toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Coppens, J.; Meers, E.; Boon, N.; Buysse, J.; Vlaeminck, S.E. pdf  openurl
  Title The nitrogen and phosphorus budget of Flanders : a tool for efficient resource management Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151142 Serial 8308  
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; Ilgrande, C.; Carvajal-Arroyo, J.M.; Coninx, I.; Van Hoey, O.; Roume, H.; Morozova, J.; Udert, K.M.; Sas, B.; Paille, C.; Lasseur, C.; Ilyin, V.; Clauwaert, P.; Leys, N.; Vlaeminck, S.E. url  doi
openurl 
  Title Nitrogen cycle microorganisms can be reactivated after Space exposure Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal  
  Volume 8 Issue Pages 13783  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation. In this study, microorganisms capable of essential nitrogen cycle conversions were sent on a 44-days FOTON-M4 flight to Low Earth Orbit (LEO) and exposed to 10(-3)-10(-4) g (gravitational constant) and 687 +/- 170 mu Gy (Gray) d(-1) (20 +/- 4 degrees C), about the double of the radiation prevailing in the International Space Station (ISS). After return to Earth, axenic cultures, defined and reactor communities of ureolytic bacteria, ammonia oxidizing archaea and bacteria, nitrite oxidizing bacteria, denitrifiers and anammox bacteria could all be reactivated. Space exposure generally yielded similar or even higher nitrogen conversion rates as terrestrial preservation at a similar temperature, while terrestrial storage at 4 degrees C mostly resulted in the highest rates. Refrigerated Space exposure is proposed as a strategy to maximize the reactivation potential. For the first time, the combined potential of ureolysis, nitritation, nitratation, denitrification (nitrate reducing activity) and anammox is demonstrated as key enabler for resource recovery in human Space exploration.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000444501200063 Publication Date 2018-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153641 Serial 8309  
Permanent link to this record
 

 
Author Clauwaert, P.; Muys, M.; Alloul, A.; De Paepe, J.; Luther, A.; Sun, X.; Ilgrande, C.; Christiaens, M.E.R.; Hu, X.; Zhang, D.; Lindeboom, R.E.F.; Sas, B.; Rabaey, K.; Boon, N.; Ronsse, F.; Geelen, D.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Nitrogen cycling in bioregenerative life support systems : challenges for waste refinery and food production processes Type A1 Journal article
  Year 2017 Publication Progress in aerospace sciences Abbreviated Journal  
  Volume 91 Issue Pages 87-98  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000404699800005 Publication Date 2017-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-0421; 1873-1724 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148996 Serial 8310  
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8278-8286  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000663939900051 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179768 Serial 8334  
Permanent link to this record
 

 
Author Van Winckel, T.; Liu, X.; Vlaeminck, S.E.; Takács, I.; Al-Omari, A.; Sturm, B.; Kjellerup, B.V.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Overcoming floc formation limitations in high-rate activated sludge systems Type A1 Journal article
  Year 2019 Publication Chemosphere Abbreviated Journal  
  Volume 215 Issue Pages 342-352  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) is an essential cornerstone of the pursuit towards energy positive sewage treatment through maximizing capture of organics. The capture efficiency heavily relies on the degree of solid separation achieved in the clarifiers. Limitations in the floc formation process commonly emerge in HRAS systems, with detrimental consequences for the capture of organics. This study pinpointed and overcame floc formation limitations present in full-scale HRAS reactors. Orthokinetic flocculation tests were performed with varying shear, sludge concentration, and coagulant or flocculant addition. These were analyzed with traditional and novel settling parameters and extracellular polymeric substances (EPS) measurements. HRAS was limited by insufficient collision efficiency and occurred because the solids retention time (SRT) was short and colloid loading was high. The limitation was predominantly caused by impaired flocculation rather than coagulation. In addition, the collision efficiency limitation was driven by EPS composition (low protein over polysaccharide ratio) instead of total EPS amount. Collision efficiency limitation was successfully overcome by bio-augmenting sludge from a biological nutrient removal reactor operating at long SRT which did not show any floc formation limitations. However, this action brought up a floc strength limitation. The latter was not correlated with EPS composition, but rather EPS amount and hindered settling parameters, which determined floc morphology. With this, an analysis toolkit was proposed that will enable design engineers and operators to tackle activated solid separation challenges found in HRAS systems and maximize the recovery potential of the process. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000450383400038 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153978 Serial 8350  
Permanent link to this record
 

 
Author Mozo, I.; Lacoste, L.; Aussenac, J.; De Cocker, P.; Vlaeminck, S.E.; Sperandio, M.; Caligaris, M.; Barillon, B.; Martin Ruel, S. pdf  openurl
  Title Overcoming the challenges for mainstream deammonification on municipal wastewater in warm and cold areas Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - 13th IWA Leading-Edge Conference on Wate  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151137 Serial 8351  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Muys, M.; Coppens, J.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Photosynthetic oxygenation for urine nitrification Type A1 Journal article
  Year 2018 Publication Water science and technology Abbreviated Journal  
  Volume 78 Issue 1 Pages 183-194  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000445517100020 Publication Date 2018-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152908 Serial 8381  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res  
  Volume 7 Issue 12 Pages 2268-2281  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000714159900001 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.817 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.817  
  Call Number UA @ admin @ c:irua:183347 Serial 8383  
Permanent link to this record
 

 
Author Liu, X.; Van Winckel, T.; Kjellerup, B.V.; Takacs, I.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.; De Clippeleir, H. openurl 
  Title Pinpointing bioflocculation limitations for enhanced carbon management in high-rate activated sludge Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 6 p. T2 - WEF Nutrient Symposium 2017, 12 - 14 Jun  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151118 Serial 8384  
Permanent link to this record
 

 
Author Seuntjens, D.; Han, M.; Kerckhof, F.-M.; Boon, N.; Al-Omari, A.; Takacs, I.; Meerburg, F.; De Mulder, C.; Wett, B.; Bott, C.; Murthy, S.; Carvajal Arroyo, J.M.; De Clippeleir, H.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 138 Issue Pages 37-46  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 °C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (ΘAOB = 1.10, ΘNOB = 1.061.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000431747300005 Publication Date 2017-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149976 Serial 8385  
Permanent link to this record
 

 
Author Cagnetta, C.; Coma, M.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Production of carboxylates from high rate activated sludge through fermentation Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal  
  Volume 217 Issue Pages 165-172  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141 mg C g−1 VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35 °C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000380226300023 Publication Date 2016-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:139912 Serial 8421  
Permanent link to this record
 

 
Author Sakarika, M.; Spiller, M.; Baetens, R.; Donies, G.; Vanderstuyf, J.; Vinck, K.; Vrancken, K.C.; Van Barel, G.; Du Bois, E.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Proof of concept of high-rate decentralized pre-composting of kitchen waste : optimizing design and operation of a novel drum reactor Type A1 Journal article
  Year 2019 Publication Waste management Abbreviated Journal  
  Volume 91 Issue Pages 20-32  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Product development  
  Abstract Each ton of organic household waste that is collected, transported and composted incurs costs (€75/ton gate fee). Reducing the mass and volume of kitchen waste (

KW) at the point of collection can diminish transport requirements and associated costs, while also leading to an overall reduction in gate fees for final processing. To this end, the objective of this research was to deliver a proof of concept for the so-called “urban pre-composter”; a bioreactor for the decentralized, high-rate pre-treatment of KW, that aims at mass and volume reduction at the point of collection. Results show considerable reductions in mass (33%), volume (62%) and organic solids (32%) of real KW, while provision of structure material and separate collection of leachate was found to be unnecessary. The temperature profile, C/N ratio (12) and VS/TS ratio (0.69) indicated that a mature compost can be produced in 68  days (after pre-composting and main composting). An economic Monte Carlo simulation yielded that the urban pre-composter concept is not more expensive than the current approach, provided its cost per unit is €8,000–€14,500 over a 10-year period (OPEX and CAPEX, in 80% of the cases). The urban pre-composter is therefore a promising system for the efficient pre-treatment of organic household waste in an urban context.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000473378700003 Publication Date 2019-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159579 Serial 8426  
Permanent link to this record
 

 
Author Alloul, A.; Wille, M.; Lucenti, P.; Bossier, P.; Van Stappen, G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Purple bacteria as added-value protein ingredient in shrimp feed : Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress Type A1 Journal article
  Year 2021 Publication Aquaculture Abbreviated Journal Aquaculture  
  Volume 530 Issue Pages 735788  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aquafeeds contain protein ingredients such as fishmeal and soybean meal, yet their production puts pressure on the environment. Finding novel protein sources such as dried microbial biomass produced on recovered or renewable resources, so-called single-cell protein or microbial protein, can contribute to a more sustainable aquaculture industry. New microbial protein sources are emerging with photoheterotrophic grown purple non‑sulfur bacteria (PNSB) showing high potential, yet research of PNSB as added-value protein ingredient is limited. This research studied their use as a protein source for the white leg shrimp (Penaeus vannamei) and investigated the shrimp's tolerance against Vibrio and ammonia stress. A 28-day shrimp feeding trial was performed with a commercial formulation without PNSB as experimental control (diet i), two pure PNSB species, namely Rhodopseudomonas palustris (diets ii-iii), Rhodobacter capsulatus (diets iv-v) at two protein inclusion levels of 5 and 11 g PNSBprotein 100 g−1 feedprotein and a PNSB enriched culture at a protein inclusion level of 11 g PNSBprotein 100 g−1 feedprotein (diet vi). For the shrimp fed with Rb. capsulatus, 5–25% higher individual weights (p < .05) and better feed conversion ratios were observed relative to the commercial diet (1.3–1.4 vs. control 1.7 g feed g−1 biomass; p < .05). The diet containing Rps. palustris at 5 g PNSBprotein 100 g−1 feedprotein inclusion also showed higher individual weights (26%, p < .05) and a better feed conversion ratio compared to the commercial feed (1.3 vs. control 1.7 g feed g−1 biomass; p < .05). The challenge test subsequent to the feeding trial showed a higher tolerance against ammonia (3 mg N L−1) for shrimp fed with Rps. palustris (survival 63–75% vs. 8% commercial diet; p < .05). For a post-feeding challenge test with Vibrio parahaemolyticus TW01, mortality rates were equal among all treatments. Yet, in vitro tests in 96-Well plates and agar spot assays showed that the PNSB species (i) Rps. palustris, (ii) Rb. capsulatus, (iii) Rb. sphaeroides, (iv) Rhodospirillum rubrum and (v) Afifella marina suppressed the pathogens V. parahaemolyticus TW01 and V. campbellii LMG 21363. Overall, this study demonstrated the potential of PNSB as an added-value protein ingredient in shrimp nursery feed. This can contribute to a circular economy, as PNSB can be cultivated on recovered or renewable resources (e.g. wastewater).  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000582169700073 Publication Date 2020-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0044-8486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.57 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.57  
  Call Number UA @ admin @ c:irua:170549 Serial 8429  
Permanent link to this record
 

 
Author Ilgrande, C.; Mastroleo, F.; Christiaens, M.E.R.; Lindeboom, R.E.F.; Prat, D.; Van Hoey, O.; Ambrozova, I.; Coninx, I.; Heylen, W.; Pommerening-Roser, A.; Spieck, E.; Boon, N.; Vlaeminck, S.E.; Leys, N.; Clauwaert, P. pdf  url
doi  openurl
  Title Reactivation of microbial strains and synthetic communities after a spaceflight to the International Space Station : corroborating the feasibility of essential conversions in the MELiSSA Loop Type A1 Journal article
  Year 2019 Publication Astrobiology Abbreviated Journal  
  Volume 19 Issue 9 Pages 1167-1176  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To sustain human deep space exploration or extra-terrestrial settlements where no resupply from the Earth or other planets is possible, technologies for in situ food production, water, air, and waste recovery need to be developed. The Micro-Ecological Life Support System Alternative (MELiSSA) is such a Regenerative Life Support System (RLSS) and it builds on several bacterial bioprocesses. However, alterations in gravity, temperature, and radiation associated with the space environment can affect survival and functionality of the microorganisms. In this study, representative strains of different carbon and nitrogen metabolisms with application in the MELiSSA were selected for launch and Low Earth Orbit (LEO) exposure. An edible photoautotrophic strain (Arthrospira sp. PCC 8005), a photoheterotrophic strain (Rhodospirillum rubrum S1H), a ureolytic heterotrophic strain (Cupriavidus pinatubonensis 1245), and combinations of C. pinatubonensis 1245 and autotrophic ammonia and nitrite oxidizing strains (Nitrosomonas europaea ATCC19718, Nitrosomonas ureae Nm10, and Nitrobacter winogradskyi Nb255) were sent to the International Space Station (ISS) for 7 days. There, the samples were exposed to 2.8 mGy, a dose 140 times higher than on the Earth, and a temperature of 22 degrees C +/- 1 degrees C. On return to the Earth, the cultures were reactivated and their growth and activity were compared with terrestrial controls stored under refrigerated (5 degrees C +/- 2 degrees C) or room temperature (22 degrees C +/- 1 degrees C and 21 degrees C +/- 0 degrees C) conditions. Overall, no difference was observed between terrestrial and ISS samples. Most cultures presented lower cell viability after the test, regardless of the type of exposure, indicating a harsher effect of the storage and sample preparation than the spaceflight itself. Postmission analysis revealed the successful survival and proliferation of all cultures except for Arthrospira, which suffered from the premission depressurization test. These observations validate the possibility of launching, storing, and reactivating bacteria with essential functionalities for microbial bioprocesses in RLSS.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000475278300001 Publication Date 2019-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-8070; 1531-1074 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161342 Serial 8456  
Permanent link to this record
 

 
Author De Paepe, J.; Lindeboom, R.E.F.; Vanoppen, M.; De Paepe, K.; Demey, D.; Coessens, W.; Lamaze, B.; Verliefde, A.R.D.; Clauwaert, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 144 Issue Pages 76-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Human urine is a valuable resource for nutrient recovery, given its high levels of nitrogen, phosphorus and potassium, but the compositional complexity of urine presents a challenge for an energy-efficient concentration and refinery of nutrients. In this study, a pilot installation combining precipitation, nitrification and electrodialysis (ED), designed for one person equivalent (1.2 L-urine d(-l)), was continuously operated for similar to 7 months. First, NaOH addition yielded calcium and magnesium precipitation, preventing scaling in ED. Second, a moving bed biofilm reactor oxidized organics, preventing downstream biofouling, and yielded complete nitrification on diluted urine (20-40%, i.e. dilution factors 5 and 2.5) at an average loading rate of 215 mg N L-1 d(-1). Batch tests demonstrated the halotolerance of the nitrifying community, with nitrification rates not affected up to an electrical conductivity of 40 mS cm(-1) and gradually decreasing, yet ongoing, activity up to 96 mS cm(-1) at 18% of the maximum rate. Next-generation 16S rRNA gene amplicon sequencing revealed that switching from a synthetic influent to real urine induced a profound shift in microbial community and that the AOB community was dominated by halophilic species closely related to Nitrosomonas aestuarii and Nitrosomonas marina. Third, nitrate, phosphate and potassium in the filtered (0.1 mu m) bioreactor effluent were concentrated by factors 43, 2.6 and 4.6, respectively, with ED. Doubling the urine concentration from 20% to 40% further increased the ED recovery efficiency by similar to 10%. Batch experiments at pH 6, 7 and 8 indicated a more efficient phosphate transport to the concentrate at pH 7. The newly proposed three-stage strategy opens up opportunities for energy- and chemical-efficient nutrient recovery from urine. Precipitation and nitrification enabled the long-term continuous operation of ED on fresh urine requiring minimal maintenance, which has, to the best of our knowledge, never been achieved before. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000447569300008 Publication Date 2018-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152907 Serial 8468  
Permanent link to this record
 

 
Author De Vrieze, J.; Colica, G.; Pintucci, C.; Sarli, J.; Pedizzi, C.; Willeghems, G.; Bral, A.; Varga, S.; Prat, D.; Peng, L.; Spiller, M.; Buysse, J.; Colsen, J.; Benito, O.; Carballa, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Resource recovery from pig manure via an integrated approach : a technical and economic assessment for full-scale applications Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 272 Issue Pages 582-593  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Intensive livestock farming cannot be uncoupled from the massive production of manure, requiring adequate management to avoid environmental damage. The high carbon, nitrogen and phosphorus content of pig manure enables targeted resource recovery. Here, fifteen integrated scenarios for recovery of water, nutrients and energy are compared in terms of technical feasibility and economic viability. The recovery of refined nutrients with a higher market value and quality, i.e., (NH4)2SO4 for N and struvite for P, coincided with higher net costs, compared to basic composting. The inclusion of anaerobic digestion promoted nutrient recovery efficiency, and enabled energy recovery through electricity production. Co-digestion of the manure with carbon-rich waste streams increased electricity production, but did not result in lower process costs. Overall, key drivers for the selection of the optimal manure treatment scenario will include the market demand for more refined (vs. separated or concentrated) products, and the need for renewable electricity production.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000451625700071 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155236 Serial 8476  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Courtens, E.N.P.; Prat, D.; Boon, N.; Vlaeminck, S.E. openurl 
  Title The rise of thermophilic biotechnology for nitrogen removal Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 17 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151125 Serial 8481  
Permanent link to this record
 

 
Author Van Winckel, T.; Vlaeminck, S.E.; Al-Omari, A.; Bachmann, B.; Sturm, B.; Wett, B.; Takács, I.; Bott, C.; Murthy, S.N.; De Clippeleir, H. pdf  url
doi  openurl
  Title Screen versus cyclone for improved capacity and robustness for sidestream and mainstream deammonification Type A1 Journal article
  Year 2019 Publication Environmental Science: Water Research & Technology Abbreviated Journal  
  Volume 5 Issue 10 Pages 1769-1781  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Deammonification systems are being implemented as cost- and resource-efficient nitrogen removal processes. However, their complexity is a major hurdle towards successful transposition from side- to mainstream application. Merely out-selecting nitrite oxidizing bacteria (NOB) or retaining anammox bacteria (AnAOB) does not guarantee efficient mainstream deammonification. This paper presents for the first time the interactions and synergies between kinetic selection, through management of residual substrates, and physical selection, through separation of solid retention times (SRTs). This allowed the formulation of tangible operational recommendations for successful deammonification. Activity measurements were used to establish retention efficiencies (η) for AnAOB for full-scale cyclones and rotating drum screens installed at a sidestream and mainstream deammonification reactor (Strass, Austria). In the sidestream reactor, using a screen (η = 91%) instead of a cyclone (η = 88%) may increase the capacity by up to 29%. For the mainstream reactor, higher AnAOB retention efficiencies achieved by the screen (η = 72%) compared to the cyclone (η = 42%) induced a prospective increase in capacity by 80–90%. In addition, the switch in combination with bioaugmentation from the sidestream made the process less dependent on nitrite availability, thus aiding in the outselection of NOB. This allowed for a more flexible (intermittent) aeration strategy and a reduced need for tight SRT control for NOB washout. A sensitivity analysis explored expected trends to provide possible operational windows for further calibration. In essence, characterization of the physical selectors at full scale allowed a deeper understanding of operational windows of the process and quantification of capacity, ultimately leading to a more space and energy conservation process.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000487968200013 Publication Date 2019-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162540 Serial 8498  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mercade, M.; Sun, X.Y.; Mozo, I.; Barillon, B.; Gaval, G.; Caligaris, M.; Martin Ruel, S.; Vlaeminck, S.E.; Sperandio, M. pdf  doi
openurl 
  Title Short and long term effect of decreasing temperature on anammox activity and enrichment in mainstream granular sludge process Type P1 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume 4 Issue Pages 50-54 T2 - Frontiers International Conference on W  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study investigates the impact of lower temperature on short term and long term (down to 10 degrees C) on a completely anoxic anammox granular sludge process. This is the first time granular sludge Anammox is operated in pure anoxic condition in SBR and at low temperature. Conversion performance, kinetic parameters, sludge characteristics and microbial community were analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date 2017-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151120 Serial 8519  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mercade, M.; Sun, X.Y.; Mozo, I.; Barillon, B.; Gaval, G.; Caligaris, M.; Ruel, S.M.; Vlaeminck, S.E.; Sperandio, M. pdf  doi
openurl 
  Title Short and long term effect of decreasing temperature on anammox activity and enrichment in mainstream granular sludge process Type P1 Proceeding
  Year 2017 Publication Frontiers In Wastewater Treatment And Modelling, Ficwtm 2017 Abbreviated Journal  
  Volume 4 Issue Pages 50-54 T2 - Frontiers International Conference on W  
  Keywords P1 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study investigates the impact of lower temperature on short term and long term (down to 10 degrees C) on a completely anoxic anammox granular sludge process. This is the first time granular sludge Anammox is operated in pure anoxic condition in SBR and at low temperature. Conversion performance, kinetic parameters, sludge characteristics and microbial community were analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000430181700008 Publication Date 2017-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-319-58421-8; 978-3-319-58420-1; 978-3-319-58420-1 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151640 Serial 8520  
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S. openurl 
  Title Sidestream deammonification on thermal hydrolysis process digestate : strategies to overcome nitritation inhibition Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 11 p. T2 - IWA Nutrient Removal and Recovery 2015:  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151147 Serial 8522  
Permanent link to this record
 

 
Author Peng, L.; Carvajal-Arroyo, J.M.; Seuntjens, D.; Prat, D.; Colica, G.; Pintucci, C.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate Type A1 Journal article
  Year 2017 Publication Water research Abbreviated Journal  
  Volume 127 Issue Pages 1-10  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N2O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (CODrem/N-rem). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N2O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O-2/L; CODrem/N-rem of 2.8) with similar to 68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (similar to 2.2 mg O-2/L) lowered the aerobic N2O emission and weakened the dependency on nitrite concentration, suggesting a shift in N2O production pathway. The most effective N2O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to similar to 0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low CODrem/N-rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. (c) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000418219000001 Publication Date 2017-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148521 Serial 8548  
Permanent link to this record
 

 
Author Muys, M.; Derese, S.; Verliefde, A.; Vlaeminck, S.E. openurl 
  Title Solubilization of struvite as a sustainable nutrient source for single cell protein production Type A2 Journal article
  Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 81 Issue 1 Pages 179-184  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract By 2050, the world population will have considerably expanded and the life standard of many will increase, yielding a 50% higher demand in protein (FAO, 2011), and even increases of 82 and 102% for diary and meat products, respectively (Boland et al., 2013). To provide in this increasing demand we are highly dependent on our classical fertilizer to food chain which has a high environmental impact and lacks efficiency. Nutrient losses cause eutrophication and biodiversity loss and the input of resources is already beyond the boundaries of environmental sustainability (Steffen et al., 2015). Phosphate fertilizers are made from phosphate rock (apatite), of which the reserves are predicted to be depleted within 50 100 years if we continue business as usual (Cordell et al., 2009). Next to problems related to the unbalanced geopolitical distribution with dominance in China and Morocco, the decreasing quality of the remaining apatite will result in an increasing environmental impact of fertilizer production. Finally, our traditional food production model requires 30% of all ice-free land, 70% of all available freshwater and produces up to one third of the global greenhouse gas emission, of which 80 to 86% is linked to agricultural production (Vermeulen et al., 2012). To ensure food security, nutrient recovery from waste streams can provide an important strategy. In this context, struvite ( ) crystallisation may be applied to recover phosphorus, along with some nitrogen. Reusing these nutrients as agricultural fertilizer on the field will lead to considerable losses to the environment. In contrast, their use to cultivate micro-organisms, e.g. for single cell protein (SCP), offers to potential of a near perfect conversion efficiency (Moed et al., 2015). At this moment, microalgae represent the most developed type of SCP, and are a promising protein source due to their growth rate, high nutritional quality and extremely high nutrient usage efficiency (Becker, 2007). Reliable solubilisation data are essential to design a technological strategy for struvite dosage in bioreactors for SCP production. The effect on solubility and solubilisation rate of relevant physicochemical parameters was studied experimentally in aqueous solutions. Because pH and temperature greatly affect solubilisation kinetics they were set at a constant value of 7 and 20°C respectively. The effect of some parameters on struvite solubility was already studied (Bhuiyan et al., 2007; Ariyanto et al., 2014; Roncal-Herrero and Oelkers, 2011), but solubilisation rates were not yet considered and pH was not controlled at a constant value. The chemical parameters considered in this study include the concentration of different common ions ( and ), foreign ions ( and the chelating agent ethylenediaminetetraacetic acid, EDTA) present in micro-algal cultivation media as well as ionic strength (as set by NaCl). The main physical parameter included was contact surface, through variation in initial particle size and as well as in struvite dosage concentration.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151150 Serial 8550  
Permanent link to this record
 

 
Author Vlaeminck, S.E.; Courtens, E.N.P.; Vandekerckhove, T.G.L.; Boon, N. openurl 
  Title Some like it hot : perspectives for thermophilic nitrogen removal Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 4 p. T2 - IWA Nutrient Removal and Recovery 2015:  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151145 Serial 8552  
Permanent link to this record
 

 
Author Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H. openurl 
  Title Startup strategies of deammonification reactors treating reject water from thermally hydrolyzed solids Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 5 p. T2 - WEFTEC.17, 30 September 4 October 2017,  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151113 Serial 8579  
Permanent link to this record
 

 
Author Muys, M.; Derese, S.; Verliefde, A.; Vlaeminck, S.E. openurl 
  Title Struvite solubilisation rates enable direct addition To single cell protein bioreactors Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 10 p. T2 - WEF/IWA Nutrient Removal and Recovery C  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151129 Serial 8590  
Permanent link to this record
 

 
Author Agrawal, S.; Seuntjens, D.; De Cocker, P.; Lackner, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights Type A1 Journal article
  Year 2018 Publication Current opinion in biotechnology Abbreviated Journal  
  Volume 50 Issue Pages 214-221  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Twenty years ago, mainstream partial nitritation/anammox (PN/A) was conceptually proposed as pivotal for a more sustainable treatment of municipal wastewater. Its economic potential spurred research, yet practice awaits a comprehensive recipe for microbial resource management. Implementing mainstream PN/A requires transferable and operable ways to steer microbial competition as to meet discharge requirements on a year-round basis at satisfactory conversion rates. In essence, the competition for nitrogen, organic carbon and oxygen is grouped into ON/OFF (suppression/promotion) and IN/OUT (wash-out/retention and seeding) strategies, selecting for desirable conversions and microbes. Some insights need mechanistic understanding, while empirical observations suffice elsewhere. The provided methodological R&D framework integrates insights in engineering, microbiome and modeling. Such synergism should catalyze the implementation of energy-positive sewage treatment.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000430903400028 Publication Date 2018-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0958-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149977 Serial 8616  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Kobayashi, K.; Janda, J.; Van Nevel, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost Type A1 Journal article
  Year 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 257 Issue Pages 266-273  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Autotrophic denitrification with sulfur is an underexplored alternative to heterotrophic denitrification to remove nitrate from wastewater poor in organics. The application on ion exchange regeneration water (19.432.1 mS cm−1) is novel. Three fixed bed reactors were tested at 15 °C for >4 months, inoculated with activated sludge from sewage treatment. All were fast in start-up (<10 days) with high performance (94 ± 2% removal efficiency). pH control with NaOH rendered higher nitrate removal rates than limestone addition to the bed (211 ± 13 vs. 102 ± 13 mg N L−1 d−1), related to higher pH (6.64 vs. 6.24) and sulfur surface area. Bacterial communities were strongly enriched in Sulfurimonas (6367%) and Thiobacillus (2426%). In an economic comparison, sulfur-based denitrification (5.3 kg−1 N) was 15% cheaper than methanol-based denitrification (6.22 kg−1 N) and both treatments were opex dominated (85.9 vs. 86.5%). Overall, the technological and economic feasibility should boost further implementation of sulfurotrophic denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000430401100033 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149975 Serial 8619  
Permanent link to this record
 

 
Author Vlaeminck, S.E.; Kobayashi, K.; Jandra, J.; Van Nevel, S.; Vandekerckhove, T.G.L. openurl 
  Title Sulphidotrophic denitrification treating regeneration water from ion exchange at high performance and low opex Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA 2017 Conference on Sustainable Waste  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151108 Serial 8620  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: