toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sfez, S.; De Meester, S.; Vlaeminck, S.E.; Dewulf, J. pdf  url
doi  openurl
  Title Improving the resource footprint evaluation of products recovered from wastewater : a discussion on appropriate allocation in the context of circular economy Type A1 Journal article
  Year 2019 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 148 Issue Pages 132-144  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Shifting from a linear to a circular economy has consequences on how the sustainability of products is assessed. This is the case for products recovered from resources such as sewage sludge. The “zero-burden” assumption is commonly used in Life Cycle Assessment and considers that waste streams are burden-free, which becomes debatable when comparing waste-based with virgin material-based products in the context of the growing circular economy. If waste streams are considered as resources rather than waste, upstream burdens should be partly allocated to all products to allow a fair comparison with their virgin material-based equivalents. In this paper, five allocation approaches are applied to allocate the resource use of upstream processes (consumer goods production) to products recovered from the processing of sewage sludge in the Netherlands, which produces biogas, (phosphorus-based) chemicals and building materials. Except for the approach which allocates 100% of the impact from resource recovery processes to the preceding consumer goods, the allocation approaches show a resource use 27 to 80% higher than with the “zero-burden” assumption. In this particular case, using these allocation approaches is likely to find little support from recyclers. The producers of household products, recyclers and policy makers should find a consensus to consider the shift from a linear to a circular economy in sustainability assessment studies while avoiding discouraging the implementation of recovery technologies. This paper suggests starting the discussion with the approach which allocates the impacts from upstream processes degressively to the downstream products as it best translates the industrial ecology principles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472242800012 Publication Date 2019-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159887 Serial 8072  
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Chandran, K.; Vlaeminck, S.E.; Murthy, S. openurl 
  Title Inhibition mechanisms affecting deammonification of dewatering filtrate from thermally hydrolyzed digested solid Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 9 p. T2 - WEFTEC.16, 24 - 28 September 2016, New O  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151123 Serial 8102  
Permanent link to this record
 

 
Author Sui, Y.; Alloul, A.; Muys, M.; Makyeme, M.; Coppens, J.; Verstraete, W.; Vlaeminck, S.E. openurl 
  Title Invigorating the renaissance of single cell protein : safe opportunities for nutrient recovery and reuse as feed ingredient Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 12 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151128 Serial 8130  
Permanent link to this record
 

 
Author Van Winckel, T.; Yapuwa, H.; Wett, B.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. openurl 
  Title Its time to harvest : combining internal selection and flocculent external selection to maximize carbon capture efficiency Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - WEFTEC.17, 30 September 4 October 2017,  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151112 Serial 8133  
Permanent link to this record
 

 
Author Decostere, B.; Coppens, J.; Vervaeren, H.; Vlaeminck, S.E.; De Gelder, L.; Boon, N.; Nopens, I.; Van Hulle, S.W.H. pdf  doi
openurl 
  Title Kinetic exploration of intracellular nitrate storage in marine microalgae Type A1 Journal article
  Year 2017 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal  
  Volume 52 Issue 14 Pages 1303-1311  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, a recently developed model accounting for intracellular nitrate storage kinetics was thoroughly studied to understand and compare the storage capacity of Phaeodactylum tricornutum and Amphora coffeaeformis. In the first stage the identifiability of the biokinetic parameters was examined. Next, the kinetic model was calibrated for both microalgal species based on experimental observations during batch growth experiments. Two kinetic parameters were calibrated, namely the maximum specific growth rate (mu(max)) and the nitrate storage rate (k(sto)). A significant difference was observed for the nitrate storage rate between both species. For P. tricornutum, the nitrate storage rate was much higher (k(sto) = 0.036m(3) g(-1) DW d(-1)) compared to A. coffeaeformis (k(sto) = 0.0004m(3) g(-1) DW d(-1)). This suggests that P. tricornutum has a more efficient nitrate uptake ability and intracellular nitrate storage capacity and also indicates the need for determination of k(sto) in order to quantify nitrate storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415634300004 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1093-4529; 1532-4117 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147467 Serial 8137  
Permanent link to this record
 

 
Author Van Winckel, T.; De Clippeleir, H.; Yapuwa, H.; Wett, B.; Bott, C.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S. openurl 
  Title Lets settle together? Extending external selection from mainstream deammonification to high-rate activated sludge Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 13 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151131 Serial 8171  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Vermeir, P.; D'Adamo, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 145-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its protein production for human nutrition has rarely been reported. This study unveils the effects of growth phase and light regime on protein and essential amino acid (EAA) levels in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. Light/dark conditions inferred a higher light-usage efficiency, yielding 597% higher protein and 1828% higher EAA mass on light energy throughout the growth, accompanied by 138% faster growth during the light phase of the light/dark cycle, compared to continuous light. The findings revealed D. salina to be especially suitable for high-quality protein production, particularly grown under light/dark conditions, with nitrogen limitation as possible trigger, and harvested in the stationary phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000018 Publication Date 2018-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155981 Serial 8173  
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.T.G.; Vlaeminck, S.E. doi  openurl
  Title Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater Type A1 Journal article
  Year 2016 Publication Environmental science and technology Abbreviated Journal  
  Volume 50 Issue 17 Pages 9781-9790  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 degrees C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (t(c); 8 and 15 min), and stabilization times (t(s); 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and t(c) of 15 min and t(s) of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382805800097 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:138270 Serial 8176  
Permanent link to this record
 

 
Author Pintucci, C.; Carballa, M.; Varga, S.; Sarli, J.; Peng, L.; Bousek, J.; Pedizzi, C.; Ruscalleda, M.; Tarragó, E.; Prat, D.; Colica, G.; Picavet, M.; Colsen, J.; Benito, O.; Balaguer, M.; Puig, S.; Lema, J.M.; Colprim, J.; Fuchs, W.; Vlaeminck, S.E. url  doi
openurl 
  Title The ManureEcoMine pilot installation : advanced integration of technologies for the management of organics and nutrients in livestock waste Type A1 Journal article
  Year 2017 Publication Water science and technology Abbreviated Journal  
  Volume 75 Issue 6 Pages 1281-1293  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m−3 d−1, with a CH4 production of 1.4 Nm3 m−3 d−1. The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to 4 times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397590800003 Publication Date 2016-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139911 Serial 8200  
Permanent link to this record
 

 
Author Pintucci, C.; Peng, L.; Prat, D.; Colica, G.; Merijn, P.; Colsen, J.; Varga, S.; Sarli, J.; Benito, O.; Vlaeminck, S.E. openurl 
  Title The ManureEcoMine Pilot Plant : towards advanced nutrient management in livestock waste treatment Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 13 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151130 Serial 8201  
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; Shaw, A.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Chandran, K.; Vlaeminck, S.E.; Murthy, S. openurl 
  Title Mechanistic understanding of microbial activity inhibition : case study on sidestream deammonification for digester supernatant pretreated by thermal hydrolysis Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 5 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151133 Serial 8214  
Permanent link to this record
 

 
Author Ilgrande, C.; Defoirdt, T.; Vlaeminck, S.E.; Boon, N.; Clauwaert, P. url  doi
openurl 
  Title Media optimization, strain compatibility, and low-shear modeled microgravity exposure of synthetic microbial communities for urine nitrification in regenerative life-support systems Type A1 Journal article
  Year 2019 Publication Astrobiology Abbreviated Journal  
  Volume 19 Issue 11 Pages 1353-1362  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine is a major waste product of human metabolism and contains essential macro- and micronutrients to produce edible microorganisms and crops. Its biological conversion into a stable form can be obtained through urea hydrolysis, subsequent nitrification, and organics removal, to recover a nitrate-enriched stream, free of oxygen demand. In this study, the utilization of a microbial community for urine nitrification was optimized with the focus for space application. To assess the role of selected parameters that can impact ureolysis in urine, the activity of six ureolytic heterotrophs (Acidovorax delafieldii, Comamonas testosteroni, Cupriavidus necator, Delftia acidovorans, Pseudomonas fluorescens, and Vibrio campbellii) was tested at different salinities, urea, and amino acid concentrations. The interaction of the ureolytic heterotrophs with a nitrifying consortium (Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25931) was also tested. Lastly, microgravity was simulated in a clinostat utilizing hardware for in-flight experiments with active microbial cultures. The results indicate salt inhibition of the ureolysis at 30 mS cm(-1), while amino acid nitrogen inhibits ureolysis in a strain-dependent manner. The combination of the nitrifiers with C. necator and V. campbellii resulted in a complete halt of the urea hydrolysis process, while in the case of A. delafieldii incomplete nitrification was observed, and nitrite was not oxidized further to nitrate. Nitrate production was confirmed in all the other communities; however, the other heterotrophic strains most likely induced oxygen competition in the test setup, and nitrite accumulation was observed. Samples exposed to low-shear modeled microgravity through clinorotation behaved similarly to the static controls. Overall, nitrate production from urea was successfully demonstrated with synthetic microbial communities under terrestrial and simulated space gravity conditions, corroborating the application of this process in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000492817700004 Publication Date 2019-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-8070; 1531-1074 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164663 Serial 8215  
Permanent link to this record
 

 
Author Ilgrande, C.; Leroy, B.; Wattiez, R.; Vlaeminck, S.E.; Boon, N.; Clauwaert, P. url  doi
openurl 
  Title Metabolic and proteomic responses to salinity in synthetic nitrifying communities of Nitrosomonas spp. and Nitrobacter spp Type A1 Journal article
  Year 2018 Publication Frontiers in microbiology Abbreviated Journal  
  Volume 9 Issue Pages 2914  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Typically, nitrification is a two-stage microbial process and is key in wastewater treatment and nutrient recovery from waste streams. Changes in salinity represent a major stress factor that can trigger response mechanisms, impacting the activity and the physiology of bacteria. Despite its pivotal biotechnological role, little information is available on the specific response of nitrifying bacteria to varying levels of salinity. In this study, synthetic communities of ammonia-oxidizing bacteria (AOB Nitrosomonas europaea and/or Nitrosomonas ureae) and nitrite-oxidizing bacteria (NOB Nitrobacter winogradskyi and/or Nitrobacter vulgaris) were tested at 5, 10, and 30 mS cm-1 by adding sodium chloride to the mineral medium (0, 40, and 200 mM NaCl, respectively). Ammonia oxidation activity was less affected by salinity than nitrite oxidation. AOB, on their own or in combination with NOB, showed no significant difference in the ammonia oxidation rate among the three conditions. However, N. winogradskyi improved the absolute ammonia oxidation rate of both N. europaea and N. ureae. N. winogradskyis nitrite oxidation rate decreased to 42% residual activity upon exposure to 30 mS cm-1, also showing a similar behavior when tested with Nitrosomonas spp. The nitrite oxidation rate of N. vulgaris, as a single species, was not affected when adding sodium chloride up to 30 mS cm-1, however, its activity was completely inhibited when combined with Nitrosomonas spp. in the presence of ammonium/ammonia. The proteomic analysis of a co-culture of N. europaea and N. winogradskyi revealed the production of osmolytes, regulation of cell permeability and an oxidative stress response in N. europaea and an oxidative stress response in N. winogradskyi, as a result of increasing the salt concentration from 5 to 30 mS cm-1. A specific metabolic response observed in N. europaea suggests the role of carbon metabolism in the production of reducing power, possibly to meet the energy demands of the stress response mechanisms, induced by high salinity. For the first time, metabolic modifications and response mechanisms caused by the exposure to salinity were described, serving as a tool toward controllability and predictability of nitrifying systems exposed to salt fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451903700001 Publication Date 2018-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155237 Serial 8217  
Permanent link to this record
 

 
Author Seuntjens, D.; Meerburg, F.A.; Vlaeminck, S.E.; Roume, H.; Pieper, D.H.; Jauregui, R.; Vilchez-Vargas, R.; Boon, N. openurl 
  Title Microbial ecology of high-rate versus conventional activated sludge : environmental and operational parameters shape microbial structure, co-occurrence and functionality Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 4 p. T2 - WEF/IWA Nutrient Removal and Recovery Co  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151127 Serial 8241  
Permanent link to this record
 

 
Author Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 337 Issue Pages 125364  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694862500007 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:178752 Serial 8243  
Permanent link to this record
 

 
Author Zhang, Q.; Higgins, M.J.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H. openurl 
  Title Minimizing recalcitrant organics and maximizing nitrogen removal linked to advanced biosolids processing at Blue Plains WWTP Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 12 p. T2 - IWA 2017 Conference on Sustainable Wast  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151107 Serial 8252  
Permanent link to this record
 

 
Author Peng, L.; Carvajal-Arroyo, J.M.; Seuntjens, D.; Colica, G.; Pintucci, C.; Vlaeminck, S.E. openurl 
  Title Mitigation of nitrous oxide emission from nitritation/denitritation process Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - WEF Nutrient Symposium 2017, 12 - 14 Jun  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151119 Serial 8255  
Permanent link to this record
 

 
Author Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 211 Issue Pages 41-50  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75 mS cm−1 and loading rate above 450 mg N L−1 d−1. The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375186700006 Publication Date 2016-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139913 Serial 8307  
Permanent link to this record
 

 
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E. pdf  openurl
  Title The nitrogen and phosphorus budget of Flanders : a tool for efficient resource management Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151142 Serial 8308  
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; Ilgrande, C.; Carvajal-Arroyo, J.M.; Coninx, I.; Van Hoey, O.; Roume, H.; Morozova, J.; Udert, K.M.; Sas, B.; Paille, C.; Lasseur, C.; Ilyin, V.; Clauwaert, P.; Leys, N.; Vlaeminck, S.E. url  doi
openurl 
  Title Nitrogen cycle microorganisms can be reactivated after Space exposure Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal  
  Volume 8 Issue Pages 13783  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation. In this study, microorganisms capable of essential nitrogen cycle conversions were sent on a 44-days FOTON-M4 flight to Low Earth Orbit (LEO) and exposed to 10(-3)-10(-4) g (gravitational constant) and 687 +/- 170 mu Gy (Gray) d(-1) (20 +/- 4 degrees C), about the double of the radiation prevailing in the International Space Station (ISS). After return to Earth, axenic cultures, defined and reactor communities of ureolytic bacteria, ammonia oxidizing archaea and bacteria, nitrite oxidizing bacteria, denitrifiers and anammox bacteria could all be reactivated. Space exposure generally yielded similar or even higher nitrogen conversion rates as terrestrial preservation at a similar temperature, while terrestrial storage at 4 degrees C mostly resulted in the highest rates. Refrigerated Space exposure is proposed as a strategy to maximize the reactivation potential. For the first time, the combined potential of ureolysis, nitritation, nitratation, denitrification (nitrate reducing activity) and anammox is demonstrated as key enabler for resource recovery in human Space exploration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444501200063 Publication Date 2018-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153641 Serial 8309  
Permanent link to this record
 

 
Author Clauwaert, P.; Muys, M.; Alloul, A.; De Paepe, J.; Luther, A.; Sun, X.; Ilgrande, C.; Christiaens, M.E.R.; Hu, X.; Zhang, D.; Lindeboom, R.E.F.; Sas, B.; Rabaey, K.; Boon, N.; Ronsse, F.; Geelen, D.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Nitrogen cycling in bioregenerative life support systems : challenges for waste refinery and food production processes Type A1 Journal article
  Year 2017 Publication Progress in aerospace sciences Abbreviated Journal  
  Volume 91 Issue Pages 87-98  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404699800005 Publication Date 2017-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-0421; 1873-1724 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148996 Serial 8310  
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8278-8286  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900051 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179768 Serial 8334  
Permanent link to this record
 

 
Author Van Winckel, T.; Liu, X.; Vlaeminck, S.E.; Takács, I.; Al-Omari, A.; Sturm, B.; Kjellerup, B.V.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Overcoming floc formation limitations in high-rate activated sludge systems Type A1 Journal article
  Year 2019 Publication Chemosphere Abbreviated Journal  
  Volume 215 Issue Pages 342-352  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) is an essential cornerstone of the pursuit towards energy positive sewage treatment through maximizing capture of organics. The capture efficiency heavily relies on the degree of solid separation achieved in the clarifiers. Limitations in the floc formation process commonly emerge in HRAS systems, with detrimental consequences for the capture of organics. This study pinpointed and overcame floc formation limitations present in full-scale HRAS reactors. Orthokinetic flocculation tests were performed with varying shear, sludge concentration, and coagulant or flocculant addition. These were analyzed with traditional and novel settling parameters and extracellular polymeric substances (EPS) measurements. HRAS was limited by insufficient collision efficiency and occurred because the solids retention time (SRT) was short and colloid loading was high. The limitation was predominantly caused by impaired flocculation rather than coagulation. In addition, the collision efficiency limitation was driven by EPS composition (low protein over polysaccharide ratio) instead of total EPS amount. Collision efficiency limitation was successfully overcome by bio-augmenting sludge from a biological nutrient removal reactor operating at long SRT which did not show any floc formation limitations. However, this action brought up a floc strength limitation. The latter was not correlated with EPS composition, but rather EPS amount and hindered settling parameters, which determined floc morphology. With this, an analysis toolkit was proposed that will enable design engineers and operators to tackle activated solid separation challenges found in HRAS systems and maximize the recovery potential of the process. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450383400038 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153978 Serial 8350  
Permanent link to this record
 

 
Author Mozo, I.; Lacoste, L.; Aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Barillon, B.; Martin Ruel, S. pdf  openurl
  Title Overcoming the challenges for mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - 13th IWA Leading-Edge Conference on Wate  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151137 Serial 8351  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Muys, M.; Coppens, J.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Photosynthetic oxygenation for urine nitrification Type A1 Journal article
  Year 2018 Publication Water science and technology Abbreviated Journal  
  Volume 78 Issue 1 Pages 183-194  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445517100020 Publication Date 2018-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152908 Serial 8381  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.817 Times cited (up) Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Liu, X.; Van Winckel, T.; Kjellerup, B.V.; Takacs, I.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. openurl 
  Title Pinpointing bioflocculation limitations for enhanced carbon management in high-rate activated sludge Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 6 p. T2 - WEF Nutrient Symposium 2017, 12 - 14 Jun  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151118 Serial 8384  
Permanent link to this record
 

 
Author Seuntjens, D.; Han, M.; Kerckhof, F.-M.; Boon, N.; Al-Omari, A.; Takacs, I.; Meerburg, F.; De Mulder, C.; Wett, B.; Bott, C.; Murthy, S.; Carvajal Arroyo, J.M.; De Clippeleir, H.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 138 Issue Pages 37-46  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 °C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (ΘAOB = 1.10, ΘNOB = 1.061.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431747300005 Publication Date 2017-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149976 Serial 8385  
Permanent link to this record
 

 
Author Cagnetta, C.; Coma, M.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Production of carboxylates from high rate activated sludge through fermentation Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 217 Issue Pages 165-172  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141 mg C g−1 VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35 °C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380226300023 Publication Date 2016-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139912 Serial 8421  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: