toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Akamine, H.; Van den Bos, K.H.W.; Gauquelin, N.; Farjami, S.; Van Aert, S.; Schryvers, D.; Nishida, M. pdf  url
doi  openurl
  Title Determination of the atomic width of an APB in ordered CoPt using quantified HAADF-STEM Type A1 Journal article
  Year 2015 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 644 Issue 644 Pages 570-574  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Anti-phase boundaries (APBs) in an ordered CoPt alloy are planar defects which disturb the ordered structure in their vicinity and decrease the magnetic properties. However, it has not yet been clarified to what extend the APBs disturb the ordering. In this study, high-resolution HAADF-STEM images are statistically analysed based on the image intensities estimated by the statistical parameter estimation theory. In the procedure, averaging intensities, fitting the intensity profiles to specific functions, and assessment based on a statistical test are performed. As a result, the APBs in the stable CoPt are found to be characterised by two atomic planes, and a contrast transition range as well as the centre of an inclined APB is determined. These results show that the APBs are quite sharp and therefore may have no notable effect on the net magnetic properties due to their small volume fraction. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000357143900083 Publication Date 2015-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 12 Open Access  
  Notes FWO G036815N; G036915N; G037413N; 278510 VORTEX; Hercules; ECASJO_; Approved Most recent IF: 3.133; 2015 IF: 2.999  
  Call Number c:irua:127008 c:irua:127008 Serial 675  
Permanent link to this record
 

 
Author Nerantzaki, M.; Filippousi, M.; Van Tendeloo, G.; Terzopoulou, Z.; Bikiaris, D.; Goudouri, O.M.; Detsch, R.; Grueenewald, A.; Boccaccini, A.R. pdf  url
doi  openurl
  Title Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications Type A1 Journal article
  Year 2015 Publication Express polymer letters Abbreviated Journal Express Polym Lett  
  Volume 9 Issue 9 Pages 773-789  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three series of poly(butylene succinate) (PBSu) nanocomposites containing 0.5, 1 and 2.5 wt% strontium hydroxyapatite [Sr-5(PO4)(3)OH] nanorods (SrHAp nrds) were prepared by in situ polymerisation. The structural effects of Sr-5(PO4)(3)OH nanorods, for the different concentrations, inside the polymeric matrix (PBSu), were studied through high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM measurements revealed that the SrHAp nanorods at low concentrations are dispersed inside the polymeric PBSu matrix while in 1 wt% some aggregates are formed. These aggregations affect the mechanical properties giving an enhancement for the concentration of 0.5 wt% SrHAp nrds in tensile strength, while a reduction is recorded for higher loadings of the nanofiller. Studies on enzymatic hydrolysis revealed that all nanocomposites present higher hydrolysis rates than neat PBSu, indicating that nanorods accelerate the hydrolysis degradation process. In vitro bioactivity tests prove that SrHAp nrds promote the formation of hydroxyapatite on the PBSu surface. All nanocomposites were tested also in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility showing SrHAp nanorods support cell attachment.  
  Address  
  Corporate Author Thesis  
  Publisher Budapest University of Technology and Economics Department of Polymer Engineering Place of Publication Budapest, Hungary Editor  
  Language Wos (up) 000357287800004 Publication Date 2015-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1788-618X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.983 Times cited 21 Open Access  
  Notes 262348 Esmi Approved Most recent IF: 2.983; 2015 IF: 2.761  
  Call Number c:irua:127009 Serial 2382  
Permanent link to this record
 

 
Author Chen, Z.; Tan, Z.; Ji, G.; Schryvers, D.; Ouyang, Q.; Li, Z. pdf  url
doi  openurl
  Title Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites Type A1 Journal article
  Year 2015 Publication Advanced engineering materials Abbreviated Journal Adv Eng Mater  
  Volume 17 Issue 17 Pages 1076-1084  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The SiC/Al composites have been fabricated by a vacuum hot pressing (VHP) process in order to study the effect of interface evolution on the global thermal conductivity (TC). By optimizing the VHP parameters of sintering temperature and time, the three different kinds of SiC/Al interface configurations, that is, non-bonded, diffusion-bonded, and reaction-bonded interfaces, are formed and identified by measurement of relative density, X-ray diffraction, scanning and (high-resolution) transmission electron microscopy. The VHPed composite sintered at 655 °C for 60 min is fully dense and presents a tightly-adhered and clean SiC/Al interface at the nanoscale, the ideal diffusion-bonded interface being the most favorable for minimizing interfacial thermal resistance, which in turn results in the highest TC of around 270 W/mK.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000357680700019 Publication Date 2015-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1438-1656; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.319 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.319; 2015 IF: 1.758  
  Call Number c:irua:123000 Serial 818  
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Driesen, K.; Bridel, J.-S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Solidelectrolyte interphase evolution of carbon-coated silicon nanoparticles for lithium-ion batteries monitored by transmission electron microscopy and impedance spectroscopy Type A1 Journal article
  Year 2015 Publication Energy technology Abbreviated Journal Energy Technol-Ger  
  Volume 3 Issue 3 Pages 699-708  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The main drawbacks of silicon as the most promising anode material for lithium-ion batteries (theoretical capacity=3572 mAh g−1) are lithiation-induced volume changes and the continuous formation of a solidelectrolyte interphase (SEI) upon cycling. A recent strategy is to focus on the influence of coatings and composite materials. To this end, the evolution of the SEI, as well as an applied carbon coating, on nanosilicon electrodes during the first electrochemical cycles is monitored. Two specific techniques are combined: Transmission Electron Microscopy (TEM) is used to study the surface evolution of the nanoparticles on a very local scale, whereas electrochemical impedance spectroscopy (EIS) provides information on the electrode level. A TEMEELS fingerprint signal of carbonate structures from the SEI is discovered, which can be used to differentiate between the SEI and a graphitic carbon matrix. Furthermore, the shielding effect of the carbon coating and the thickness evolution of the SEI are described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000357869100003 Publication Date 2015-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4288; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.789 Times cited Open Access  
  Notes IWT Flanders Approved Most recent IF: 2.789; 2015 IF: 2.824  
  Call Number c:irua:126676 Serial 3051  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue 6 Pages 1541-1557  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000357977300001 Publication Date 2015-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 10 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126857 Serial 2682  
Permanent link to this record
 

 
Author Filippousi, M.; Siafaka, P.I.; Amanatiadou, E.P.; Nanaki, S.G.; Nerantzaki, M.; Bikiaris, D.N.; Vizirianakis, I.S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal J Mater Chem B  
  Volume 3 Issue 3 Pages 5991-6000  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesoporous strontium hydroxyapatite (SrHAp) nanorods (NRs) have been successfully synthesized using a simple and efficient chemical route, i.e. the hydrothermal method. Structural and morphological characterization of the as-synthesized SrHAp NRs have been performed by transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). TEM and HAADF-STEM measurements of the NRs reveal the coexistence of longer and shorter particles with the length ranging from 50 nm to 400 nm and a diameter of about 20-40 nm. Electron tomography measurements of the NRs allow us to better visualize the mesopores and their facets. Two model drugs, hydrophobic risperidone and hydrophilic pramipexole, were loaded into the SrHAp NRs. These nanorods were coated using a modified chitosan (CS) with poly(2-hydroxyethyl methacrylate) (PHEMA), in order to encapsulate the drug-loaded SrHAp nanoparticles and reduce the cytotoxicity of the loaded materials. The drug release from neat and encapsulated SrHAp NRs mainly depends on the drug hydrophilicity. Importantly, although neat SrHAp nanorods exhibit some cytotoxicity against Caco-2 cells, the Cs-g-PHEMA-SrHAp drug-loaded nanorods show an acceptable cytocompatibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000358065100009 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X;2050-7518; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.543 Times cited 24 Open Access  
  Notes Approved Most recent IF: 4.543; 2015 IF: 4.726  
  Call Number c:irua:127131 Serial 2161  
Permanent link to this record
 

 
Author Buffière, M.; Brammertz, G.; Sahayaraj, S.; Batuk, M.; Khelifi, S.; Mangin, D.; El Mel, A.A.; Arzel, L.; Hadermann, J.; Meuris, M.; Poortmans, J.; doi  openurl
  Title KCN chemical etch for interface engineering in Cu2ZnSnSe4 solar cells Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 14690-14698  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The removal of secondary phases from the surface of the kesterite crystals is one of the major challenges to improve the performances of Cu2ZnSn(S,Se)(4) (CZTSSe) thin film solar cells. In this Contribution, the KCN/KOH Chemical etching approach, originally developed for the removal of CuxSe phases in Cu(In,Ga)(S,Se)(2) thin films) is applied to CZTSe absorbers exhibiting various chemical compositions. Two distinct electrical behaviors were observed on CZTSe/CdS solar cells after treatment: (i) the improvement of the fill factor (FF) after 30 s of etching for the CZTSe absorbers showing initially a distortion of the electrical characteristic; (ii) the progressive degradation Of the FF after long treatment time for all Cu-poor CZTSe solar cell samples. The first effect can be attributed to the action of KCN on the absorber, that is found to clean the absorber free surface from most of the secondary phases surrounding the kesterite grains (e.g., Se-0, CuxSe, SnSex, SnO2, Cu2SnSe3 phases, excepting the ZnSe-based phases). The second observation was identified as a consequence of the preferential etching of Se, Sn, and Zn from the CZTSe surface by the KOH solution, combined with the modification of the alkali content of the absorber. The formation of a Cu-rich shell at the absorber/buffer layer interface, leading to the increase of the recombination rate at the interface, and the increase in the doping of the absorber layer after etching are found to be at the origin of the deterioration of the FF of the solar cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000358395200019 Publication Date 2015-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 34 Open Access  
  Notes Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:127153 Serial 1755  
Permanent link to this record
 

 
Author Kelchtermans, A.; Adriaensens, P.; Slocombe, D.; Kuznetsov, V.L.; Hadermann, J.; Riskin, A.; Elen, K.; Edwards, P.P.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title Increasing the solubility limit for tetrahedral aluminium in ZnO:Al nanorods by variation in synthesis parameters Type A1 Journal article
  Year 2015 Publication Journal of nanomaterials Abbreviated Journal J Nanomater  
  Volume 2015 Issue 2015 Pages 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO:Al nanoparticles are suitable building blocks for transparent conductive layers. As the concentration of substitutional tetrahedral Al is an important factor for improving conductivity, here we aim to increase the fraction of substitutional Al. To this end, synthesis parameters of a solvothermal reaction yielding ZnO:Al nanorods were varied. A unique set of complementary techniques was combined to reveal the exact position of the aluminium ions in the ZnO lattice and demonstrated its importance in order to evaluate the potential of ZnO:Al nanocrystals as optimal building blocks for solution deposited transparent conductive oxide layers. Both an extension of the solvothermal reaction time and stirring during solvothermal treatment result in a higher total tetrahedral aluminium content in the ZnO lattice. However, only the longer solvothermal treatment effectively results in an increase of the substitutional positions aimed for.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000358516300001 Publication Date 2015-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-4110;1687-4129; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.871 Times cited 2 Open Access  
  Notes FWO; Methusalem Approved Most recent IF: 1.871; 2015 IF: 1.644  
  Call Number c:irua:124426 Serial 1600  
Permanent link to this record
 

 
Author Chen, Y.Z.; Trier, F.; Wijnands, T.; Green, R.J.; Gauquelin, N.; Egoavil, R.; Christensen, D.V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N.H.; Sulpizio, J.A.; Honig, M.; Prawiroatmodjo, G.E.D.K.; Jespersen, T.S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; Van Tendeloo, G.; Rijnders, G.; Sawatzky, G.A.; Pryds, N. pdf  url
doi  openurl
  Title Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping Type A1 Journal article
  Year 2015 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 14 Issue 14 Pages 801-806  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metalinsulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1−xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikovde Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000358530100022 Publication Date 2015-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 170 Open Access  
  Notes 246102 IFOX; 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 39.737; 2015 IF: 36.503  
  Call Number c:irua:127184 c:irua:127184UA @ admin @ c:irua:127184 Serial 1163  
Permanent link to this record
 

 
Author Li, J.; Ji, M.; Schwarz, T.; Ke, X.; Van Tendeloo, G.; Yuan, J.; Pereira, P.J.; Huang, Y.; Zhang, G.; Feng, H.L.; Yuan, Y.H.; Hatano, T.; Kleiner, R.; Koelle, D.; Chibotaru, L.F.; Yamaura, K.; Wang, H.B.; Wu, P.H.; Takayama-Muromachi, E.; Vanacken, J.; Moshchalkov, V.V.; pdf  url
doi  openurl
  Title Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 6 Issue 6 Pages 7614  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional Swiss cheese-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000358857000007 Publication Date 2015-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 12 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number c:irua:126677 Serial 1827  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Warwick, M.E.A.; Kaunisto, K.; Gasparotto, A.; Gombac, V.; Sada, C.; Turner, S.; Van Tendeloo, G.; Maccato, C.; Fornasiero, P.; doi  openurl
  Title Fe2O3-TiO2 nanosystems by a hybrid PE-CVD/ALD approach : controllable synthesis, growth mechanism, and photocatalytic properties Type A1 Journal article
  Year 2015 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 17 Issue 17 Pages 6219-6226  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Supported Fe2O3–TiO2 nanocomposites are fabricated by an original vapor phase synthetic strategy, consisting of the initial growth of Fe2O3 nanosystems on fluorine-doped tin oxide substrates by plasma enhanced-chemical vapor deposition, followed by atomic layer deposition of TiO2 overlayers with variable thickness, and final thermal treatment in air. A thorough characterization of the target systems is carried out by X-ray diffraction, atomic force microscopy, field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. High purity nanomaterials characterized by the co-presence of Fe2O3 (hematite) and TiO2 (anatase), with an intimate Fe2O3–TiO2 contact, are successfully obtained. In addition, photocatalytic tests demonstrate that, whereas both single-phase oxides do not show appreciable activity, the composite systems are able to degrade methyl orange aqueous solutions under simulated solar light, and even visible light, with an efficiency directly dependent on TiO2 overlayer thickness. This finding opens attractive perspectives for eventual applications in wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000358915300018 Publication Date 2015-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited 25 Open Access  
  Notes The research leading to these results has received funding from the FP7 project “SOLAROGENIX” IJNMP4-SL-2012- 310333), as well as from Padova University ex-60% 2012–2015 projects, grant no. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S. T. acknowledges the FWO Flanders for a post-doctoral scholarship. Thanks are also due to Prof. S. Mathur and Dr. Y. Gönüllü (Department of Chemistry, Cologne University, Germany) for their precious help and assistance in ALD depositions, and to Prof. E. Bontempi (Chemistry for Technologies Laboratory, Brescia University, Italy) for XRD analyses. Approved Most recent IF: 3.474; 2015 IF: 4.034  
  Call Number c:irua:127237 Serial 3531  
Permanent link to this record
 

 
Author Woo, S.Y.; Gauquelin, N.; Nguyen, H.P.T.; Mi, Z.; Botton, G.A. pdf  doi
openurl 
  Title Interplay of strain and indium incorporation in InGaN/GaN dot-in-a-wire nanostructures by scanning transmission electron microscopy Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 26 Issue 26 Pages 344002  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interplay between strain and composition is at the basis of heterostructure design to engineer new properties. The influence of the strain distribution on the incorporation of indium during the formation of multiple InGaN/GaN quantum dots (QDs) in nanowire (NW) heterostructures has been investigated, using the combined techniques of geometric phase analysis of atomic-resolution images and quantitative elemental mapping from core-loss electron energy-loss spectroscopy within scanning transmission electron microscopy. The variation in In-content between successive QDs within individual NWs shows a dependence on the magnitude of compressive strain along the growth direction within the underlying GaN barrier layer, which affects the incorporation of In-atoms to minimize the local effective strain energy. Observations suggest that the interfacial misfit between InGaN/GaN within the embedded QDs is mitigated by strain partitioning into both materials, and results in normal stresses inflicted by the presence of the surrounding GaN shell. These experimental measurements are linked to the local piezoelectric polarization fields for individual QDs, and are discussed in terms of the photoluminescence from an ensemble of NWs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos (up) 000359079500003 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 19 Open Access  
  Notes Approved Most recent IF: 3.44; 2015 IF: 3.821  
  Call Number UA @ lucian @ c:irua:136278 Serial 4504  
Permanent link to this record
 

 
Author Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; Angelis, F.D.; Boyen, H.G.; pdf  doi
openurl 
  Title Intrinsic thermal instability of methylammonium lead trihalide perovskite Type A1 Journal article
  Year 2015 Publication Laser physics review Abbreviated Journal Adv Energy Mater  
  Volume 5 Issue 5 Pages 1500477  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organolead halide perovskites currently are the new front-runners as light absorbers in hybrid solar cells, as they combine efficiencies passing already 20% with deposition temperatures below 100 °C and cheap solution-based fabrication routes. Long-term stability remains a major obstacle for application on an industrial scale. Here, it is demonstrated that significant decomposition effects already occur during annealing of a methylammonium lead triiode perovskite at 85 °C even in inert atmosphere thus violating international standards. The observed behavior supports the view of currently used perovskite materials as soft matter systems with low formation energies, thus representing a major bottleneck for their application, especially in countries with high average temperatures. This result can trigger a broader search for new perovskite families with improved thermal stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos (up) 000359374900005 Publication Date 2015-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 1691 Open Access  
  Notes FWO G004413N; GOA Solarpaint Approved Most recent IF: 16.721; 2015 IF: 16.146  
  Call Number c:irua:127298UA @ admin @ c:irua:127298 Serial 1719  
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A. pdf  url
doi  openurl
  Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 5161-5169  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000359499100003 Publication Date 2015-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127758 Serial 3977  
Permanent link to this record
 

 
Author Mayer, M.; Scarabelli, L.; March, K.; Altantzis, T.; Tebbe, M.; Kociak, M.; Bals, S.; Garcia de Abajo, F.J.; Fery, A.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 15 Issue 15 Pages 5427-5437  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Inspired by the concept of living polymerization reaction, we are able to produce silver-gold-silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with approximately 210 nm x 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of approximately 4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000359613700087 Publication Date 2015-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 117 Open Access OpenAccess  
  Notes L.M.L.-M. acknowledges funding from the European Research Council Advanced Grant PLASMAQUO (No. 267867) and from the Spanish MINECO (grant MAT2013-46101-R). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreements 312483 (ESTEEM2) and 262348 (ESMI). M.M., M.T., and A.F. acknowledge funding from the European Research Council starting grant METAMECH (No 306686). M.T. was supported by the Elite Network Bavaria in the frame of the Elite Study Program “Macromolecular Science” and funded via a grant for Ph.D. candidates according to Bavarian elite promotion law (BayEFG). F.J.G.deA. acknowledges funding from the Spanish MINECO (grant MAT2014-59096-P).; esteem2jra3; esteem2jra4; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592  
  Call Number c:irua:129687 c:irua:129687 Serial 3975  
Permanent link to this record
 

 
Author Tang, X.; Reckinger, N.; Poncelet, O.; Louette, P.; Urena, F.; Idrissi, H.; Turner, S.; Cabosart, D.; Colomer, J.-F.; Raskin, J.-P.; Hackens, B.; Francis, L.A. pdf  url
doi  openurl
  Title Damage evaluation in graphene underlying atomic layer deposition dielectrics Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 13523  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Based on micro-Raman spectroscopy (muRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, muRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.  
  Address ICTEAM Institute, Universite catholique de Louvain, Place du Levant 3, 1348 Louvain-la-Neuve, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000360147400001 Publication Date 2015-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 18 Open Access  
  Notes The authors thank the staff of UCL’s Winfab and Welcome for technical support. Xiaohui Tang is a senior research of UCL. This work is financially supported by the Multi-Sensor-Platform for Smart Building Management project (No. 611887) and the Action de Recherche Concertée (ARC) “StressTronics”, Communauté française de Belgique. Part of this work is financially supported by the Belgian Fund for Scientific Research (FRS-FNRS) under FRFC contract “Chemographene” (No. 2.4577.11). J.-F. Colomer and B. Hackens are Research Associates of FRS-FNRS. This research used resources of the Electron Microscopy Service located at the University of Namur (“Plateforme Technologique Morphologie – Imagerie”). This research used resources of the ELISE Service of the University of Namur. This Service is member of the “Plateforme Technologique SIAM”. The research leading to this work has received partial funding from the European Union Seventh Framework Program under grant agreement No 604391 Graphene Flagship. Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number c:irua:129193 Serial 3958  
Permanent link to this record
 

 
Author Cabana, L.; Ke, X.; Kepić, D.; Oro-Solé, J.; Tobías-Rossell, E.; Van Tendeloo, G.; Tobias, G. pdf  url
doi  openurl
  Title The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 93 Issue 93 Pages 1059-1067  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Purification and shortening of carbon nanotubes have attracted a great deal of attention to increase the biocompatibility and performance of the material in several applications. Steam treatment has been employed to afford both purification and shortening of multi-walled carbon nanotubes (MWCNTs). Steam removes the amorphous carbon and the graphitic particles that sheath catalytic nanoparticles, facilitating their removal by a subsequent acidic wash. The amount of metal impurities can be reduced in this manner below 0.01 wt.%. The length distribution of MWCNTs after different steam treatment times (from 1 h to 15 h) was assessed by box plot analysis of the electron microscopy data. Samples with a median length of 0.57 μm have been prepared with the reported methodology while preserving the integrity of the tubular wall structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos (up) 000360292100108 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 17 Open Access  
  Notes 312483 Esteem2; 290023 Raddel; esteem2_ta Approved Most recent IF: 6.337; 2015 IF: 6.196  
  Call Number c:irua:127691 c:irua:127691 Serial 2921  
Permanent link to this record
 

 
Author Ghosh, S.; Gaspari, R.; Bertoni, G.; Spadaro, M.C.; Prato, M.; Turner, S.; Cavalli, A.; Manna, L.; Brescia, R. pdf  url
doi  openurl
  Title Pyramid-Shaped Wurtzite CdSe Nanocrystals with Inverted Polarity Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 8537-8546  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report on pyramid-shaped wurtzite cadmium selenide (CdSe) nanocrystals (NCs), synthesized by hot injection in the presence of chloride ions as shape-directing agents, exhibiting reversed crystal polarity compared to former reports. Advanced transmission electron microscopy (TEM) techniques (image-corrected high-resolution TEM with exit wave reconstruction and probe-corrected high-angle annular dark field-scanning TEM) unequivocally indicate that the triangular base of the pyramids is the polar (0001) facet and their apex points toward the [0001] direction. Density functional theory calculations, based on a simple model of binding of Cl(-) ions to surface Cd atoms, support the experimentally evident higher thermodynamic stability of the (0001) facet over the (0001) one conferred by Cl(-) ions. The relative stability of the two polar facets of wurtzite CdSe is reversed compared to previous experimental and computational studies on Cd chalcogenide NCs, in which no Cl-based chemicals were deliberately used in the synthesis or no Cl(-) ions were considered in the binding models. Self-assembly of these pyramids in a peculiar clover-like geometry, triggered by the addition of oleic acid, suggests that the basal (polar) facet has a density and perhaps type of ligands significantly different from the other three facets, since the pyramids interact with each other exclusively via their lateral facets. A superstructure, however with no long-range order, is observed for clovers with their (0001) facets roughly facing each other. The CdSe pyramids were also exploited as seeds for CdS pods growth, and the peculiar shape of the derived branched nanostructures clearly arises from the inverted polarity of the seeds.  
  Address Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT) , via Morego 30, I-16163 Genova, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000360323300085 Publication Date 2015-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 16 Open Access  
  Notes PMID:26203791 Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:127807 Serial 3956  
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Pattison, P.; Meert, K.W.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J. pdf  url
doi  openurl
  Title KEu(MoO4)2 : polymorphism, structures, and luminescent properties Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 5519-5530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper, with the example of two different polymorphs of KEu(MoO4)2, the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 9231203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q = 0.56821(2)a*0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b = 5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000360323700011 Publication Date 2015-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 26 Open Access  
  Notes 278510 Vortex; Fwo G039211n; G004413n ECASJO_; Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127244 Serial 3537  
Permanent link to this record
 

 
Author Hoek, M.; Coneri, F.; Poccia, N.; Renshaw Wang, X.; Ke, X.; Van Tendeloo, G.; Hilgenkamp, H. pdf  url
doi  openurl
  Title Strain accommodation through facet matching in La1.85Sr0.15CuO4/Nd1.85Ce0.15CuO4 ramp-edge junctions Type A1 Journal article
  Year 2015 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 3 Issue 3 Pages 086101  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scanning nano-focused X-ray diffraction and high-angle annular dark-field scanning transmission electron microscopy are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85Ce0.15CuO4 and superconducting hole-doped La1.85Sr0.15CuO4 thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85Sr0.15CuO4 with a 3.3° tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000360656800009 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 4 Open Access  
  Notes 312483 Esteem2; 246791 Countatoms; esteem2_jra2 Approved Most recent IF: 4.335; 2015 IF: NA  
  Call Number c:irua:127690 c:irua:127690 Serial 3163  
Permanent link to this record
 

 
Author Wang, Y.; Belén Serrano, A.; Sentosun, K.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Stabilization and encapsulation of gold nanostars mediated by dithiols Type A1 Journal article
  Year 2015 Publication Small Abbreviated Journal Small  
  Volume 11 Issue 11 Pages 4314-4320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface chemistry plays a pivotal role in regulating the morphology of nanoparticles, maintaining colloidal stability, and mediating the interaction with target analytes toward practical applications such as surface-enhanced Raman scattering (SERS)-based sensing and imaging. The use of a binary ligand mixture composed of 1,4-benzenedithiol (BDT) and hexadecyltrimethylammonium chloride (CTAC) to provide gold nanostars with long-term stability is reported. This is despite BDT being a bifunctional ligand, which usually leads to bridging and loss of colloidal stability. It is found however that neither BDT nor CTAC alone are able to provide sufficient colloidal and chemical stability. BDT-coated Au nanostars are additionally used as seeds to direct the encapsulation with a gold outer shell, leading to the formation of unusual nanostructures including semishell-coated gold nanostars, which are characterized by high-resolution electron microscopy and electron tomography. Finally, BDT is exploited as a probe to reveal the enhanced local electric fields in the different nanostructures, showing that the semishell configuration provides significantly high SERS signals as compared to other coreshell configurations obtained during seeded growth, including full shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000360852900009 Publication Date 2015-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 36 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643; 2015 IF: 8.368  
  Call Number c:irua:127571 Serial 3136  
Permanent link to this record
 

 
Author Gorle, C.; Garcia Sánchez, C.; Iaccarino, G. pdf  doi
openurl 
  Title Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows Type A1 Journal article
  Year 2015 Publication Journal of wind engineering and industrial aerodynamics T2 – 6th International Symposium on Computational Wind Engineering (CWE), JUN 08-12, 2014, Hamburg, GERMANY Abbreviated Journal J Wind Eng Ind Aerod  
  Volume 144 Issue 144 Pages 202-212  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reynolds-averaged Navier-Stokes (RANS) simulations are often used in the wind engineering practice for the analysis of turbulent bluff body flows. An approach that allows identifying the uncertainty related to the use of reduced-order turbulence models in RANS simulations would significantly increase the confidence in the use of simulation results as a basis for design decisions. In the present study we apply a strategy that enables quantifying these uncertainties by introducing perturbations in the Reynolds stress tensor to simulations of the flow in downtown Oklahoma City. The method is combined with a framework to quantify uncertainties in the inflow wind direction and intensity, and the final result of the UQ approach is compared to field measurement data for the velocity at 13 locations in the downtown area. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos (up) 000360874900023 Publication Date 2015-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.049 Times cited 22 Open Access  
  Notes Approved Most recent IF: 2.049; 2015 IF: 1.414  
  Call Number UA @ lucian @ c:irua:127843 Serial 4230  
Permanent link to this record
 

 
Author Lobato, I.; Van Dyck, D. pdf  doi
openurl 
  Title MULTEM : a new multislice program to perform accurate and fast electron diffraction and imaging simulations using graphics processing units with CUDA Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 156 Issue 156 Pages 9-17  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The main features and the GPU implementation of the MULTEM program are presented and described. This new program performs accurate and fast multislice simulations by including higher order expansion of the multislice solution of the high energy Schrodinger equation, the correct subslicing of the three-dimensional potential and top-bottom surfaces. The program implements different kinds of simulation for CTEM, STEM, ED, PED, CBED, ADF-TEM and ABF-HC with proper treatment of the spatial and temporal incoherences. The multislice approach described here treats the specimen as amorphous material which allows a straightforward implementation of the frozen phonon approximation. The generalized transmission function for each slice is calculated when is needed and then discarded. This allows us to perform large simulations that can include millions of atoms and keep the computer memory requirements to a reasonable level. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000361001800003 Publication Date 2015-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 32 Open Access  
  Notes Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number UA @ lucian @ c:irua:127848 Serial 4209  
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A. pdf  url
doi  openurl
  Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 156 Issue 156 Pages 29-36  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000361001800006 Publication Date 2015-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 11 Open Access  
  Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485  
Permanent link to this record
 

 
Author van Aarle, W.; Palenstijn, W.J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K.J.; Sijbers, J. pdf  url
doi  openurl
  Title The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 157 Issue 157 Pages 35-47  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract We present the ASTRA Toolbox as an open platform for 3D image reconstruction in tomography. Most of the software tools that are currently used in electron tomography offer limited flexibility with respect to the geometrical parameters of the acquisition model and the algorithms used for reconstruction. The ASTRA Toolbox provides an extensive set of fast and flexible building blocks that can be used to develop advanced reconstruction algorithms, effectively removing these limitations. We demonstrate this flexibility, the resulting reconstruction quality, and the computational efficiency of this toolbox by a series of experiments, based on experimental dual-axis tilt series.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000361002400005 Publication Date 2015-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 562 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the iMinds ICONMetroCT project,the IWT SBO Tom Food project and from the Netherlands Organisation for Scientific Research (NWO),Project no. 639.072.005. Networking support was provided by the EXTREMA COST Action MP 1207. Sara Bals acknowledges financial support from the European Research Council (ERC Starting Grant #335078 COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:127834 Serial 3974  
Permanent link to this record
 

 
Author Deyneko, D.V.; Morozov, V.A.; Hadermann, J.; Savon, A.E.; Spassky, D.A.; Stefanovich, S.Y.; Belik, A.A.; Lazoryak, B.I. pdf  doi
openurl 
  Title A novel red Ca8.5Pb0.5Eu(PO4)7 phosphor for light emitting diodes application Type A1 Journal article
  Year 2015 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 647 Issue 647 Pages 965-972  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ca9-xPbxEu(PO4)(7) (0 <= x <= 1) solid solutions with a whitlockite-type (or beta-Ca-3(PO4)(2)-type) structure (sp.gr. R3c) were prepared by a standard solid-state method in air. Their luminescent properties under near-ultraviolet (n-UV) light were investigated. Excitation spectra of Ca9-xPbxEu(PO4)(7) showed the strongest absorption at about 395 nm, which matches well with commercially available n-UV-emitting GaN-based LED chips. Emission spectra indicated an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with a maximum in the intensity for Ca8.5Pb0.5Eu(PO4)(7). The emission intensity of Ca8.5Pb0.5Eu(PO4)(7) was about 1.8 times higher than that of a Ca9Eu(PO4)(7) phosphor. We suggest that the introduction of Pb2+ is an efficient approach to enhance luminescence properties of such phosphors. We clarified the influence of the Ca2+/Pb2+ substitution on intensities of three bands for the D-5(0) -> F-7(0) transition in excitation spectra of Ca9-xPbxEu(PO4)(7). In addition, we found a reversible first-order phase transition from R3c to R (3) over barc symmetry by second-harmonic generation in the range from 753 K (x = 1) to 846 K (x = 0). (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000361156400135 Publication Date 2015-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.133; 2015 IF: 2.999  
  Call Number UA @ lucian @ c:irua:128720 Serial 4215  
Permanent link to this record
 

 
Author Zhong, R.; Peng, L.; de Clippel, F.; Gommes, C.; Goderis, B.; Ke, X.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. pdf  doi
openurl 
  Title An eco-friendly soft template synthesis of mesostructured silica-carbon nanocomposites for acid catalysis Type A1 Journal article
  Year 2015 Publication ChemCatChem Abbreviated Journal Chemcatchem  
  Volume 7 Issue 7 Pages 3047-3058  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of ordered mesoporous silica-carbon composites was explored by employing TEOS and sucrose as the silica and carbon precursor respectively, and the triblock copolymer F127 as a structure-directing agent via an evaporation-induced self-assembly (EISA) process. It is demonstrated that the synthesis procedures allow for control of the textural properties and final composition of these silica-carbon nanocomposites via adjustment of the effective SiO2/C weight ratio. Characterization by SAXS, N-2 physisorption, HRTEM, TGA, and C-13 and Si-29 solid-state MAS NMR show a 2D hexagonal mesostructure with uniform large pore size ranging from 5.2 to 7.6nm, comprising of separate carbon phases in a continuous silica phase. Ordered mesoporous silica and non-ordered porous carbon can be obtained by combustion of the pyrolyzed nanocomposites in air or etching with HF solution, respectively. Sulfonic acid groups can be readily introduced to such kind of silica-carbon nanocomposites by a standard sulfonation procedure with concentrated sulfuric acid. Excellent acid-catalytic activities and selectivities for the dimerization of styrene to produce 1,3-diphenyl-1-butene and dimerization of -methylstyrene to unsaturated dimers were demonstrated with the sulfonated materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000361189400037 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.803 Times cited 13 Open Access  
  Notes Approved Most recent IF: 4.803; 2015 IF: 4.556  
  Call Number UA @ lucian @ c:irua:127836 Serial 4138  
Permanent link to this record
 

 
Author Papageorgiou, D.G.; Filippousi, M.; Pavlidou, E.; Chrissafis, K.; Van Tendeloo, G.; Bikiaris, D. pdf  url
doi  openurl
  Title Effect of clay modification on structureproperty relationships and thermal degradation kinetics of \beta-polypropylene/clay composite materials Type A1 Journal article
  Year 2015 Publication Journal of thermal analysis and calorimetry Abbreviated Journal J Therm Anal Calorim  
  Volume 122 Issue 122 Pages 393-406  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The influence of neat and organically modified montmorillonite on the structureproperty relationships of a β-nucleated polypropylene matrix has been thoroughly investigated. High-angle annular dark field scanning transmission electron microscopy revealed that the organic modification of clay facilitated the dispersion of the clay, while X-ray diffractograms showed the α-nucleating effect of the clays on the β-nucleated matrix. The results from tensile tests showed that the organic modification of MMT affected profoundly only the tensile strength at yield and at break. The effect of the organic modification of the clay on the thermal stability of the composites was finally evaluated by thermogravimetric analysis, where the samples filled with oMMT decomposed faster than the ones filled with neat MMT, due to the decomposition of the organic salts that were initially used for the modification of MMT. A kinetics study of the thermal degradation of the composites was also performed, in order to export additional conclusions on the activation energy of the samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos (up) 000361431200042 Publication Date 2015-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-6150;1588-2926; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.953 Times cited 7 Open Access  
  Notes 262348 Esmi Approved Most recent IF: 1.953; 2015 IF: 2.042  
  Call Number c:irua:127492 Serial 805  
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 158 Issue 158 Pages 81-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000361574800011 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126675 c:irua:126675 Serial 988  
Permanent link to this record
 

 
Author Chen, J.J.; Wang, Q.; Meng, J.; Ke, X.; Van Tendeloo, G.; Bie, Y.Q.; Liu, J.; Liu, K.; Liao, Z.M.; Sun, D.; Yu, D.; pdf  url
doi  openurl
  Title Photovoltaic effect and evidence of carrier multiplication in graphene vertical homojunctions with asymmetrical metal contacts Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 8851-8858  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphene exhibits exciting potentials for high-speed wideband photodetection and high quantum efficiency solar energy harvest because of its broad spectral absorption, fast photoelectric response, and potential carrier multiplication. Although photocurrent can be generated near a metalgraphene interface in lateral devices, the photoactive area is usually limited to a tiny one-dimensional line-like interface region. Here, we report photoelectric devices based on vertical graphene two-dimensional homojunction, which is fabricated via vertically stacking four graphene monolayers with asymmetric metal contacts. The devices show excellent photovoltaic output with excitation wavelength ranging from visible light to mid-infrared. The wavelength dependence of the internal quantum efficiency gives direct evidence of the carrier multiplication effect in graphene. The simple fabrication process, easy scale-up, large photoresponsive active area, and broadband response of the vertical graphene device are very promising for practical applications in optoelectronics and photovoltaics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000361935800023 Publication Date 2015-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:127689 Serial 2615  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: