|   | 
Details
   web
Records
Author Cangi, A.; Moldabekov, Z.A.; Neilson, D.
Title (up) International Conference on “Strongly Coupled Coulomb Systems” (July 24-29, 2022, Görlitz, Germany) Type Editorial
Year 2023 Publication Contributions to plasma physics Abbreviated Journal
Volume 63 Issue 9-10 Pages e202300110-3
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001100083800001 Publication Date 2023-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042; 1521-3986 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:201156 Serial 9051
Permanent link to this record
 

 
Author Couet, S.; Peelaers, H.; Trekels, M.; Houben, K.; Petermann, C.; Hu, M.Y.; Zhao, J.Y.; Bi, W.; Alp, E.E.; Menéndez, E.; Partoens, B.; Peeters, F.M.; Van Bael, M.J.; Vantomme, A.; Temst, K.;
Title (up) Interplay between lattice dynamics and superconductivity in Nb3Sn thin films Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 4 Pages 045437-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the link between superconductivity and atomic vibrations in Nb3Sn films with a thickness ranging from 10 to 50 nm. The challenge of measuring the phonon density of states (PDOS) of these films has been tackled by employing the technique of nuclear inelastic scattering by Sn-119 isotopes to reveal the Sn-partial phonon density of states. With the support of ab initio calculations, we evaluate the effect of reduced film thickness on the PDOS. This approach allows us to estimate the changes in superconducting critical temperature T-c induced by phonon confinement, which turned out to be limited to a few tenths of K. The presented method is successful for the Nb3Sn system and paves the way for more systematic studies of the role of phonon confinement in Sn-containing superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322529900004 Publication Date 2013-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; The authors would like to cordially thank Dr. Rudolf Ruffer from the nuclear resonant scattering group of the ESRF for the support and gratefully acknowledge the ESRF for providing beamtime for the preliminary phonon study. S. C., K. H., and E. M. thank the Flemish Science Foundation (FWO-Vl) for their personal fellowship. This work was supported by FWO-Vl, the Methusalem program of the Flemish government, and the Concerted Research Action program (GOA/09/ 006) and (GOA/14/007). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109801 Serial 1702
Permanent link to this record
 

 
Author Yang, W.; Chang, K.; Wu, X.G.; Zheng, H.Z.; Peeters, F.M.;
Title (up) Interplay between s-d exchange interaction and Rashba effect: spin-polarized transport Type A1 Journal article
Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 89 Issue 13 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000240875800069 Publication Date 2006-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 10 Open Access
Notes Approved Most recent IF: 3.411; 2006 IF: 3.977
Call Number UA @ lucian @ c:irua:61009 Serial 1703
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title (up) Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 12 Pages 123507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000343004400090 Publication Date 2014-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 18 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:121119 Serial 1704
Permanent link to this record
 

 
Author de Keyser, A.; Bogaerts, R.; Karavolas, V.C.; van Bockstal, L.; Herlach, F.; Peeters, F.M.; van de Graaf, W.; Borghs, G.
Title (up) Interplay of 2D and 3D charge carriers in Si-δ-doped InSb layers grown epitaxially on GaAs Type A1 Journal article
Year 1996 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 40 Issue Pages 395-398
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos A1996UN20700083 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.504 Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15817 Serial 1705
Permanent link to this record
 

 
Author Duarte-Neto, P.; Stosic, T.; Stosic, B.; Lessa, R.; Milošević, M.V.
Title (up) Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 1 Pages 012312
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We analyze the combined effect of three ingredients of an aggregation model-surface tension, particle flow and particle source-representing typical characteristics of many aggregation growth processes in nature. Through extensive numerical experiments and for different underlying lattice structures we demonstrate that the location of incoming particles and their preferential direction of flow can significantly affect the resulting general shape of the aggregate, while the surface tension controls the surface roughness. Combining all three ingredients increases the aggregate shape plasticity, yielding a wider spectrum of shapes as compared to earlier works that analyzed these ingredients separately. Our results indicate that the considered combination of effects is fundamental for modeling the polymorphic growth of a wide variety of structures in confined geometries and/or in the presence of external fields, such as rocks, crystals, corals, and biominerals.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000341245400009 Publication Date 2014-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 3 Open Access
Notes ; This work was supported by CNPq, Brazil (Projects No. 201506/2011-4, No. 303251 /2010-7, and No. 306719/2012-6). M.V.M. acknowledges support from Flemish Science Foundation (FWO-Vlaanderen) and CAPES PVE action No. BEX1392/11-5. The crystal structure appearing in Fig. 11 was provided courtesy of L. dos Santos, UFPE, Brazil. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:119267 Serial 1708
Permanent link to this record
 

 
Author Tavares, M.R.S.; Hai, G.-Q.; Peeters, F.M.; Studart, N.
Title (up) Intersubband plasmons in quasi-one-dimensional electron systems on a liquid helium surface Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue Pages 140504,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000186422500016 Publication Date 2003-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:69376 Serial 1713
Permanent link to this record
 

 
Author de Meester, R.H.J.; Peeters, F.M.; Lakrimi, M.; Nicholas, R.J.; Poulter, A.J.L.; Mason, N.J.; Walker, P.J.
Title (up) Intersubband transitions in InAs/GaSb superlattices in a parallel magnetic field Type A1 Journal article
Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 7 Issue Pages 93-96
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000086076800021 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 1 Open Access
Notes Approved Most recent IF: 2.221; 2000 IF: 0.878
Call Number UA @ lucian @ c:irua:34358 Serial 1714
Permanent link to this record
 

 
Author Hai, G.-Q.; Studart, N.; Peeters, F.M.; Koenraad, P.M.; Wolter, J.H.
Title (up) Intersubband-coupling and screening effects on the electron transport in a quasi-two-dimensional δ-doped semiconductor system Type A1 Journal article
Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 80 Issue Pages 5809-5814
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effects due to intersubband coupling and screening on the ionized impurity scattering are studied for a quasi-two-dimensional electron system in delta-doped semiconductors. We found that intersubband coupling plays an essential role in describing the screening properties and the effect of ionized impurity scattering on the mobility in a multisubband system. At the onset of the occupation of a higher subband, the screening due to the intersubband coupling leads to a reduction of the small angle scattering rate in the lower subband. We showed that such an effect is significant in a delta-doped quantum well and results in a pronounced increase of the quantum mobility at the onset of the occupation of a higher subband. (C) 1996 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996VU98700039 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 40 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15789 Serial 1712
Permanent link to this record
 

 
Author Veljkovic, D.; Tadić, M.; Peeters, F.M.
Title (up) Intersublevel absorption in stacked n-type doped self-assembled quantum dots Type A1 Journal article
Year 2005 Publication Materials science forum Abbreviated Journal Mater Sci Forum
Volume 494 Issue Pages 37-42
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The intersublevel absorption in n-doped InAs/GaAs self-assembled quantum-dot molecules composed of three quantum dots is theoretically considered. The transition matrix elements and the transition energies are found to vary considerably with the spacer thickness. For s polarized light, decreasing the thickness of the spacer between the dots brings about crossings between the transition matrix elements, but the overall absorption is not affected by the variation of the spacer thickness. For p-polarized light and thick spacers, there are no available transitions in the single quantum dot, but a few of them emerge as a result of the electron state splitting in the stacks of coupled quantum dots, which leads to a considerable increase of the transition matrix elements, exceeding by an order of magnitude values of the matrix elements for s-polarized light.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94746 Serial 1715
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.
Title (up) Intersublevel magnetoabsorption in the valence band of p-type InAs/GaAs and Ge/Si self-assembled quantum dots Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 71 Issue Pages 125342,1-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000228923300115 Publication Date 2005-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69406 Serial 1716
Permanent link to this record
 

 
Author Xiang, F.; Gupta, A.; Chaves, A.; Krix, Z.E.; Watanabe, K.; Taniguchi, T.; Fuhrer, M.S.; Peeters, F.M.; Neilson, D.; Milošević, M.V.; Hamilton, A.R.
Title (up) Intra-zero-energy Landau level crossings in bilayer graphene at high electric fields Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 21 Pages 9683-9689
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors nu = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at nu = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between nu = 0 -> 1 and nu = 2 -> 3 show anomalous behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102148900001 Publication Date 2023-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:201200 Serial 9052
Permanent link to this record
 

 
Author Torun, E.; Paleari, F.; Milošević, M.V.; Wirtz, L.; Sevik, C.
Title (up) Intrinsic control of interlayer exciton generation in Van der Waals materials via Janus layers Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 8 Pages 3159-3166
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We demonstrate the possibility of engineering the optical properties of transition metal dichalcogenide heterobilayers when one of the constitutive layers has a Janus structure. We investigate different MoS2@Janus layer combinations using first-principles methods including excitons and exciton-phonon coupling. The direction of the intrinsic electric field from the Janus layer modifies the electronic band alignments and, consequently, the energy separation between dark interlayer exciton states and bright in-plane excitons. We find that in-plane lattice vibrations strongly couple the two states, so that exciton-phonon scattering may be a viable generation mechanism for interlayer excitons upon light absorption. In particular, in the case of MoS2@WSSe, the energy separation of the low-lying interlayer exciton from the in-plane exciton is resonant with the transverse optical phonon modes (40 meV). We thus identify this heterobilayer as a prime candidate for efficient generation of charge-separated electron-hole pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000969732100001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number UA @ admin @ c:irua:196034 Serial 8118
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M.
Title (up) Intrinsic magnetism in penta-hexa-graphene: A first-principles study Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 15 Pages 155410
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, several monolayer carbon allotropes have been proposed. The magnetic properties of these metal-free materials are investigated, and we explore a special type of all carbon system having an intrinsic magnetic ground state. The structure is composed of mixing pentagonal and hexagonal rings of carbon atoms, such that the unit cell consists of eleven atoms, where two C atoms each have an unpaired electron each with a local magnetic moment. The antiferromagnetic (AFM) state has a lower energy than the ferromagnetic (FM) one. However, a strain-driven transition to the FM ground state is possible. The application of strain not only lowers the energy of the FM state but it also induces an energy barrier of about 13 meV/(magnetic atom) to protect the FM state from excitation. Our findings based on first-principles calculations will motivate other works on similar metal-free magnetic monolayer materials and will have an impact on their possible applications in spintronic devices.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000385623700006 Publication Date 2016-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:144641 Serial 4665
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M.
Title (up) Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235422-235422,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286768800007 Publication Date 2010-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88909 Serial 1717
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M.
Title (up) Introducing novel electronic and magnetic properties in C3N nanosheets by defect engineering and atom substitution Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 37 Pages 21070-21083
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations the effect of topological defects, vacancies, Stone-Wales and anti-site and substitution of atoms, on the structure and electronic properties of monolayer C3N are investigated. Vacancy defects introduce localized states near the Fermi level and a local magnetic moment. While pristine C3N is an indirect semiconductor with a 0.4 eV band gap, with substitution of O, S and Si atoms for C, it remains a semiconductor with a band gap in the range 0.25-0.75 eV, while it turns into a metal with H, Cl, B, P, Li, Na, K, Be and Mg substitution. With F substitution, it becomes a dilute-magnetic semiconductor, while with Ca substitution it is a ferromagnetic-metal. When replacing the N host atom, C3N turns into: a metal (H, O, S, C, Si, P, Li and Be), ferromagnetic-metal (Mg), half-metal (Ca) and spin-glass semiconductor (Na and K). Moreover, the effects of charging and strain on the electronic properties of Na atom substitution in C3N are investigated. We found that the magnetic moment decreases or increases depending on the type and size of strain (tensile or compression). Our study shows how the band gap and magnetism in monolayer C3N can be tuned by introducing defects and atom substitution. The so engineered C3N can be a good candidate for future low dimensional devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489984200050 Publication Date 2019-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 52 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:163732 Serial 5418
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M.
Title (up) Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages 035331,1-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000188883800075 Publication Date 2004-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69379 Serial 1722
Permanent link to this record
 

 
Author Brammertz, G.; Oueslati, S.; Buffiere, M.; Bekaert, J.; El Anzeery, H.; Messaoud, K.B.; Sahayaraj, S.; Nuytten, T.; Koble, C.; Meuris, M.; Poortmans, J.;
Title (up) Investigation of properties limiting efficiency in Cu2ZnSnSe4-based solar cells Type A1 Journal article
Year 2015 Publication IEEE journal of photovoltaics Abbreviated Journal Ieee J Photovolt
Volume 5 Issue 5 Pages 649-655
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We have investigated different nonidealities in Cu2ZnSnSe4CdSZnO solar cells with 9.7% conversion efficiency, in order to determine what is limiting the efficiency of these devices. Several nonidealities could be observed. A barrier of about 300 meV is present for electron flow at the absorberbuffer heterojunction leading to a strong crossover behavior between dark and illuminated currentvoltage curves. In addition, a barrier of about 130 meV is present at the Moabsorber contact, which could be reduced to 15 meV by inclusion of a TiN interlayer. Admittance spectroscopy results on the devices with the TiN backside contact show a defect level with an activation energy of 170 meV. Using all parameters extracted by the different characterization methods for simulations of the two-diode model including injection and recombination currents, we come to the conclusion that our devices are limited by the large recombination current in the depletion region. Potential fluctuations are present in the devices as well, but they do not seem to have a special degrading effect on the devices, besides a probable reduction in minority carrier lifetime through enhanced recombination through the band tail defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353524800026 Publication Date 2014-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-3381;2156-3403; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.712 Times cited 13 Open Access
Notes ; ; Approved Most recent IF: 3.712; 2015 IF: 3.165
Call Number c:irua:123717 Serial 1734
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C., V; Goudarzi, A.; Ghergherehchi, M.; Shafieirad, M.
Title (up) Investigation of strain and doping on the electronic properties of single layers of C₆N₆ and C₆N₈: a first principles study Type A1 Journal article
Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume 10 Issue 46 Pages 27743-27751
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, by performing first-principles calculations, we explore the effects of various atom impurities on the electronic and magnetic properties of single layers of C(6)N(6)and C6N8. Our results indicate that atom doping may significantly modify the electronic properties. Surprisingly, doping Cr into a holey site of C(6)N(6)monolayer was found to exhibit a narrow band gap of 125 meV upon compression strain, considering the spin-orbit coupling effect. Also, a C atom doped in C(6)N(8)monolayer shows semi-metal nature under compression strains larger than -2%. Our results propose that Mg or Ca doped into strained C(6)N(6)may exhibit small band gaps in the range of 10-30 meV. In addition, a magnetic-to-nonmagnetic phase transition can occur under large tensile strains in the Ca doped C(6)N(8)monolayer. Our results highlight the electronic properties and magnetism of C(6)N(6)and C(6)N(8)monolayers. Our results show that the electronic properties can be effectively modified by atom doping and mechanical strain, thereby offering new possibilities to tailor the electronic and magnetic properties of C(6)N(6)and C(6)N(8)carbon nitride monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000553911800053 Publication Date 2020-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited 11 Open Access
Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108
Call Number UA @ admin @ c:irua:172111 Serial 6553
Permanent link to this record
 

 
Author Bafekry, A.
Title (up) Investigation of the effects of defects and impurities on nanostructures consisting of Group IV and V elements using First-principles calculations Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 126 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:168738 Serial 6554
Permanent link to this record
 

 
Author Zou, Y.-C.; Mogg, L.; Clark, N.; Bacaksiz, C.; Milanovic, S.; Sreepal, V.; Hao, G.-P.; Wang, Y.-C.; Hopkinson, D.G.; Gorbachev, R.; Shaw, S.; Novoselov, K.S.; Raveendran-Nair, R.; Peeters, F.M.; Lozada-Hidalgo, M.; Haigh, S.J.
Title (up) Ion exchange in atomically thin clays and micas Type A1 Journal article
Year 2021 Publication Nature Materials Abbreviated Journal Nat Mater
Volume 20 Issue 12 Pages 1677-1682
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 10(4) times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moire superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance. Layered clays are of interest for membranes and many other applications but their ion-exchange dynamics remain unexplored in atomically thin materials. Here, using electron microscopy, it is found that the ion diffusion for few-layer two-dimensional clays approaches that of free water and that superlattice cation islands can form in twisted and restacked materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000689664000001 Publication Date 2021-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122; 1476-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 39.737
Call Number UA @ admin @ c:irua:181691 Serial 6999
Permanent link to this record
 

 
Author de Aquino, B.R.H.; Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M.
Title (up) Ionized water confined in graphene nanochannels Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 18 Pages 9285-9295
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract When confined between graphene layers, water behaves differently from the bulk and exhibits unusual properties such as fast water flow and ordering into a crystal. The hydrogen-bonded network is affected by the limited space and by the characteristics of the confining walls. The presence of an extraordinary number of hydronium and hydroxide ions in narrow channels has the following effects: (i) they affect water permeation through the channel, (ii) they may interact with functional groups on the graphene oxide surface and on the edges, and (iii) they change the thermochemistry of water, which are fundamentally important to understand, especially when confined water is subjected to an external electric field. Here we study the physical properties of water when confined between two graphene sheets and containing hydronium and hydroxide. We found that: (i) there is a disruption in the solvation structure of the ions, which is also affected by the layered structure of confined water, (ii) hydronium and hydroxide occupy specific regions inside the nanochannel, with a prevalence of hydronium (hydroxide) ions at the edges (interior), and (iii) ions recombine more slowly in confined systems than in bulk water, with the recombination process depending on the channel height and commensurability between the size of the molecules and the nanochannel height – a decay of 20% (40%) in the number of ions in 8 ps is observed for a channel height of h = 7 angstrom (bulk water). Our work reveals distinctive properties of water confined in a nanocapillary in the presence of additional hydronium and hydroxide ions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472922500028 Publication Date 2019-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 9 Open Access
Notes ; This work was supported by the Fund for Scientific Research Flanders (FWO-Vl) and the Methusalem programe. ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161377 Serial 5419
Permanent link to this record
 

 
Author Mirzakhani, M.; da Costa, D.R.; Peeters, F.M.
Title (up) Isolated and hybrid bilayer graphene quantum rings Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 11 Pages 115430-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the continuum model, we investigate the electronic properties of two types of bilayer graphene (BLG) quantum ring (QR) geometries: (i) An isolated BLG QR and (ii) a monolayer graphene (MLG) with a QR put on top of an infinite graphene sheet (hybrid BLG QR). Solving the Dirac-Weyl equation in the presence of a perpendicular magnetic field and applying the infinite mass boundary condition at the ring boundaries, we obtain analytical results for the energy levels and corresponding wave spinors for both structures. In the case of isolated BLG QR, we observe a sizable and magnetically tunable band gap which agrees with the tight-binding transport simulations. Our analytical results also show the intervalley symmetry EeK (m) = ???EK??? h (m) between the electron (e) and the hole (h) states (m is the angular momentum quantum number) for the energy spectrum of the isolated BLG QR. The presence of interface boundary in a hybrid BLG QR modifies drastically the energy levels as compared with that of an isolated BLG QR. Its energy levels are tunable from MLG dot to isolated BLG QR and to MLG Landau energy levels as the magnetic field is varied. Our predictions can be verified experimentally using different techniques such as by magnetotransport measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000801209300006 Publication Date 2022-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:188703 Serial 7175
Permanent link to this record
 

 
Author Varjovi, M.J.; Yagmurcukardes, M.; Peeters, F.M.; Durgun, E.
Title (up) Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 19 Pages 195438
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Structural symmetry breaking in two-dimensional materials can lead to superior physical properties and introduce an additional degree of piezoelectricity. In the present paper, we propose three structural phases (1H, 1T, and 1T') of Janus WXO (X = S, Se, and Te) monolayers and investigate their vibrational, thermal, elastic, piezoelectric, and electronic properties by using first-principles methods. Phonon spectra analysis reveals that while the 1H phase is dynamically stable, the 1T phase exhibits imaginary frequencies and transforms to the distorted 1T' phase. Ab initio molecular dynamics simulations confirm that 1H- and 1T'-WXO monolayers are thermally stable even at high temperatures without any significant structural deformations. Different from binary systems, additional Raman active modes appear upon the formation of Janus monolayers. Although the mechanical properties of 1H-WXO are found to be isotropic, they are orientation dependent for 1T'-WXO. It is also shown that 1H-WXO monolayers are indirect band-gap semiconductors and the band gap narrows down the chalcogen group. Except 1T'-WSO, 1T'-WXO monolayers have a narrow band gap correlated with the Peierls distortion. The effect of spin-orbit coupling on the band structure is also examined for both phases and the alteration in the band gap is estimated. The versatile mechanical and electronic properties of Janus WXO monolayers together with their large piezoelectric response imply that these systems are interesting for several nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000655902600004 Publication Date 2021-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 48 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:179050 Serial 7000
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Neilson, D.; Tempère, J.; Perali, A.
Title (up) Josephson effect as a signature of electron-hole superfluidity in bilayers of van der Waals heterostructures Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 22 Pages L220503-6
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract We investigate a Josephson junction in an electron-hole superfluid in a double-layer transition metal dichalco-genide heterostructure. The observation of a critical tunneling current is a clear signature of superfluidity. In addition, we find the BCS-BEC crossover physics in the narrow barrier region controls the critical current across the entire system. The corresponding critical velocity, which is measurable in this system, has a maximum when the excitations pass from bosonic to fermionic. Remarkably, this occurs for the density at the boundary of the BEC to BCS-BEC crossover regime determined from the condensate fraction. This provides, in a semiconductor system, an experimental way to determine the position of this boundary.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000903924400007 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:193402 Serial 7316
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Kusmartsev, F.; Peeters, F.M.; Savel'ev, S.
Title (up) Josephson vortex loops in nanostructured Josephson junctions Type A1 Journal article
Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 8 Pages 2733
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical-and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors -the Josephson vortex loops – formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000424630400046 Publication Date 2018-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 10 Open Access
Notes ; This work was supported by EU Marie-Curie program (project No: 253057), Special Research Funds of the University of Antwerp (BOF-UA), and by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:149262UA @ admin @ c:irua:149262 Serial 4940
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M.
Title (up) Joule heat in a two-dimensional electron gas exposed to a normal non-homogeneous magnetic field of a 'chess' configuration Type A1 Journal article
Year 2002 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 316 Issue Pages 216-218
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have calculated analytically the spatial distribution of the electric field and current density, and obtained the Joule heat generation rate in a two-dimensional electron gas (2DEG) subjected to a non-homogeneous magnetic field of a 'chess' configuration. The generation of the Joule heat from the 2DEG is mainly concentrated near the singular corners of each 'chess' field and tends to zero in other corners. (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000176297400047 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.386 Times cited Open Access
Notes Approved Most recent IF: 1.386; 2002 IF: 0.609
Call Number UA @ lucian @ c:irua:94925 Serial 1753
Permanent link to this record
 

 
Author Korkmaz, Y.A.; Bulutay, C.; Sevik, C.
Title (up) k · p parametrization and linear and circular dichroism in strained monolayer (Janus) transition metal dichalcogenides from first-principles Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue 13 Pages 7439-7450
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Semiconductor monolayer transition metal dichalcogenides (TMDs) have brought a new paradigm by introducing optically addressable valley degree of freedom. Concomitantly, their high flexibility constitutes a unique platform that links optics to mechanics via valleytronics. With the intention to expedite the research in this direction, we investigated ten TMDs, namely MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, MoSSe, MoSeTe, WSSe, and WSeTe, which particularly includes their so-called janus types (JTMDs). First, we obtained their electronic band structures using regular and hybrid density functional theory (DFT) calculations in the presence of the spin-orbit coupling and biaxial or uniaxial strain. Our DFT results indicated that against the expectations based on their reported piezoelectric behavior, JTMDs typically interpolated between the standard band properties of the constituent TMDs without producing a novel feature. Next, by fitting to our DFT data we generated both spinless and spinful k center dot p parameter sets which are quite accurate over the K valley where the optical activity occurs. As an important application of this parametrization, we considered the circular and linear dichroism under strain. Among the studied (J)TMDs, WTe2 stood out with its largest linear dichroism under uniaxial strain because of its narrower band gap and large K valley uniaxial deformation potential. This led us to suggest WTe2 monolayer membranes for optical polarization-based strain measurements, or conversely, as strain tunable optical polarizers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000639044400045 Publication Date 2021-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:178264 Serial 8136
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title (up) Kinematic vortex-antivortex lines in strongly driven superconducting stripes Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 19 Issue 18 Pages 184506,1-184506,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the framework of the time-dependent Ginzburg-Landau formalism, we study the resistive state of a submicron superconducting stripe in the presence of a longitudinal current. Sufficiently strong current leads to phase slippage between the leads, which is manifested as oppositely charged kinematic vortices moving in opposite directions perpendicular to applied drive. Depending on the distribution of superconducting current density the vortex-antivortex either nucleate in the middle of the stripe and are expelled laterally or enter on opposite sides of the sample and are driven together to annihilation. We distinguish between the two scenarios as a function of relevant parameters and show how the creation/annihilation point of the vortex-antivortex and their individual velocity can be manipulated by applied magnetic field and current.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000266501200091 Publication Date 2009-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 75 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77400 Serial 1756
Permanent link to this record
 

 
Author Pogosov, W.V.; Zhao, H.J.; Misko, V.R.; Peeters, F.M.
Title (up) Kink-antikink vortex transfer in periodic-plus-random pinning potential : theoretical analysis and numerical experiments Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 2 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of random pinning on the vortex dynamics in a periodic square potential under an external drive is investigated. Using numerical experiments and theoretical approach, we found several dynamical regimes of vortex motion that are different from the ones for a regular pinning potential. Vortex transfer is controlled by kinks and antikinks, which either pre-exist in the system or appear spontaneously in pairs and then propagate. When kinks and antikinks collide, they annihilate. We provide clear physical interpretations of the observed features.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000274002100087 Publication Date 2010-01-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish government, FWO-Vl, and IAP. W.V.P. acknowledges support from RFBR (Contract No. 09-02-00248). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:81251 Serial 1761
Permanent link to this record