toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alfeld, M.; Pedroso, J.V.; van Hommes, M.E.; van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K. pdf  doi
openurl 
  Title (up) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings Type A1 Journal article
  Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 28 Issue 5 Pages 760-767  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Scanning macro-X-ray fluorescence analysis (MA-XRF) is rapidly being established as a technique for the investigation of historical paintings. The elemental distribution images acquired by this method allow for the visualization of hidden paint layers and thus provide insight into the artist's creative process and the painting's conservation history. Due to the lack of a dedicated, commercially available instrument the application of the technique was limited to a few groups that constructed their own instruments. We present the first commercially available XRF scanner for paintings, consisting of an X-ray tube mounted with a Silicon-Drift (SD) detector on a motorized stage to be moved in front of a painting. The scanner is capable of imaging the distribution of the main constituents of surface and sub-surface paint layers in an area of 80 by 60 square centimeters with dwell times below 10 ms and a lateral resolution below 100 mu m. The scanner features for a broad range of elements between Ti (Z = 22) and Mo (Z = 42) a count rate of more than 1000 counts per second (cps)?mass percent and detection limits of 100 ppm for measurements of 1 s duration. Next to a presentation of spectrometric figures of merit, the value of the technique is illustrated through a case study of a painting by Rembrandt's student Govert Flinck (1615-1660).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317674200019 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 106 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The text also presents the results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. M. Alfeld receives a Ph. D. fellowship of the Research Foundation-Flanders (FWO). We thank J. Langerock for allowing us to examine the portable altar triptych shown in Fig. 5. ; Approved Most recent IF: 3.379; 2013 IF: 3.396  
  Call Number UA @ admin @ c:irua:108517 Serial 5453  
Permanent link to this record
 

 
Author van Loon, A.; Noble, P.; Krekeler, A.; van der Snickt, G.; Janssens, K.; Abe, Y.; Nakai, I.; Dik, J. url  doi
openurl 
  Title (up) Artificial orpiment, a new pigment in Rembrandt's palette Type A1 Journal article
  Year 2017 Publication Heritage science Abbreviated Journal  
  Volume 5 Issue Pages 26  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper reports on how the application of macro X-ray fluorescence (MA-XRF) imaging, in combination with the re-examination of existing paint cross-sections, has led to the discovery of a new pigment in Rembrandt's palette: artificial orpiment. In the NWO Science4Arts 'ReVisRembrandt' project, novel chemical imaging techniques are being developed and applied to the study of Rembrandt's late paintings in order to help resolve outstanding questions and to gain a better understanding of his late enigmatic painting technique. One of the selected case studies is the Portrait of a Couple as Isaac and Rebecca, known as 'The Jewish Bride', dated c. 1665 and on view in the Rijksmuseum. During the re-installation of the Rijksmuseum in 2013, the picture was scanned using the Bruker M6 Jetstream MAXRF scanner. The resulting elemental distribution maps made it possible to distinguish many features in the painting, such as bone black remains of the original hat (P, Ca maps), and the now discolored smalt-rich background (Co, Ni, As, K maps). The arsenic (As) map also revealed areas of high-intensity in Isaac's sleeve and Rebecca's dress where it could be established that it was not related with the pigment smalt that also contains arsenic. This pointed to the presence of a yellow or orange arsenic-containing pigment, such as realgar or orpiment that is not associated with the artist's palette. Subsequent examination of existing paint cross-sections from these locations taken by Karin Groen in the 1990s identified isolated, almost perfectly round particles of arsenic sulfide. The round shape corresponds with published findings on a purified form of artificial orpiment glass obtained by dry processing, a sublimation reaction. In bright field, the particles characteristically exhibit a dark cross in the middle caused by internal light reflections. The results of additional non-invasive techniques (portable XRD and portable Raman) are discussed, as well as the implications of this finding and how it fits with Rembrandt's late experimental painting technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404916400001 Publication Date 2017-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes ; This research is part of the Science4Arts Program, funded by the Netherlands Organization for Scientific Research (NWO) (Grant No. SFA-11-12). GVdS is supported by the Baillet Latour Fund. The authors would like to thank Lisette Vos, Rijksmuseum Amsterdam, for assisting with the MA-XRF scanning; Arisa Izumi and Airi Hirayama, students of the Tokyo University of Science, and Frederik Vanmeert, University of Antwerp, for assisting with the pXRD and pRaman measurements. We are also grateful to Rob Erdmann, Rijksmuseum Amsterdam, who made the curtain viewer to facilitate comparison of the visible image with the elemental distribution maps of the painting. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:144864 Serial 5479  
Permanent link to this record
 

 
Author van der Snickt, G.; Schalm, O.; Caen, J.; Janssens, K.; Schreiner, M. pdf  doi
openurl 
  Title (up) Blue enamel on sixteenth- and seventeenth-century window glass : deterioration, microstructure, composition and preparation Type A1 Journal article
  Year 2006 Publication Studies in conservation Abbreviated Journal Stud Conserv  
  Volume 51 Issue Pages 212-222  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000241941100006 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.578 Times cited 8 Open Access  
  Notes Approved Most recent IF: 0.578; 2006 IF: 0.609  
  Call Number UA @ admin @ c:irua:60712 Serial 5492  
Permanent link to this record
 

 
Author Klaassen, L.; van der Snickt, G.; Legrand, S.; Higgitt, C.; Spring, M.; Vanmeert, F.; Rosi, F.; Brunetti, B.G.; Postec, M.; Janssens, K. doi  isbn
openurl 
  Title (up) Characterization and removal of a disfiguring oxalate crust on a large altarpiece by Hans Memling Type H1 Book chapter
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 263-282 T2 - Metal soaps in art / Casadio, F. [edi  
  Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract During the conservation treatment of Memling’s Christ with Singing and Music-making Angels, three panel paintings that are among the most monumental works in early Netherlandish art, the conservators came across insoluble surface layers containing calcium oxalates. A very thin and irregular layer of this type, hardly visible to the naked eye, was spread across the surface of all three panels. A much thicker layer forming an opaque and highly disfiguring crust that obscured the composition (Figs. 15.1 and 15.7) was locally present on areas of dark copper-containing paint, where multiple layers of old discolored coatings and accretions remained in place before the most recent cleaning. This article describes the application of a wide range of analytical techniques in order to fully understand the stratigraphy and composition of the crusts on the Memling paintings. FTIR spectroscopy in transmission and reflection mode, micro-ATR-FTIR imaging and macro-rFTIR scanning, SEM-EDX, mobile XRD, and SR-μXRD showed that the crusts contained two related Ca-based oxalate salts, whewellite and weddellite, and were separated from the original paint surface by varnish, indicating that they did not originate from degradation of the original paint but from a combination of microbial action and a thick accumulation of dirt. Supported by the results from these different analytical techniques, which when used together proved to be very effective in providing complementary information that addressed this specific conservation problem, and aided by the presence of the intermediate varnish layer(s), the conservators were able to remove most of the crusts with spectacular results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-90616-4 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190778 Serial 7609  
Permanent link to this record
 

 
Author van der Snickt, G.; Dik, J.; Cotte, M.; Janssens, K.; Jaroszewicz, J.; de Nolf, W.; Groenewegen, J.; van der Loeff, L. doi  openurl
  Title (up) Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques Type A1 Journal article
  Year 2009 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 81 Issue 7 Pages 2600-2610  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract On several paintings of James Ensor (1860−1949), a gradual fading of originally bright yellow areas, painted with the pigment cadmium yellow (CdS), is observed. Additionally, in some areas exposed to light, the formation of small white-colored globules on top of the original paint surface is observed. In this paper the chemical transformation leading to the color change and to the formation of the globules is elucidated. Microscopic X-ray absorption near-edge spectroscopy (ì-XANES) experiments show that sulfur, originally present in sulfidic form (S2−), is oxidized during the transformation to the sulfate form (S6+). Upon formation (at or immediately below the surface), the highly soluble cadmium sulfate is assumed to be transported to the surface in solution and reprecipitates there, forming the whitish globules. The presence of cadmium sulfate (CdSO4·2H2O) and ammonium cadmium sulfate [(NH4)2Cd(SO4)2] at the surface is confirmed by microscopic X-ray diffraction measurements, where the latter salt is suspected to result from a secondary reaction of cadmium sulfate with ammonia. Measurements performed on cross sections reveal that the oxidation front has penetrated into the yellow paint down to ca. 1−2 ìm. The morphology and elemental distribution of the paint and degradation product were examined by means of scanning electron microscopy equipped with an energy-dispersive spectrometer (SEM-EDS) and synchrotron radiation based micro-X-ray fluorescence spectrometry (SR ì-XRF). In addition, ultraviolet-induced visible fluorescence photography (UIVFP) revealed itself to be a straightforward technique for documenting the occurrence of this specific kind of degradation on a macroscale by painting conservators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000264759400025 Publication Date 2009-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 91 Open Access  
  Notes Approved Most recent IF: 6.32; 2009 IF: 5.214  
  Call Number UA @ admin @ c:irua:76415 Serial 5501  
Permanent link to this record
 

 
Author Monico, L.; Hendriks, E.; Geldof, M.; Miliani, C.; Janssens, K.; Brunetti, B.G.; Cotte, M.; Vanmeert, F.; Chieli, A.; Van der Snickt, G.; Romani, A.; Melo, M.J. doi  isbn
openurl 
  Title (up) Chemical alteration and colour changes in the Amsterdam sunflowers Type H1 Book chapter
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 125-158 T2 - Van Gogh’s Sunflowers illuminated – a  
  Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract This chapter provides a description of colour changes in the Amsterdam Sunflowers due to chemical alteration of pigments, with a focus on geranium lakes and chrome yellows. The brilliant and forceful colours of these and other late nineteenth-century synthetic materials offered artists such as Vincent van Gogh new means of artistic expression that exploited a range of contrasting hues and tints. However, geranium lakes have a strong tendency to fade and chrome yellows to darken under the influence of light. Van Gogh, like other artists of his day, was aware of this drawback, yet he continued to favour the use of both pigments up until his death in July 1890 due to the unparalleled effects they gave. In April 1888, Vincent wrote to his brother Theo: Van Gogh's use of unstable colours opens a series of questions regarding the extent to which colour change affects the way his paintings look today, as discussed here in relation to the Amsterdam Sunflowers. Furthermore, given the frequency with which geranium lakes and chrome yellows occur in Van Gogh's paintings of the period 1888–90 and the predominance of chrome yellows in Sunflowers, it becomes important to understand the factors that can drive these processes of deterioration in order to develop appropriate strategies for conserving the artist's works.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-94-6372-532-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190779 Serial 7640  
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K. pdf  doi
openurl 
  Title (up) Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
  Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 615-622  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600074 Publication Date 2015-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 22 Open Access  
  Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:131100 Serial 5514  
Permanent link to this record
 

 
Author Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K. doi  openurl
  Title (up) Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 25 Pages 7418-7422  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434949200023 Publication Date 2018-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access  
  Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:153185 Serial 5517  
Permanent link to this record
 

 
Author Hillen, M.; Legrand, S.; Dirkx, Y.; Janssens, K.; van der Snickt, G.; Caen, J.; Steenackers, G. url  doi
openurl 
  Title (up) Cluster analysis of IR thermography data for differentiating glass types in historical leaded-glass windows Type A1 Journal article
  Year 2020 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel  
  Volume 10 Issue 12 Pages 4255-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Cultural Heritage Sciences (ARCHES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549351800001 Publication Date 2020-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2020 IF: 1.679  
  Call Number UA @ admin @ c:irua:170012 Serial 7674  
Permanent link to this record
 

 
Author Lachmann, T.; van der Snickt, G.; Haschke, M.; Mantouvalou, I. doi  openurl
  Title (up) Combined 1D, 2D and 3D micro-XRF techniques for the analysis of illuminated manuscripts Type A1 Journal article
  Year 2016 Publication Journal of analytical atomic spectrometry Abbreviated Journal  
  Volume 31 Issue 10 Pages 1989-1997  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The combination of several micro-XRF analysis modes is presented for the investigation of an illuminated parchment manuscript. With a commercial instrument, conventional micro-XRF spot analysis (0D) and mapping (2D) are performed, yielding detailed lateral elemental information. Depth resolution becomes accessible by mounting an additional polycapillary lens in front of an SDD detector. Quantitative confocal depth profiles (1D) are presented as well as the full separation of the front and the backside decorations with the help of fast 3D mappings of specific areas. Only through the use of these multidimensional modes can elemental information be assigned both to lateral and depth positions, making the analysis of such heterogeneous samples feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385362200004 Publication Date 2016-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144755 Serial 7679  
Permanent link to this record
 

 
Author Gestels, A.; Van der Snickt, G.; Caen, J.; Nuyts, G.; Legrand, S.; Vanmeert, F.; Detry, F.; Janssens, K.; Steenackers, G. pdf  url
doi  openurl
  Title (up) Combined MA-XRF, MA-XRPD and SEM-EDX analysis of a medieval stained-glass panel formerly from Notre Dame, Paris reveals its material history Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 177 Issue Pages 107304  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract As part of its conservation-restoration, the 13th century stained-glass panel ‘the Annunciation’, was examined at the micro- and macro level. This window, since 1898 in the collection of the Museum Mayer Van den Bergh (Antwerp, B), was formerly a part of the southern Rose window of the Notre Dame Cathedral (Paris, F). The insigths emerging from a first phase of the analysis, comprising non-invasive analysis techniques such as optical microscopy combined with macroscopic X-ray fluorescence (MA-XRF) and X-ray diffraction (MA-XRPD) mapping, were used to select sampling positions for the second phase of investigation that involved micro-invasive analysis, namely scanning-electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX). The aim of the investigation was fourfold: (1) to assess the applicability of MA-XRF scanning for the characterisation of stained glass windows prior to any conservation or restoration procedure, (2) to assess the applicability of MA-XRPD scanning to identify the degradation products formed on the surface of stained glass windows, (3) to establish a method to limit the set of sampled glass fragments taken from a glass panel for quantititive analysis while maintaining sufficient representativeness and (4) to distinguish the original glass panes and grisaille paint from non-original glass panes that were inserted during various past interventions. Most of the panes in this window proved to consist of medieval potash glass, consistent with the 13th c. origin of the window while a limited number of panes were identified as non-original infills, with divergent glass compositional types and/or colorants. Most panes derive their color from the pot metal glass (i.e. homogenously colored) they were made of. Some of the panes that originally had a red flashed layer on their surface, completely or partially lost this layer due to weathering. Three main compositional glass families with similar color could be defined. With the exception of the yellow and orange panes, the chromophoric elements responsible for the dark(er) and light(er) blue (Co), green (Cu), purple (Mn) and red colors (Cu) were identified. Two different grisaille paints were encountered, part of which were restored during the 19th century. On the basis of this information, all missing pieces were replaced by glass panes with appropriate colors and the panel could be successfully conserved to its former glory. On the surface of several panes, typical glass degradation products such as calcite, syngenite and gypsum were identified, together with lead based degradation products such as anglesite and palmierite. In addition, the presence of hematite and melanotekite in the grisailles was observed; also the presence of Zn, uncorrelated to Cu, in the grissailes on the right side of the window became apparent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000850000900001 Publication Date 2022-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.8  
  Call Number UA @ admin @ c:irua:187493 Serial 7138  
Permanent link to this record
 

 
Author Simoen, J.; De Meyer, S.; Vanmeert, F.; De Keyser, N.; Avranovich, E.; van der Snickt, G.; Van Loon, A.; Keune, K.; Janssens, K. url  doi
openurl 
  Title (up) Combined Micro- and Macro scale X-ray powder diffraction mapping of degraded Orpiment paint in a 17th century still life painting by Martinus Nellius Type A1 Journal article
  Year 2019 Publication Heritage science Abbreviated Journal  
  Volume 7 Issue 1 Pages 83  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract The spontaneous chemical alteration of artists' pigment materials may be caused by several degradation processes. Some of these are well known while others are still in need of more detailed investigation and documentation. These changes often become apparent as color modifications, either caused by a change in the oxidation state in the original material or the formation of degradation products or salts, via simple or more complex, multistep reactions. Arsenic-based pigments such as orpiment (As2S3) or realgar (alpha-As4S4) are prone to such alterations and are often described as easily oxidizing upon exposure to light. Macroscopic X-ray powder diffraction (MA-XRPD) imaging on a sub area of a still life painting by the 17th century Dutch painter Martinus Nellius was employed in combination with microscopic (mu-) XRPD imaging of a paint cross section taken in the area imaged by MA-XRPD. In this way, the in situ formation of secondary metal arsenate and sulfate species and their migration through the paint layer stack they originate from could be visualized. In the areas originally painted with orpiment, it could be shown that several secondary minerals such as schultenite (PbHAsO4), mimetite (Pb-5(AsO4)(3)Cl), palmierite (K2Pb(SO4)(2)) and syngenite (K2Ca(SO4)(2)center dot H2O) have formed. Closer inspection of the cross-sectioned paint layer stack with mu-XRPD illustrates that the arsenate minerals schultenite and mimetite have precipitated at the interface between the orpiment layer and the layer below that is rich in lead white, i.e. close to the depth of formation of the arsenate ions. The sulfate palmierite has mostly precipitated at the surface and upper layers of the painting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000490592700001 Publication Date 2019-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from the NWO (The Hague) Science4Arts 'ReVisRembrandt' project (AvL, JD), the GOA Project Solarpaint (University of Antwerp Research Council) (SdM) and the METOX project (Belgian Federal Science Policy) (FvM). Special thanks go to the support received from FWO, Brussels via projects G056619 N and G054719 N (GvdS, KJ) and from NWO, The Hague via project NICAS/3D2P (KK, NdK). Parts of the MA-XRPD scanner could be purchased thanks to InterReg Project Smart*Light. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163693 Serial 5521  
Permanent link to this record
 

 
Author de Nolf, W.; Jaroszewicz, J.; van der Snickt, G.; Janssens, K.; Farnell, S.; Klaassen, L. openurl 
  Title (up) Combined micro-XRF/XRPD tomography on historical and modern paint multilayer samples at Beamline L Type H3 Book chapter
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 1633-1634  
  Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:74475 Serial 5522  
Permanent link to this record
 

 
Author van der Snickt, G.; Janssens, K.; Dik, J.; de Nolf, W.; Vanmeert, F.; Jaroszewicz, J.; Cotte, M.; Falkenberg, G.; Van der Loeff, L. doi  openurl
  Title (up) Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh Type A1 Journal article
  Year 2012 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 84 Issue 23 Pages 10221-10228  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO4 center dot H2O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 mu m sized globular agglomerations. Here, we study cadmium yellow in the painting “Flowers in a blue vase” by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (mu-XRD), microscopic X-ray absorption near-edge spectroscopy (mu-XANES), microscopic X-ray fluorescence (mu-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (mu-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO4 compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd2+ ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO42- anions, for their part, found a suitable reaction partner in Pb2+ ions stemming from a dissolved lead-based siccative that was added to the varnish to promote its drying. The resulting opaque anglesite compound in the varnish, in combination with the underlying CdC2O4 layer at the paint/varnish interface, account for the orange-gray crust that is disfiguring the painting on a macroscopic level. In this way, the results presented in this paper demonstrate how, through a judicious combined use of several microanalytical methods with speciation capabilities, many new insights can be obtained from two minute, but highly complex and heterogeneous paint samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000311815300013 Publication Date 2012-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 59 Open Access  
  Notes ; This research was supported by BELSPO via the Interuniversity Attraction Poles Programme (IUAP VI/16) and the S2-ART project (SD/RI/04A) and funded by Grants from the ESRF (EC-442) and PETRA-III (I-20120312 EC). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) project nos. G.0103.04, G.0689.06, and G.0704.08. The staff of the Kroller-Muller Museum and painting conservators Margje Leeuwestein and Esther Van Duijn are acknowledged for this pleasant cooperation and the authorization for the publication of the images in this article. ; Approved Most recent IF: 6.32; 2012 IF: 5.695  
  Call Number UA @ admin @ c:irua:105971 Serial 5526  
Permanent link to this record
 

 
Author Cagno, S.; van der Snickt, G.; Legrand, S.; Caen, J.; Patin, M.; Meulebroeck, W.; Dirkx, Y.; Hillen, M.; Steenackers, G.; Rousaki, A.; Vandenabeele, P.; Janssens, K. url  doi
openurl 
  Title (up) Comparison of four mobile, non‐invasive diagnostic techniques for differentiating glass types in historical leaded windows : MA‐XRF , UV–Vis–NIR, Raman spectroscopy and IRT Type A1 Journal article
  Year 2020 Publication X-Ray Spectrometry Abbreviated Journal X-Ray Spectrom  
  Volume Issue Pages xrs.3185-17  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract This paper critically compares the performance of four non-invasive techniques that match the accuracy, flexibility, time-efficiency, and transportability required for in situ characterization of leaded glass windows: macroscopic X-ray fluorescence imaging (MA-XRF), UV-Vis-NIR, Raman spectroscopy, and infrared thermography (IRT). In order to compare the techniques on equal grounds, all techniques were tested independently of each other by separate research groups on the same historical leaded window tentatively dated to the 17th century, without prior knowledge. The aim was to assess the ability of these techniques to document the conservation history of the window by classifying and grouping the colorless glass panes, based on differences in composition. IRT, MA-XRF and UV-Vis-NIR spectroscopy positively distinguished at least two glass groups, with MA-XRF providing the most detailed chemical information. In particular, based on the ratio between the network modifier (K) and network stabilizer (Ca) and on the level of colorants and decolorizers (Fe, Mn, As), the number of plausible glass families could be strongly reduced. In addition, UV-Vis-NIR detected cobalt at ppm level and gave more specific information on the chromophore Fe2+/Fe(3+)ratio. Raman spectroscopy was hampered by fluorescence caused by the metal ions of the decolorizer in most of the panes, but nevertheless identified one group as HLLA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561869600001 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.2 Times cited Open Access  
  Notes ; Belgian Federal Science Policy Office, Grant/Award Number: BR/175/A3/FENESTRA; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: 12X1919N; Baillet-Latour Fund ; Approved Most recent IF: 1.2; 2020 IF: 1.298  
  Call Number UA @ admin @ c:irua:170972 Serial 6473  
Permanent link to this record
 

 
Author Hendriks, E.; Geldof, M.; van den Berg, K.J.; Monico, L.; Miliani, C.; Moretti, P.; Iwanicka, M.; Targowski, P.; Megens, L.; de Groot, S.; van Keulen, H.; Janssens, K.; Vanmeert, F.; van der Snickt, G. doi  isbn
openurl 
  Title (up) Conservation of the Amsterdam sunflowers : from past to future Type H1 Book chapter
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 175-205 T2 - Van Gogh’s Sunflowers illuminated – a  
  Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract This chapter lays out a conservation timeline, from past to future, for the Amsterdam version of Van Gogh's Sunflowers. It starts by considering the restoration history of the painting in order to assess its current physical state, and looks ahead to formulate an appropriate strategy for future conservation treatment and display. Due attention is paid to the two recorded episodes of restoration performed in 1927 and 1961 by the Dutch restorer, Jan Cornelis Traas. Based on physical and chemical investigation of Sunflowers we attempt to reconstruct what these former treatments (which are barely documented) entailed and consider the repercussions for the present condition of the painting. The former interventions by Traas also serve as a benchmark to reflect on current choices made, highlighting the extent to which ideas and methodologies have continued to evolve over the past century as conservation has moved further away from being a singularly craft-based activity to become an established historical and scientific discipline underpinned by ethical guidelines. Jan Cornelis Traas (1898–1984) As mentioned, the two main recorded interventions to the Amsterdam Sunflowers may be associated with the Dutch restorer, Jan Cornelis Traas, who treated the picture in 1927, close to the start of his career, and again in 1961, shortly before he retired. Traas was the first restorer to be appointed at the Mauritshuis in The Hague where he worked from 1931 to 1962 and treated hundreds of paintings, including iconic masterpieces such as Girl with a Pearl Earring by Johannes Vermeer. Yet despite the magnitude and importance of his restoration oeuvre, J.C. Traas (as he is usually referred to in surviving documents), has remained somewhat obscure. He is shown here in the only known surviving photograph of him at work, shortly before he retired (fig. 7.1). Unlike his illustrious contemporaries, A. Martin de Wild (1899–1969) and Helmut Ruhemann (1891–1973), for example, Traas did not publish anything, he appears to have kept no records of his work and no personal archive is known. However, the study of some newly discovered historical documents, combined with physical examination of Sunflowers and a large number of other works he treated, allows us to recover an idea of his working practices and approaches viewed within the context of his day.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-94-6372-532-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190780 Serial 7727  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Miliani, C.; van der Snickt, G.; Brunetti, B.G.; Guidi, M.C.; Radepont, M.; Cotte, M. doi  openurl
  Title (up) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods : 4 : artificial aging of model samples of co-precipitates of lead chromate and lead sulfate Type A1 Journal article
  Year 2013 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 85 Issue 2 Pages 860-867  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Previous investigations about the darkening of chrome yellow pigments revealed that this form of alteration is attributable to a reduction of the original Cr(VI) to Cr(III), and that the presence of sulfur-containing compounds, most often sulfates, plays a key role during this process. We recently demonstrated that different crystal forms of chrome yellow pigments (PbCrO4 and PbCr1xSxO4) are present in paintings by Vincent van Gogh. In the present work, we show how both the chemical composition and the crystalline structure of lead chromate-based pigments influence their stability. For this purpose, oil model samples made with in-house synthesized powders of PbCrO4 and PbCr1xSxO4 were artificially aged and characterized. We observed a profound darkening only for those paint models made with PbCr1xSxO4, rich in SO42 (x ≥ 0.4), and orthorhombic phases (>30 wt %). Cr and S K-edge micro X-ray absorption near edge structure investigations revealed in an unequivocal manner the formation of up to about 60% of Cr(III)-species in the outer layer of the most altered samples; conversely, independent of the paint models chemical composition, no change in the S-oxidation state was observed. Analyses employing UVvisible diffuse reflectance and Fourier transform infrared spectroscopy were performed on unaged and aged model samples in order to obtain additional information on the physicochemical changes induced by the aging treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313668400032 Publication Date 2012-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 49 Open Access  
  Notes ; This research was supported by grants from ESRF (experiment EC-799), the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16), and the BELSPO-SDD S2-ART (SD/RI/04) project. The text also presents results from GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) projects G.0704.08 and G.01769.09. The EU FP7 programme CHARISMA (Grant Agreement 228330) and MIUR (PRIN08, Materiali e sistemi innovativi per la conservazione dell'arte contemporanea 2008 FFXXN9) are also acknowledged. ; Approved Most recent IF: 6.32; 2013 IF: 5.825  
  Call Number UA @ admin @ c:irua:110471 Serial 5569  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Vanmeert, F.; Cotte, M.; Brunetti, B.G.; van der Snickt, G.; Leeuwestein, M.; Plisson, J.S.; Menu, M.; Miliani, C. doi  openurl
  Title (up) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods : part 5 : effects of nonoriginal surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints Type A1 Journal article
  Year 2014 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 86 Issue 21 Pages 10804-10811  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The darkening of lead chromate yellow pigments, caused by a reduction of the chromate ions to Cr(III) compounds, is known to affect the appearance of several paintings by Vincent van Gogh. In previous papers of this series, we demonstrated that the darkening is activated by light and depends on the chemical composition and crystalline structure of the pigments. In this work, the results of Part 2 are extended and complemented with a new study aimed at deepening the knowledge of the nature and distribution of Cr and S species at the interface between the chrome yellow paint and the nonoriginal coating layer. For this purpose, three microsamples from two varnished paintings by Van Gogh and a waxed low relief by Gauguin (all originally uncoated) have been examined. Because nonoriginal coatings are often present in artwork by Van Gogh and contemporaries, the understanding of whether or not their application has influenced the morphological and/or physicochemical properties of the chrome yellow paint underneath is relevant in view of the conservation of these masterpieces. In all the samples studied, microscopic X-ray fluorescence (mu-XRF) and X-ray absorption near edge structure (mu-XANES) investigations showed that Cr(III)-based alteration products are present in the form of grains inside the coating (generally enriched of S species) and also homogeneously widespread at the paint surface. The distribution of Cr(III) species may be explained by the mechanical friction caused by the coating application by brush that picked up and redistributed the superficial Cr compounds, likely already present in the reduced state as result of the photodegradation process. The analysis of the XANES profiles allowed us to obtain new insights into the nature of the Cr(III) alteration products, that were identified as sulfate-, oxide-, organo-metal-, and chloride-based compounds. Building upon the knowledge acquired through the examination of original paint samples and from the investigation of aged model paints in the last Part 4 paper, in this study we aim to characterize a possible relation between the chemical composition of the coating and the chrome yellow degradation pathways by studying photochemically aged model samples covered with a dammar varnish contaminated with sulfide and sulfate salts. Cr speciation results did not show any evidence of the active role of the varnish and added S species on the reduction process of chrome yellows.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344510200043 Publication Date 2014-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 25 Open Access  
  Notes ; This research was supported by the Italian projects PRIN (SICH) and PON (ITACHA). The text also presents results from Interuniversity Attraction Poles Programme Belgian Science Policy (S2-ART project S4DA), GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. ESRF is acknowledged for the grants received (experiments EC-799 and EC-1051). L.M. acknowledges the CNR for the financial support received in the framework of the Short Term Mobility Programme 2013. Thanks are expressed to Ella Hendriks (Van Gogh Museum, Amsterdam) and Muriel Geldof (Cultural Heritage Agency of The Netherlands) for selecting and sharing the information on the cross-section taken from Bank of the Seine. All the staff of the Van Gogh Museum, the Kroller-Muller Museum, and the Musee d'Orsay are acknowledged for the agreeable cooperation. ; Approved Most recent IF: 6.32; 2014 IF: 5.636  
  Call Number UA @ admin @ c:irua:122100 Serial 5570  
Permanent link to this record
 

 
Author Monico, L.; van der Snickt, G.; Janssens, K.; de Nolf, W.; Miliani, C.; Verbeeck, J.; Tian, H.; Tan, H.; Dik, J.; Radepont, M.; Cotte, M. pdf  doi
openurl 
  Title (up) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods : 1 : artificially aged model samples Type A1 Journal article
  Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 83 Issue 4 Pages 1214-1223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract On several paintings by artists of the end of the 19th century and the beginning of the 20th Century a darkening of the original yellow areas, painted with the chrome yellow pigment (PbCrO4, PbCrO4·xPbSO4, or PbCrO4·xPbO) is observed. The most famous of these are the various Sunflowers paintings Vincent van Gogh made during his career. In the first part of this work, we attempt to elucidate the degradation process of chrome yellow by studying artificially aged model samples. In view of the very thin (1−3 μm) alteration layers that are formed, high lateral resolution spectroscopic methods such as microscopic X-ray absorption near edge (μ-XANES), X-ray fluorescence spectrometry (μ-XRF), and electron energy loss spectrometry (EELS) were employed. Some of these use synchrotron radiation (SR). Additionally, microscopic SR X-ray diffraction (SR μ-XRD), μ-Raman, and mid-FTIR spectroscopy were employed to completely characterize the samples. The formation of Cr(III) compounds at the surface of the chrome yellow paint layers is particularly observed in one aged model sample taken from a historic paint tube (ca. 1914). About two-thirds of the chromium that is present at the surface has reduced from the hexavalent to the trivalent state. The EELS and μ-XANES spectra are consistent with the presence of Cr2O3·2H2O (viridian). Moreover, as demonstrated by μ-XANES, the presence of another Cr(III) compound, such as either Cr2(SO4)3·H2O or (CH3CO2)7Cr3(OH)2 [chromium(III) acetate hydroxide], is likely.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000287176900011 Publication Date 2011-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 113 Open Access  
  Notes Iuap; Fwo Approved Most recent IF: 6.32; 2011 IF: 5.856  
  Call Number UA @ lucian @ c:irua:88794UA @ admin @ c:irua:88794 Serial 632  
Permanent link to this record
 

 
Author Monico, L.; van der Snickt, G.; Janssens, K.; de Nolf, W.; Miliani, C.; Dik, J.; Radepont, M.; Hendriks, E.; Geldof, M.; Cotte, M. doi  openurl
  Title (up) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods : 2 : original paint layer samples Type A1 Journal article
  Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 83 Issue 4 Pages 1224-1231  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The darkening of the original yellow areas painted with the chrome yellow pigment (PbCrO4, PbCrO4·xPbSO4, or PbCrO4·xPbO) is a phenomenon widely observed on several paintings by Vincent van Gogh, such as the famous different versions of Sunflowers. During our previous investigations on artificially aged model samples of lead chromate, we established for the first time that darkening of chrome yellow is caused by reduction of PbCrO4 to Cr2O3·2H2O (viridian green), likely accompanied by the presence of another Cr(III) compound, such as either Cr2(SO4)3·H2O or (CH3CO2)7Cr3(OH)2 [chromium(III) acetate hydroxide]. In the second part of this work, in order to demonstrate that this reduction phenomenon effectively takes place in real paintings, we study original paint samples from two paintings of V. van Gogh. As with the model samples, in view of the thin superficial alteration layers that are present, high lateral resolution spectroscopic methods that make use of synchrotron radiation (SR), such as microscopic X-ray absorption near edge (μ-XANES) and X-ray fluorescence spectrometry (μ-XRF) were employed. Additionally, μ-Raman and mid-FTIR analyses were carried out to completely characterize the samples. On both paint microsamples, the local presence of reduced Cr was demonstrated by means of μ-XANES point measurements. The presence of Cr(III) was revealed in specific areas, in some cases correlated to the presence of Ba(sulfate) and/or to that of aluminum silicate compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000287176900012 Publication Date 2011-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 84 Open Access  
  Notes ; This research was funded by grants from ESRF (experiment EC-504) and by HASYLAB (experiments 11-20080130 EC and 11-20070157 EC) and was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) project nos. G.0103.04, G.0689.06, and G.0704.08. The staff of the Van Gogh Museum, Amsterdam, is acknowledged for their agreeable cooperation and for the authorization to publish the images of the paintings in this article. L.M. was financially supported by the Erasmus Placement in the framework of Lifelong Learning Programme (A.Y. 2009-2010). The EU Community's FP7 Research Infrastructures program under the CHARISMA Project (Grant Agreement 228330) is also acknowledged. ; Approved Most recent IF: 6.32; 2011 IF: 5.856  
  Call Number UA @ admin @ c:irua:88795 Serial 5571  
Permanent link to this record
 

 
Author van der Snickt, G.; Dooley, K.A.; Sanyova, J.; Dubois, H.; Delaney, J.K.; Gifford, E.M.; Legrand, S.; Laquiere, N.; Janssens, K. url  doi
openurl 
  Title (up) Dual mode standoff imaging spectroscopy documents the painting process of the Lamb of God in the Ghent Altarpiece by J. and H. Van Eyck Type A1 Journal article
  Year 2020 Publication Science Advances Abbreviated Journal  
  Volume 6 Issue 31 Pages eabb3379  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract The ongoing conservation treatment program of the Ghent Altarpiece by Hubert and Jan Van Eyck, one of the iconic paintings of the west, has revealed that the designs of the paintings were changed several times, first by the original artists, and then during later restorations. The central motif, The Lamb of God, representing Christ, plays an essential iconographic role, and its depiction is important. Because of the prevalence of lead white, it was not possible to visualize the Van Eycks' original underdrawing of the Lamb, their design changes, and the overpaint by later restorers with a single spectral imaging modality. However, by using elemental (x-ray fluorescence) and molecular (infrared reflectance) imaging spectroscopies, followed by analysis of the resulting data cubes, the necessary chemical contrast could be achieved. In this way, the two complementary modalities provided a more complete picture of the development and changes made to the Lamb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000556543100033 Publication Date 2020-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access  
  Notes ; This research was part of the activities of the Chair on Advanced Imaging Techniques for the Arts, established by the Baillet Latour fund. In addition, it was supported by the Belgian Science Policy Office (Project MO/39/011) and the Gieskes-Strijbis fund. We are also indebted to the BOF-GOA SOLARPaint project of the University of Antwerp Research Council and to FWO (Brussels) projects G056619N and G054719N. J.K.D. and K.A.D. acknowledge support from the National Gallery of Art. ; Approved Most recent IF: 13.6; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171270 Serial 6494  
Permanent link to this record
 

 
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M. pdf  doi
openurl 
  Title (up) Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
  Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 64 Issue 8 Pages 812-820  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab  
  Abstract Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000269995300018 Publication Date 2009-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 28 Open Access  
  Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719  
  Call Number UA @ lucian @ c:irua:79647 Serial 1035  
Permanent link to this record
 

 
Author Caen, J.; Schalm, O.; van der Snickt, G.; van der Linden, V.; Frederickx, P.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M. openurl 
  Title (up) Enamels in stained-glass windows : preparation, chemical composition, microstructure and causes of deterioration Type P3 Proceeding
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 121-126  
  Keywords P3 Proceeding; Art; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Glassac Place of Publication Lisbon Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:112025 Serial 1036  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Hendriks, E.; Vanmeert, F.; van der Snickt, G.; Cotte, M.; Falkenberg, G.; Brunetti, B.G.; Miliani, C. pdf  doi
openurl 
  Title (up) Evidence for degradation of the chrome yellows in Van Gogh's sunflowers : a study using noninvasive in situ methods and synchrotron-radiation-based x-ray techniques Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 47 Pages 13923-13927  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-xSxO4 (x approximate to 0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr-III compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367722500009 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 24 Open Access  
  Notes ; We acknowledge financial support from the Italian MIUR project SICH-PRIN (2010329WPF_001) and BELSPO (Brussels) Project S2-ART (SD04A), GOA “SOLARPAINT” (Research Fund Antwerp University, BOF-2015), and FWO (Brussels) projects G.0C12.13, G.0704.08, G.01769.09. We thank ESRF (EC-1051, HG-26) and DESY (I-20120312 EC) for beamtime grants received. Noninvasive analysis of Sunflowers were supported by the EU FP7 programme CHARISMA (Grant 228330) and the Fund Inbev-Baillet Latour (Brussels). L.M. acknowledges financial support from the CNR Short Term Mobility Programme-2013. We thank Muriel Geldof, Luc Megens, Suzan de Groot (The Netherlands Cultural Heritage Agency, RCE), Chiara Grazia, David Buti (CNR-ISTM and SMAArt Centre), and the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:131110 Serial 5617  
Permanent link to this record
 

 
Author Legrand, S.; Vanmeert, F.; van der Snickt, G.; Alfeld, M.; de Nolf, W.; Dik, J.; Janssens, K. url  doi
openurl 
  Title (up) Examination of historical paintings by state-of-the-art hyperspectral imaging methods : from scanning infra-red spectroscopy to computed X-ray laminography Type A1 Journal article
  Year 2014 Publication Heritage science Abbreviated Journal  
  Volume 2 Issue Pages 13-11  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The development of advanced methods for non-destructive selective imaging of painted works of art at the macroscopic level based on radiation in the X-ray and infrared range of the electromagnetic spectrum are concisely reviewed. Such methods allow to either record depth-selective, element-selective or species-selective images of entire paintings. Camera-based full field methods (that record the image data in parallel) can be discerned next to scanning methods (that build up distributions in a sequential manner by scanning a beam of radiation over the surface of an artefact). Six methods are discussed: on the one hand, macroscopic X-ray fluorescence and X-ray diffraction imaging and X-ray laminography and on the other hand macroscopic Mid and Near Infrared hyper- and full spectral imaging and Optical Coherence Tomography. These methods can be considered to be improved versions of the well-established imaging methods employed worldwide for examination of paintings, i.e., X-ray radiography and Infrared reflectography. Possibilities and limitations of these new imaging techniques are outlined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2014-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:124629 Serial 5619  
Permanent link to this record
 

 
Author Janssens, K.; Alfeld, M.; Van der Snickt, G.; De Nolf, W.; Vanmeert, F.; Monico, L.; Legrand, S.; Dik, J.; Cotte, M.; Falkenberg, G.; van der Loeff, L.; Leeuwestein, M.; Hendriks, E. doi  isbn
openurl 
  Title (up) Examination of Vincent van Gogh's paintings and pigments by means of state-of-the-art analytical methods Type H2 Book chapter
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages 373-403 T2 - Science and art : the painted surface  
  Keywords H2 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Recent studies in which X-ray beams of macroscopic to (sub) microscopic dimensions were used for non-destructive analysis and characterization of pigments, paint micro samples and/or entire paintings by Vincent van Gogh are concisely reviewed. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic and macroscopic XRF are variants of the method that are well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi layers, either on the length scale from 1–100 μm inside micro samples taken from paintings or on the 1–100 cm length scale when the (subsurface) distribution of specific pigments in entire paintings is concerned. In the context of the characterization of van Gogh's pigments subject to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red (μ-FTIR) spectroscopy since this method delivers complementary information at more or less the same length scale as the X-ray microprobe techniques. Also in the context of macroscopic imaging of works of art, the complementary use of X-ray based and infra-red based imaging appears very promising; some recent developments are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-84973-818-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190782 Serial 7943  
Permanent link to this record
 

 
Author van der Snickt, G.; Martins, A.; Delaney, J.; Janssens, K.; Zeibel, J.; Duffy, M.; McGlinchey, C.; Van Driel, B.; Dik, J. pdf  doi
openurl 
  Title (up) Exploring a hidden painting below the surface of Rene Magritte's Le Portrait Type A1 Journal article
  Year 2016 Publication Applied spectroscopy Abbreviated Journal Appl Spectrosc  
  Volume 70 Issue 1 Pages 57-67  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Two state-of-the-art methods for non-invasive visualization of subsurface (or overpainted) pictorial layers present in painted works of art are employed to study Le portrait, painted by Belgian artist Rene Magritte in 1935. X-ray radiography, a commonly used method for the nondestructive inspection of paintings, had revealed the presence of an underlying figurative composition, part of an earlier Magritte painting entitled La pose enchantee (1927) which originally depicted two full length nude female figures with exaggerated facial features. On the one hand, macroscopic X-ray fluorescence analysis (MA-XRF), a method capable of providing information on the distribution of the key chemical elements present in many artists' pigments, was employed. The ability of the X-rays to penetrate the upper layer of paint enabled the imaging of the facial features of the female figure and provided information on Magritte's palette for both surface and hidden composition. On the other hand, visible and near infrared hyperspectral imaging spectroscopies in transmission mode were also used, especially in the area of the table cloth in order to look through the upper representation and reveal the pictorial layer(s) below. MA-XRF provided elemental information on the pigment distributions in both the final painting and the prior whereas the transmission mode provided information related to preparatory sketches as well as revealing differences between the paints used in both compositions. These results illustrate very well the manner in which the two imaging methods complement each other, both in the sense of providing different types of information on the nature and presence of paint components/pigments and in the sense of being optimally suited to easily penetrate through different types of overpaint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368604500007 Publication Date 2016-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-7028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.529 Times cited 13 Open Access  
  Notes ; GvdS and KJ acknowledge the support of the Fund Inbev-Baillet Latour. JKD acknowledges support from the Andrew Mellon Foundation and the National Science Foundation. BvD and JD acknowledge support from The Netherlands Organisation for Scientific Research (NWO). ; Approved Most recent IF: 1.529  
  Call Number UA @ admin @ c:irua:131544 Serial 5620  
Permanent link to this record
 

 
Author de Nolf, W.; Dik, J.; van der Snickt, G.; Wallert, A.; Janssens, K. doi  openurl
  Title (up) High energy X-ray powder diffraction for the imaging of (hidden) paintings Type A1 Journal article
  Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 26 Issue 5 Pages 910-916  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Over the past few years a number of innovative imaging techniques have been introduced for the visualization of hidden paint layers in Old Master Paintings. These include X-ray fluorescence scanning, TeraHertz imaging, optical coherence tomography and other acoustics-based forms of visualization. All of these techniques are usually a trade-off between their penetrative capability on the one side and their analytical precision in terms of spatial resolution and material identification on the other. Here, we present the first-time use of High-Energy X-ray Powder Diffraction imaging (HE-XRPD) in the study of hidden layers in paintings. As an imaging tool, it combines high-depth sensitivity with fingerprint identification of most inorganic painting materials. The potential as well as some limitations of this technique are demonstrated using model paintings as well as an authentic 16th century painting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000289731900005 Publication Date 2011-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 34 Open Access  
  Notes ; ; Approved Most recent IF: 3.379; 2011 IF: 3.220  
  Call Number UA @ admin @ c:irua:89922 Serial 5640  
Permanent link to this record
 

 
Author Dik, J.; Janssens, K.; van der Snickt, G.; Wallert, A.; Rickers, K.; Falkenberg, G. openurl 
  Title (up) High-E scanning m-XRF experiment on test paintings Type H3 Book chapter
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 1589-1590  
  Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:74469 Serial 5638  
Permanent link to this record
 

 
Author De Meyer, S.; Vanmeert, F.; Vertongen, R.; van Loon, A.; Gonzalez, V.; van der Snickt, G.; Vandivere, A.; Janssens, K. doi  openurl
  Title (up) Imaging secondary reaction products at the surface of Vermeer's Girl with the Pearl Earring by means of macroscopic X-ray powder diffraction scanning Type A1 Journal article
  Year 2019 Publication Heritage science Abbreviated Journal  
  Volume 7 Issue 1 Pages 67  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract The use of non-invasive macroscopic imaging techniques is becoming more prevalent in the field of cultural heritage, especially to avoid invasive procedures that damage valuable artworks. For this purpose, an X-ray powder diffraction scanner (MA-XRPD) capable of visualising crystalline compounds in a highly specific manner was recently developed. Many inorganic pigments present in paintings fall into this category of materials. In this study, the 17th century oil painting Girl with a Pearl Earring (c. 1665) by Johannes Vermeer was analysed with a combination of transmission and reflection mode MA-XRPD. By employing this scanner in reflection mode, the relative sensitivity for compounds that are present at the paint surface could be increased, establishing it as a highly relevant technique for investigating the degradation processes that are ongoing at paint surfaces. Many of the original pigments employed by Vermeer could be identified, along with four secondary alteration products: gypsum (CaSO4 center dot 2H(2)O), anglesite (PbSO4), palmierite (K2Pb(SO4)(2)) and weddellite (CaC2O4 center dot 2H(2)O). The formation of gypsum was linked to the presence of chalk in the upper glaze layer while the formation of palmierite and weddellite is driven by the presence of lake pigments (and their substrates). In this manner, MA-XRPD can also be used to pinpoint locations relevant for sampling and synchrotron mu-XRPD analysis, which provides information on the microscopic make-up of the paint. A paint cross-section taken from an area rich in palmierite was analysed with synchrotron mu-XRPD, which confirmed the presence of this secondary compound at the interface of the upper paint layer with the ground layer as well as the presence of anglesite in the ground layer. The capacity of MA-XRPD to identify and chart secondary alteration products in a non-invasive manner has only very recently been demonstrated and makes it a highly relevant technique for the assessment of the chemical condition of works of art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000484938100001 Publication Date 2019-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes ; The authors would like to thank Interreg Vlaanderen-Nederland for funding to help develop the MA-rXRPD scanner. This project was made possible with support from the Johan Maurits Compagnie Foundation. This study was supported by Interreg and CALIPSOplus (Grant 730872). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:162801 Serial 5653  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: