutch Technology Foundation STW (http:// www.stw.nl/), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs, Agriculture and Innovation under project number 13314. Funding from the European Research Council (Starting grant no. COLOURATOMS 335078) is acknowledged by S. Bals. The authors would like to thank Dr. Thomas Altantzis and Dr. Bart Goris for providing the experimental data, and Prof. Dr. Luis M. Liz-Marzan for providing the investigated samples. ; ecas_sara Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:148501UA @ admin @ c:irua:148501 Serial 4867  
Permanent link to this record
 

 
Author Li, L.; Liao, Z.; Gauquelin, N.; Minh Duc Nguyen; Hueting, R.J.E.; Gravesteijn, D.J.; Lobato, I.; Houwman, E.P.; Lazar, S.; Verbeeck, J.; Koster, G.; Rijnders, G. pdf  doi
openurl 
  Title Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) substrate Type A1 Journal article
  Year (up) 2018 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 5 Issue 2 Pages 1700921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Due to its physical properties gallium-nitride (GaN) is gaining a lot of attention as an emerging semiconductor material in the field of high-power and high-frequency electronics applications. Therefore, the improvement in the performance and/or perhaps even extension in functionality of GaN based devices would be highly desirable. The integration of ferroelectric materials such as lead-zirconate-titanate (PbZrxTi1-xO3) with GaN has a strong potential to offer such an improvement. However, the large lattice mismatch between PZT and GaN makes the epitaxial growth of Pb(Zr1-xTix)O-3 on GaN a formidable challenge. This work discusses a novel strain relaxation mechanism observed when MgO is used as a buffer layer, with thicknesses down to a single unit cell, inducing epitaxial growth of high crystallinity Pb(Zr0.52Ti0.48)O-3 (PZT) thin films. The epitaxial PZT films exhibit good ferroelectric properties, showing great promise for future GaN device applications.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423173800005 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 15 Open Access Not_Open_Access  
  Notes ; L.L., Z.L.L., and N.G. contributed equally to this work. L.L. acknowledges financial support from Nano Next NL (Grant no. 7B 04). The authors acknowledge NXP for providing the GaN/AlGaN/Si (111) wafer. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and J.V. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) project 42/FA070100/6088 “nieuwe eigenschappen in complexe Oxides.” N.G. acknowledges the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432) which partly funded this study. ; Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:148427UA @ admin @ c:irua:148427 Serial 4872  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: