toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P. url  doi
openurl 
  Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 29 Issue 29 Pages 9340-9350  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000415911600047 Publication Date 2017-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 20 Open Access OpenAccess  
  Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880  
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G. url  doi
openurl 
  Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 29 Issue 20 Pages 8901-8913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000413884900037 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147432 Serial 4886  
Permanent link to this record
 

 
Author Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A.M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Synthesis of Li-Rich NMC : a comprehensive study Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 29 Issue 23 Pages 9923-9936  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Li-rich NMC are considered nowadays as one of the most promising candidates for high energy density cathodes. One significant challenge is nested in adjusting their synthesis conditions to reach optimum electrochemical performance, but no consensus has been reached yet on the ideal synthesis protocol. Herein, we revisited the elaboration of Li-rich NMC electrodes by focusing on the science involved through each synthesis steps using carbonate Ni0.1625Mn0.675Co0.1625CO3 precursor coprecipitation combined with solid state synthesis. We demonstrated the effect of precursors concentration on the kinetics of the precipitation reaction and provided clues to obtain spherically agglomerated NMC carbonates of different sizes. Moreover, we highlighted the strong impact of the Li2CO3/NMC carbonate ratio on the morphology and particles size of Li-rich NMC and subsequently on their electrochemical performance. Ratio of 1.35 was found to reproducibly give the best performance with namely a first discharge capacity of 269 mAh g(-1) and capacity retention of 89.6% after 100 cycles. We hope that our results, which reveal how particle size, morphology, and phase composition affect the materials electrochemical performance, will help in reconciling literature data while providing valuable fundamental information for up scaling approaches.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000418206600010 Publication Date 2017-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 23 Open Access Not_Open_Access  
  Notes ; The authors acknowledge the French Research Network on Electrochemical Energy Storage (RS2E). V.P and J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. The authors are thankful to Dr. G. Rousse for the help on Rietveld refinements. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:148530 Serial 4899  
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Vandekerkhove, A.; Willhammar, T.; Bals, S.; Maes, A.; Martens, J.A.; Kirschhock, C.E.A.; Breynaert, E. url  doi
openurl 
  Title Postsynthetic high-alumina zeolite crystal engineering in organic free hyper-alkaline media Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 29 Issue 29 Pages 629-638  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Postsynthetic modification of high -alumina zeolites in hyper alkaline media can be tailored toward alteration of framework topology, crystal size and morphology, or desired Si/A1 ratio. FAU, EMT, MAZ, KFI, HEU, and LTA starting materials were treated with 1.2 M MOH (M = Na, K, RE, or Cs), leading to systematic ordered porosity or fully transformed frameworks with new topology and adjustable Si/Al ratio. In addition to the versatility of this tool for zeolite crystal engineering, these alterations improve understanding of the crystal chemistry. Such knowledge can guide further development in zeolite crystal engineering. Postsynthetic alteration also provides insight on the long-term stability of aluminosilicate zeolites that are used as a sorption sink in concrete -based waste disposal facilities in harsh alkaline conditions.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000392891700021 Publication Date 2016-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 16 Open Access OpenAccess  
  Notes ; This work was supported by long-term structural funding by the Flemish Government (Methusalem grant of Prof. J. Martens) and by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). S.B. acknowledges financial support from European Research Council (ERC Advanced Grant No. 24691-COUNTATOMS, ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:152674UA @ admin @ c:irua:152674 Serial 5145  
Permanent link to this record
 

 
Author Scarabelli, L.; Schumacher, M.; Jimenez de Aberasturi, D.; Merkl, J.‐P.; Henriksen‐Lacey, M.; Milagres de Oliveira, T.; Janschel, M.; Schmidtke, C.; Bals, S.; Weller, H.; Liz‐Marzán, L.M. pdf  url
doi  openurl
  Title Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume (down) 29 Issue 29 Pages 1809071  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The implementation of plasmonic nanoparticles in vivo remains hindered by important limitations such as biocompatibility, solubility in biological fluids, and physiological stability. A general and versatile protocol is presented, based on seeded emulsion polymerization, for the controlled encapsulation of gold and silver nanoparticles. This procedure enables the encapsulation of single nanoparticles as well as nanoparticle clusters inside a protecting polymer shell. Specifically, the efficient coating of nanoparticles of both metals is demonstrated, with final dimensions ranging between 50 and 200 nm, i.e., sizes of interest for bio-applications. Such hybrid nanocomposites display extraordinary stability in high ionic strength and oxidizing environments, along with high cellular uptake, and low cytotoxicity. Overall, the prepared nanostructures are promising candidates for plasmonic applications under biologically relevant conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000467109100024 Publication Date 2019-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 19 Open Access OpenAccess  
  Notes L.S. and M.S. contributed equally to this work. This work was supported by the Spanish MINECO (Grant MAT2017-86659-R), by the German Research Foundation (DFG, Grant LA 2901/1-1) and by the European Research Council (Grant 335078 COLOURATOM to S.B). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M). L.S. acknowledges funding from the American-Italian Cancer Foundation through a Post-Doctoral Research Fellowship. D.J.d.A. thanks MINECO for a Juan de la Cierva fellowship (IJCI-2015-24264). J.P.M. was financed by Verband der Chemischen Industrie e.V. (VCI). The authors thank Dr. Artur Feld, Dr. Andreas Kornowski and Stefan Werner (Institute of Physical Chemistry, University of Hamburg) for their support. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160710 Serial 5190  
Permanent link to this record
 

 
Author Nerl, H.C.; Pokle, A.; Jones, L.; Müller‐Caspary, K.; Bos, K.H.W.; Downing, C.; McCarthy, E.K.; Gauquelin, N.; Ramasse, Q.M.; Lobato, I.; Daly, D.; Idrobo, J.C.; Van Aert, S.; Van Tendeloo, G.; Sanvito, S.; Coleman, J.N.; Cucinotta, C.S.; Nicolosi, V. pdf  url
doi  openurl
  Title Self‐Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume (down) 29 Issue 37 Pages 1903120  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000478478400001 Publication Date 2019-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 1 Open Access OpenAccess  
  Notes European Research Council, 2DNanoCaps TC2D CoG 3D2DPrint CoG Picometrics grant agreement No. 770887; Engineering and Physical Sciences Research Council, EP/P033555/1 EP/R029431 ; Science Foundation Ireland, HPC1600932 ; Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:161901 Serial 5362  
Permanent link to this record
 

 
Author Prabhakara, V.; Nuytten, T.; Bender, H.; Vandervorst, W.; Bals, S.; Verbeeck, J. pdf  url
doi  openurl
  Title Linearized radially polarized light for improved precision in strain measurements using micro-Raman spectroscopy Type A1 Journal article
  Year 2021 Publication Optics Express Abbreviated Journal Opt Express  
  Volume (down) 29 Issue 21 Pages 34531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in semiconductor transistor devices has become vital in the semiconductor industry due to the ever-increasing need for performance enhancement at the nanoscale. Raman spectroscopy is a non-invasive measurement technique with high sensitivity to mechanical stress that does not require any special sample preparation procedures in comparison to characterization involving transmission electron microscopy (TEM), making it suitable for inline strain measurement in the semiconductor industry. Indeed, at present, strain measurements using Raman spectroscopy are already routinely carried out in semiconductor devices as it is cost effective, fast and non-destructive. In this paper we explore the usage of linearized radially polarized light as an excitation source, which does provide significantly enhanced accuracy and precision as compared to linearly polarized light for this application. Numerical simulations are done to quantitatively evaluate the electric field intensities that contribute to this enhanced sensitivity. We benchmark the experimental results against TEM diffraction-based techniques like nano-beam diffraction and Bessel diffraction. Differences between both approaches are assigned to strain relaxation due to sample thinning required in TEM setups, demonstrating the benefit of Raman for nondestructive inline testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708940500144 Publication Date 2021-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 2 Open Access OpenAccess  
  Notes Horizon 2020 Framework Programme, 823717 – ESTEEM3 ; GOA project, “Solarpaint” ; Herculesstichting;; esteem3jra; esteem3reported; Approved Most recent IF: 3.307  
  Call Number EMAT @ emat @c:irua:182472 Serial 6816  
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeeck, J.; Van Aert, S. url  doi
openurl 
  Title Phase object reconstruction for 4D-STEM using deep learning Type A1 Journal article
  Year 2023 Publication Microscopy and microanalysis Abbreviated Journal  
  Volume (down) 29 Issue 1 Pages 395-407  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full-phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033590800038 Publication Date 2023-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 1 Open Access OpenAccess  
  Notes We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 770887 PICOMETRICS) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823717 ESTEEM3. J.V. and S.V.A acknowledge funding from the University of Antwerp through a TOP BOF project. The direct electron detector (Merlin, Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. This work was supported by the FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). Approved Most recent IF: 2.8; 2023 IF: 1.891  
  Call Number UA @ admin @ c:irua:198221 Serial 8912  
Permanent link to this record
 

 
Author Volkov, V.V.; van Heurck, C.; van Landuyt, J.; Amelinckx, S.; Zhukov, E.G.; Polulyak, E.S.; Novotortsev, V.M. pdf  doi
openurl 
  Title Electron microscopy and X-ray study of the growth of FeCr2S4 spinel single crystals by chemical vapour transport Type A1 Journal article
  Year 1993 Publication Crystal research and technology Abbreviated Journal Cryst Res Technol  
  Volume (down) 28 Issue 8 Pages 1051-1061  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The growth features of FeCr2S4 spinel single crystals prepared by chemical vapour transport were studied by means of scanning electron microscopy, transmission electron microscopy, high resolution electron microscopy, electron diffraction and X-ray analysis. Our results indicate that the epitaxial growth of the new phases FeCr7S12 and FeCr8S12, both based on the NiAs structure, can essentially inhibit the growth of large FeCr2S4 spinel single crystals in the octahedral habit. The new phases are fully characterised and the effects of defect ordering in these new phases are also reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1993MN86700003 Publication Date 2007-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0232-1300;1521-4079; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.935 Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:6788 Serial 952  
Permanent link to this record
 

 
Author Cayado, P.; De Keukeleere, K.; Garzón, A.; Perez-Mirabet, L.; Meledin, A.; De Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; Coll, M.; Ricart, S.; Palau, A.; Gázquez, J.; Ros, J.; Van Tendeloo, G.; Van Driessche, I.; Puig, T.; Obradors, X. pdf  url
doi  openurl
  Title Epitaxial YBa2Cu3O7−xnanocomposite thin films from colloidal solutions Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume (down) 28 Issue 28 Pages 124007  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A methodology of general validity to prepare epitaxial nanocomposite films based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles ( ex situ nanocomposites) is reported. The trifluoroacetate (TFA) metal–organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa 2 Cu 3 O 7 (YBCO) films. For this reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO 2 and ZrO 2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis of these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticles pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents ( J c ∼ 3–4 MA cm −2 at 77 K) were reached, indicating no current limitation effects associated with epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirm the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366288100009 Publication Date 2015-11-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 32 Open Access  
  Notes All authors acknowledge the EU (EU-FP7 NMP-LA-2012-280432 EUROTAPES project). ICMAB acknowledges MINECO (MAT2014-51778-C2-1-R) and Generalitat de Catalunya (2014SGR 753 and Xarmae). UGhent acknowledges the Special Research Fund (BOF), the Research Foundation Flanders (FWO) and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT). TEM microscopy work was conducted in the Catalan Institute of Nanoscience and Nanotechnology (ICN2). The authors acknowledge the ICN2 Electron Microscopy Division for offering access to their instruments and expertise. Part of the STEM microscopy work was conducted in 'Laboratorio de Microscopias Avanzadas' at the Instituto de Nanociencia de Aragon—Universidad de Zaragoza. The authors acknowledge the LMA-INA for offering access to their instruments and expertise. JG and MC also acknowledge the Ramon y Cajal program (RYC-2012-11709 and RYC-2013-12448 respectively). Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:129593 Serial 3966  
Permanent link to this record
 

 
Author Wilmotte, A.; Turner, S.; van de Peer, Y.; Pace, N.R. doi  openurl
  Title Taxonomical study of marine oscillatorian strains (Cyanobacteria) with narrow trichomes: 2: nucleotide sequence analysis of the 16S ribosomal RNA Type A1 Journal article
  Year 1992 Publication Journal Of Phycology Abbreviated Journal J Phycol  
  Volume (down) 28 Issue Pages 828-838  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Baltimore, Md Editor  
  Language Wos A1992KH06800016 Publication Date 2004-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3646;1529-8817; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.844 Times cited 58 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:11368 Serial 3470  
Permanent link to this record
 

 
Author Molina-Luna, L.; Duerrschnabel, M.; Turner, S.; Erbe, M.; Martinez, G.T.; Van Aert, S.; Holzapfel, B.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7−δthin films Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume (down) 28 Issue 28 Pages 115009  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7−δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm−2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (~1.5 nm) and the determination of 0.25 nm dislocation cores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366193000018 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 4 Open Access  
  Notes The authors thank financial support from the European Union under the Framework 6 program as a contract for an Integrated Infrastructure Initiative (References No. 026019 ESTEEM) and by the EUFP6 Research Project “NanoEngineered Superconductors for Power Applications” NESPA no. MRTN-CT-2006-035619. This work was supported by funding from the European Research Council under the Seventh Framework Programme (FP7). L.M.L, S.T. and G.V.T acknowledge ERC grant N°246791 – COUNTATOMS and funding under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, as well as the EC project EUROTAPES. G.T.M. and S.V.A acknowledge financial support from the Fund for Scientific Research-Flanders (Reference G.0064.10N and G.0393.11N). M.D. acknowledges financial support from the LOEWE research cluster RESPONSE (Hessen, Germany). M.E. has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° NMP-LA-2012-280432.; esteem2jra2; esteem2jra3 Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:129199 c:irua:129199 Serial 3942  
Permanent link to this record
 

 
Author Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B. pdf  doi
openurl 
  Title BaHfO3artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume (down) 28 Issue 28 Pages 114002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7−x (REBCO;RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, Jc, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm−2 with Jc values of up to 5.0 MA cm−2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field Jc measurements demonstrate high pinning force maxima of around 4 GN m−3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent Jc measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366193000003 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 36 Open Access  
  Notes Experimental work was mainly done at IFW Dresden. We thank Juliane Scheiter and Dr Jens Ingolf Mönch of IFW Dresden for technical assistance. The research leading to these results received funding from EUROTAPES, a collaborative project funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP-LA-2012-280 432. L Molina-Luna and G Van Tendeloo acknowledge funding from the European Research Council (ERC grant nr. 24 691-COUNTATOMS). Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:129200 Serial 3941  
Permanent link to this record
 

 
Author Altantzis, T.; Yang, Z.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title Thermal Stability of CoAu13Binary Nanoparticle Superlattices under the Electron Beam Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 28 Issue 28 Pages 716-719  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract One primary goal of self-assembly in nanoscale regime is to implement multifunctional binary nanoparticle superlattices into practical use. In the last decade, considerable effort has been put into the fabrication of binary nanoparticle superlattices with controllable structure and stoichiometry. However, limited effort has been made in order to improve the stability of these binary nanoparticle superlattices, which is a prerequisite for their potential application. In this work, we demonstrate that the carbon deposition from specimen contamination can play an auxiliary role during the heat treatment of binary nanoparticle superlattices. With the in-situ carbon matrix formation, the thermal stability of CoAu 13 binary nanoparticle superlattices is unambiguously enhanced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370112200007 Publication Date 2016-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 10 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by theEuropean Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number c:irua:131908 Serial 4040  
Permanent link to this record
 

 
Author Lottini, E.; López-Ortega, A.; Bertoni, G.; Turner, S.; Meledina, M.; Van Tendeloo, G.; de Julián Fernández, C.; Sangregorio, C. url  doi
openurl 
  Title Strongly Exchange Coupled Core|Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 28 Issue 28 Pages 4214-4222  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Antiferromagnetic(AFM)|ferrimagnetic(FiM) core|shell (CS) nanoparticles (NPs) of formula Co0.3Fe0.7O|Co0.6Fe2.4O4 with mean diameter from 6 to 18 nm have been synthesized through a one-pot thermal decomposition process. The CS structure has been generated by topotaxial oxidation of the core region, leading to the formation of a highly monodisperse single inverted AFM|FiM CS system with variable AFM-core diameter and constant FiM-shell thickness (~2 nm). The sharp interface, the high structural matching between both phases and the good crystallinity of the AFM material have been structurally demonstrated and are corroborated by the robust exchange-coupling between AFM and FiM phases, which gives rise to one among the largest exchange bias (HE) values ever reported for CS NPs (8.6 kOe) and to a strongly enhanced coercive field (HC). In addition, the investigation of the magnetic properties as a function of the AFM-core size (dAFM), revealed a non-monotonous trend of both HC and HE, which display a maximum value for dAFM = 5 nm (19.3 and 8.6 kOe, respectively). These properties induce a huge improvement of the capability of storing energy of the material, a result which suggests that the combination of highly anisotropic AFM|FiM materials can be an efficient strategy towards the realization of novel Rare Earth-free permanent magnets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378973100013 Publication Date 2016-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 48 Open Access  
  Notes This work was supported by the EU-FP7 through NANOPYME Project (No. 310516) and Integrated Infrastructure Initiative ESTEEM2 (No. 312483). S.T. gratefully acknowledges the FWO Flanders for a post-doctoral scholarship.; esteem2_ta Approved Most recent IF: 9.466  
  Call Number c:irua:134084 c:irua:134084 Serial 4092  
Permanent link to this record
 

 
Author Hill, E.H.; Claes, N.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Layered Silicate Clays as Templates for Anisotropic Gold Nanoparticle Growth Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 28 Issue 28 Pages 5131-5139  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Clay minerals are abundant natural materials arising in the presence of water and are composed of small particles of different sizes and shapes. The interlamellar space between layered silicate clays can also be used to host a variety of different organic and inorganic guest molecules or particles. Recent studies of clay−metal hybrids formed by impregnation of nanoparticles into the interlayer spaces of the clays have not demonstrated the ability for templated growth following the shape of the particles. Following this line of interest, a method for the synthesis of gold nanoparticles on the synthetic layered silicate clay laponite was developed. This approach can be used to make metal−clay nanoparticles with a variety of morphologies while retaining the molecular adsorption properties of the clay. The surface enhanced Raman scattering enhancement of these particles was also found to be greater than that obtained from other metal nanoparticles of a similar morphology, likely due to increased dye adsorption by the presence of the clay. The hybrid particles presented herein will contribute to further study of plasmonic

sensing, catalysis, dye aggregation, and novel composite materials.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380576700031 Publication Date 2016-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes This work has been supported by the European Research Council (ERC Advanced Grant No. 267867, PLASMAQUO). E.H.H. thanks the Spanish Ministry of Economy and Competitiveness for providing a Juan de la Cierva Fellowship (FJCI-2014-22598). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). We gratefully acknowledge A. B. Serrano-Montes for providing the seed-mediated Au nanostars.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number c:irua:135178 c:irua:135178 Serial 4117  
Permanent link to this record
 

 
Author Lebedev, O.I.; Turner, S.; Caignaert, V.; Cherepanov, V.A.; Raveau, B. pdf  url
doi  openurl
  Title Exceptional layered ordering of cobalt and iron in perovskites Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 28 Issue 28 Pages 2907-2911  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375810400005 Publication Date 2016-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 4 Open Access  
  Notes Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:133640 Serial 4178  
Permanent link to this record
 

 
Author van der Stam, W.; Gradmann, S.; Altantzis, T.; Ke, X.; Baldus, M.; Bals, S.; de Mello Donega, C. pdf  url
doi  openurl
  Title Shape Control of Colloidal Cu2-x S Polyhedral Nanocrystals by Tuning the Nucleation Rates Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 28 Issue 28 Pages 6705-6715  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for colloidal nanocrystals (NCs) with narrow size and shape distributions are of particular interest for the successful implementation of these nanocrystals into devices. Moreover, the preparation of NCs with well-defined crystal phases is of key importance. In this work, we show that Sn(IV)-thiolate complexes formed in situ strongly influence the nucleation and growth rates of colloidal Cu2-x S polyhedral NCs, thereby dictating their final size, shape, and crystal structure. This allowed us to successfully synthesize hexagonal bifrustums and hexagonal bipyramid NCs with low-chalcocite crystal structure, and hexagonal nanoplatelets with various thicknesses and aspect ratios with the djurleite crystal structure, by solely varying the concentration of Sn(IV)-additives (namely, SnBr4) in the reaction medium. Solution and solid-state 119Sn NMR measurements show that SnBr4 is converted in situ to Sn(IV)-thiolate complexes, which increase the Cu2-x S nucleation barrier without affecting the precursor conversion rates. This influences both the nucleation and growth rates in a concentration-dependent fashion and leads to a better separation between nucleation and growth. Our approach of tuning the nucleation and growth rates with in situ-generated Sn-thiolate complexes might have a more general impact due to the availability of various metal-thiolate complexes, possibly resulting in polyhedral NCs of a wide variety of metal-sulfide compositions.  
  Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University , P.O. Box 80000, 3508 TA Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000384399000037 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 27 Open Access OpenAccess  
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. M.B. also gratefully acknowledges NWO for funding the NMR infrastructure (Middle Groot program, grant number 700.58.102). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:135928 Serial 4285  
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M. T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J. T.-W.; Verbeeck, J.; Boyen, H.-G. url  doi
openurl 
  Title A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families Type A1 Journal article
  Year 2016 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume (down) 28 Issue 28 Pages 10701-10709  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and expedient gas quenching method is developed for the solution deposition of hybrid perovskite thin films. The method offers a reliable standard practice for the fabrication of a non-exhaustive variety of perovskites exhibiting excellent film morphology and commensurate high performance in both regular and inverted structured solar cell architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392728200014 Publication Date 2016-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4095 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 95 Open Access  
  Notes This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by Imec and FWO. M.T.K. acknowledges funding from the EPSRC project EP/M024881/1 “Organic-inorganic Perovskite Hybrid Tandem Solar Cells”. S.B. is a VINNMER Fellow and Marie Skłodowska-Curie Fellow. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors thank Johnny Baccus and Jan Mertens for technical support.; ECASJO_; Approved Most recent IF: 19.791; 2016 IF: NA  
  Call Number EMAT @ emat @ c:irua:138597 Serial 4318  
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M. pdf  url
doi  openurl
  Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
  Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume (down) 28 Issue 28 Pages 7578-7581  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387518500004 Publication Date 2016-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 10 Open Access  
  Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial 4320  
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D.M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J.M.; Obelleiro, F.; Bals, S.; Pérez-Juste, J.; Pastoriza-Santos, I. pdf  url
doi  openurl
  Title Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 28 Issue 28 Pages 9169-9180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Palladium nanoparticles (NPs) have received tremendous attention over the years due to their high catalytic activity for various chemical reactions. However, unlike other noble metal nanoparticles such as Au and Ag NPs, they exhibit poor plasmonic properties with broad extinction spectra and less scattering efficiency, and thus limiting their applications in the field of plasmonics. Therefore, it has been challenging to integrate tunable and strong plasmonic properties into catalytic Pd nanoparticles. Here we show that plasmonic Au@Pd nanorods (NRs) with relatively narrow and remarkably tunable optical responses in the NIR region can be obtained by directional growth of Pd on penta-twinned Au NR seeds. We found the presence of bromide ions facilitates the stabilization of facets for the directional growth of Pd shell to obtain Au@Pd nanorods (NR) with controlled length scales. Interestingly, it turns out the Au NR supported Pd NRs exhibit much narrow extinction compared to pure Pd NRs, which makes them suitable for plasmonic sensing applications. Moreover, these nanostructures display, to the best of our knowledge, one of the highest ensemble refractive index sensitivity values reported to date (1067 nm per refractive index unit, RIU). Additionally, we showed the application of such plasmonic Au@Pd NRs for localized surface plasmon resonance (LSPR)-based sensing of hydrogen both in solution as well as on substrate. Finally, we demonstrate the integration of excellent plasmonic properties in catalytic palladium enables the in situ monitoring of a reaction progress by surface-enhanced Raman scattering. We postulate the proposed approach to boost the plasmonic properties of Pd nanoparticles will ignite the design of complex shaped plasmonic Pd NPs to be used in various plasmonic applications such as sensing and in situ monitoring of various chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391080900036 Publication Date 2016-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 80 Open Access OpenAccess  
  Notes Funding from Spanish Ministerio de Economía y Competitividad (Grants MAT2013-45168-R and MAT2016-77809-R) is gratefully acknowledge. A.L.P. and S.B. acknowledge support by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). L. P. acknowledges the financial support from by the Alexander von Humboldt-Stiftung. V. M.-G. acknowledges the financial support from FPU scholarship from the Spanish MINECO. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:139513 Serial 4344  
Permanent link to this record
 

 
Author Singh, V.; Mehta, B.R.; Sengar, S.K.; Karakulina, O.M.; Hadermann, J.; Kaushal, A. pdf  doi
openurl 
  Title Achieving independent control of core diameter and carbon shell thickness in Pd-C core–shell nanoparticles by gas phase synthesis Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume (down) 28 Issue 29 Pages 295603  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pd-C core–shell nanoparticles with independently controllable core size and shell thickness are grown by gas phase synthesis. First, the core size is selected by electrical mobility values of charged particles, and second, the shell thickness is controlled by the concentration of carbon precursor gas. The carbon shell grows by adsorption of carbon precursor gas molecules on the surface of nanoparticles, followed by sintering. The presence of a carbon shell on Pd nanoparticles is potentially important in hydrogen-related applications operating at high temperatures or in catalytic reactions in acidic/aqueous environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404633200002 Publication Date 2017-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 1 Open Access Not_Open_Access  
  Notes VS is thankful to the All India Council for Technical Education, India, for providing assistantship under its Quality Improvement Programme. BRM gratefully acknowledges the support of the Nanomission Programme of the Department of Science and Technology (DST), India and Schlumberger Chair Professorship. BRM would also like to acknowledge the support from the project funded by BRNS, DAE, India. Approved Most recent IF: 3.44  
  Call Number EMAT @ emat @c:irua:144831 Serial 4712  
Permanent link to this record
 

 
Author Roxana Vlad, V.; Bartolome, E.; Vilardell, M.; Calleja, A.; Meledin, A.; Obradors, X.; Puig, T.; Ricart, S.; Van Tendeloo, G.; Usoskin, A.; Lee, S.; Petrykin, V.; Molodyk, A. pdf  doi
openurl 
  Title Inkjet printing multideposited YBCO on CGO/LMO/MgO/Y2O3/Al2O3/Hastelloy tape for 2G-coated conductors Type A1 Journal article
  Year 2018 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume (down) 28 Issue 4 Pages 6601805  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present the preparation of a new architecture of coated conductor by Inkjet printing of low fluorine YBa2Cu3O7-x (YBCO) on top of SuperOx tape: CGO/LMO/IBAD-MgO/Y2O3/Al-2 O-3/Hastelloy. A five-layered multideposited, 475-nm-thick YBCO film was structurally and magnetically characterized. A good texture was achieved using this combination of buffer layers, requiring only a 30-nm-thin ion-beam-assisted deposition (IBAD)-MgO layer. The LF-YBCO CC reaches self-field critical current density values of J(c)(GB) similar to NJ 15.9 MA/cm(2) (5 K), similar to 1.23 MA/cm(2) (77 K) corresponding to an I-c (77 K) = 58.4 A/cm-width. Inkjet printing offers a flexible and cost effective method for YBCO deposition, allowing patterning of structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000429010900001 Publication Date 2018-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.288 Times cited 2 Open Access Not_Open_Access  
  Notes ; This work was performed within the framework of the EUROTAPES Project FP7-NMP.2011.2.2-1 under Grant280432, funded by the EU. ICMAB research was financed by the Ministry of Economy and Competitiveness, and FEDER funds under Projects MAT2011-28874-C02-01, MAT2014-51778-C2-1-R, ENE2014-56109-C3-3-R, and Consolider Nanoselect CSD2007-00041, and by Generalitat de Catalunya (2009 SGR 770, 2015 SGR 753, and Xarmae). ICMAB acknowledges support from Severo Ochoa Program (MINECO) under Grant SEV-2015-0496. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150711 Serial 4971  
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Lao, M.; Meledin, A.; Eisterer, M.; Van Tendeloo, G.; Schultz, L.; Nielsch, K.; Huehne, R. pdf  doi
openurl 
  Title Thick secondary phase pinning-enhanced YBCO films on technical templates Type A1 Journal article
  Year 2018 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume (down) 28 Issue 4 Pages 8000505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The critical current I-c(B) of YBa2Cu3O7-delta (YBCO) coated conductors can be increased by growing thicker superconductor layers as well as improving the critical current density J(c)(B) by the incorporation of artificial pinning centers. We studied the properties of pulsed laser deposited BaHfO3 (BHO)-doped YBCO films with thicknesses of up to 5 mu m on buffered rolling-assisted biaxially textured Ni-5 at % W tape and alternating beam assisted deposition textured Yttrium-stabilized ZrO2 layers on stainless steel. X-Ray diffraction confirms the epitaxial growth of the superconductor on the buffered metallic template. BHO additions reduce the film porosity and lower the probability to grow misoriented grains, hence preventing the J(c) decrease observed in undoped YBCO films with thicknesses > 2 mu m. Thereby, a continuous increase in I-c at 77 K is achieved. A mixed structure of secondary phase nanorods and platelets with different orientations increases J(c)(B) in the full angular range and simultaneously lowers the J(c) anisotropy compared to pristine YBCO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000427623700001 Publication Date 2018-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.288 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement no. 280432. Max Sieger acknowledges funding by the Graduate Academy of the Technical University Dresden, funded by means of the Excellence Initiative by the German Federal and State Governments. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150712 Serial 4986  
Permanent link to this record
 

 
Author Dubourdieu, C.; Rauwel, E.; Roussel, H.; Ducroquet, F.; Hollaender, B.; Rossell, M.; Van Tendeloo, G.; Lhostis, S.; Rushworth, S. pdf  doi
openurl 
  Title Addition of yttrium into HfO2 films: microstructure and electrical properties Type A1 Journal article
  Year 2009 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume (down) 27 Issue 3 Pages 503-514  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The cubic phase of HfO2 was stabilized by addition of yttrium in thin films grown on Si/SiO2 by metal-organic chemical vapor deposition. The cubic phase was obtained for contents of 6.5 at. % Y or higher at a temperature as low as 470 °C. The complete compositional range (from 1.5 to 99.5 at. % Y) was investigated. The crystalline structure of HfO2 was determined from x-ray diffraction, electron diffraction, and attenuated total-reflection infrared spectroscopy. For cubic films, the continuous increase in the lattice parameter indicates the formation of a solid-solution HfO2Y2O3. As shown by x-ray photoelectron spectroscopy, yttrium silicate is formed at the interface with silicon; the interfacial layer thickness increases with increasing yttrium content and increasing film thickness. The dependence of the intrinsic relative permittivity r as a function of Y content was determined. It exhibits a maximum of ~30 for ~8.8 at. % Y. The cubic phase is stable upon postdeposition high-temperature annealing at 900 °C under NH3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000265739100016 Publication Date 2009-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 29 Open Access  
  Notes Approved Most recent IF: 1.374; 2009 IF: 1.297  
  Call Number UA @ lucian @ c:irua:77054 Serial 58  
Permanent link to this record
 

 
Author Lemmens, H.; Czank, M.; Van Tendeloo, G.; Amelinckx, S. pdf  doi
openurl 
  Title Defect structure of the low temperature α-cristobalite phase and the cristobalite <-> tridymite transformation in (Si-Ge)O2 Type A1 Journal article
  Year 2000 Publication Physics and chemistry of minerals Abbreviated Journal Phys Chem Miner  
  Volume (down) 27 Issue 6 Pages 386-397  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000087959700004 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0342-1791;1432-2021; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.521 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.521; 2000 IF: 1.513  
  Call Number UA @ lucian @ c:irua:54725 Serial 622  
Permanent link to this record
 

 
Author Adriaens, A.; Goossens, D.; Pijpers, A.; Van Tendeloo, G.; Gijbels, R. doi  openurl
  Title Dissolution study of potassium feldspars using hydrothermally treated sanidine as an example Type A1 Journal article
  Year 1999 Publication Surface and interface analysis Abbreviated Journal Surf Interface Anal  
  Volume (down) 27 Issue Pages 8-23  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000078240800002 Publication Date 2002-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-2421;1096-9918; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.132 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.132; 1999 IF: 1.705  
  Call Number UA @ lucian @ c:irua:22726 Serial 741  
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A. pdf  url
doi  openurl
  Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 27 Issue 27 Pages 5161-5169  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359499100003 Publication Date 2015-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127758 Serial 3977  
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Lambin, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title Electron diffraction and microscopy of single-wall carbon nanotube bundles produced by different methods Type A1 Journal article
  Year 2002 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume (down) 27 Issue 1 Pages 111-118  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000176258200013 Publication Date 2004-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 43 Open Access  
  Notes Approved Most recent IF: 1.461; 2002 IF: 1.741  
  Call Number UA @ lucian @ c:irua:54780 Serial 915  
Permanent link to this record
 

 
Author Wang, Y.; Sentosun, K.; Li, A.; Coronado-Puchau, M.; Sánchez-Iglesias, A.; Li, S.; Su, X.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (down) 27 Issue 27 Pages 8032-8040  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution,

we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy (3D TEM) revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer-Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities.

These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366223200023 Publication Date 2015-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 18 Open Access OpenAccess  
  Notes The authors thank Bart Goris for his help with electron tomography. This work was funded by the European Commission (Grant #310445-2, SAVVY). The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 267867- PLASMAQUO, ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). Wang Y. and Su X. would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore, for the financial support under the Grant JCO 14302FG096. M. C.-P. acknowledges an FPU scholarship from the Spanish Ministry of Education, Culture and Sports.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129598 c:irua:129598 Serial 3972  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: