|
Record |
Links |
|
Author |
Aierken, Y.; Leenaerts, O.; Peeters, F.M. |
|
|
Title |
Intrinsic magnetism in penta-hexa-graphene: A first-principles study |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
94 |
Issue |
15 |
Pages |
155410 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Recently, several monolayer carbon allotropes have been proposed. The magnetic properties of these metal-free materials are investigated, and we explore a special type of all carbon system having an intrinsic magnetic ground state. The structure is composed of mixing pentagonal and hexagonal rings of carbon atoms, such that the unit cell consists of eleven atoms, where two C atoms each have an unpaired electron each with a local magnetic moment. The antiferromagnetic (AFM) state has a lower energy than the ferromagnetic (FM) one. However, a strain-driven transition to the FM ground state is possible. The application of strain not only lowers the energy of the FM state but it also induces an energy barrier of about 13 meV/(magnetic atom) to protect the FM state from excitation. Our findings based on first-principles calculations will motivate other works on similar metal-free magnetic monolayer materials and will have an impact on their possible applications in spintronic devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Physical Society |
Place of Publication |
New York, N.Y |
Editor |
|
|
|
Language |
|
Wos |
000385623700006 |
Publication Date |
2016-10-10 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
13 |
Open Access |
|
|
|
Notes |
; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI. ; |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
UA @ lucian @ c:irua:144641 |
Serial |
4665 |
|
Permanent link to this record |