toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Matsubara, M.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Doping anatase TiO2with group V-b and VI-b transition metal atoms: a hybrid functional first-principles study Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 19 Pages 1945-1952  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We investigate the role of transition metal atoms of group V-b (V, Nb, Ta) and VI-b (Cr, Mo, W) as n- or p-type dopants in anatase TiO$2$ using thermodynamic

principles and density functional theory with the Heyd-Scuseria-Ernzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calculated taking into account the constraints imposed by the stability of TiO$
2$ and the solubility limit of the impurities.

Nb, Ta, W and Mo are identified as shallow donors. Although W provides two electrons, Nb and Ta show a considerable lower formation energy, in particular under O-poor conditions. Mo donates in principle one electron, but under specific conditions can turn into a double donor. V impurities are deep donors and Cr

shows up as an amphoteric defect, thereby acting as an electron trapping center in n-type TiO$_2$ especially under O-rich conditions. A comparison with the available experimental data yields excellent agreement.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000394426400027 Publication Date 2016-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 19 Open Access OpenAccess  
  Notes We gratefully acknowledge financial support from the IWTVlaanderenthrough projects G.0191.08 and G.0150.13, and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation. M. M. acknowledges financial support from the GOA project ‘‘XANES meets ELNES’’ of the University of Antwerp. Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @ c:irua:140835 Serial 4421  
Permanent link to this record
 

 
Author Callewaert, V.; Saniz, R.; Barbiellini, B.; Partoens, B. url  doi
openurl 
  Title Surface states and positron annihilation spectroscopy: results and prospects from a first-principles approach Type A1 Journal article
  Year 2017 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 791 Issue 791 Pages 012036  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The trapping of positrons at the surface of a material can be exploited to study quite selectively the surface properties of the latter by means of positron annihilation spectroscopy techniques. To support these, it is desirable to be able to theoretically predict the existence of such positronic surface states and to describe their annihilation characteristics with core or valence surface electrons in a reliable way. Here, we build on the well-developed first-principles techniques for the study of positrons in bulk solids as well as on previous models for surfaces, and investigate two schemes that can improve the theoretical description of the interaction of positrons with surfaces. One is based on supplementing the local-density correlation potential with the corrugated image potential at the surface, and the other is based on the weighted-density approximation to correlation. We discuss our results for topological insulators, graphene layers, and quantum dots, with emphasis on the information that can be directly related to experiment. We also discuss some open theoretical problems that should be addressed by future research.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000400610500036 Publication Date 2017-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes We acknowledge financial support from FWO-Vlaanderen (projects G.0150.13 and G.0224.14N). This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), funded by the Hercules foundation and the Flemish Government (EWI Department). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02- 05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: NA  
  Call Number CMT @ cmt @ c:irua:140847 Serial 4425  
Permanent link to this record
 

 
Author Eijt, S.W.H.; Shi, W.; Mannheim, A.; Butterling, M.; Schut, H.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R.W.; Callewaert, V.; Saniz, R.; Partoens, B.; Barbiellini, B.; Bansil, A.; Melskens, J.; Zeman, M.; Smets, A.H.M.; Kulbak, M.; Hodes, G.; Cahen, D.; Brück, E. url  doi
openurl 
  Title New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy Type A1 Journal article
  Year 2017 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 791 Issue 791 Pages 012021  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent studies showed that positron annihilation methods can provide key insights into the nanostructure and electronic structure of thin film solar cells. In this study, positron annihilation lifetime spectroscopy (PALS) is applied to investigate CdSe quantum dot (QD) light absorbing layers, providing evidence of positron trapping at the surfaces of the QDs. This enables one to monitor their surface composition and electronic structure. Further, 2D-Angular Correlation of Annihilation Radiation (2D-ACAR) is used to investigate the nanostructure of divacancies in photovoltaic-high-quality a-Si:H films. The collected momentum distributions were converted by Fourier transformation to the direct space representation of the electron-positron autocorrelation function. The evolution of the size of the divacancies as a function of hydrogen dilution during deposition of a-Si:H thin films was examined. Finally, we present a first positron Doppler Broadening of Annihilation Radiation (DBAR) study of the emerging class of highly efficient thin film solar cells based on perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000400610500021 Publication Date 2017-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes The work at Delft University of Technology was supported by the China Scholarship Council (CSC) grant of W.S., by ADEM, A green Deal in Energy Materials of the Ministry of Economic Affairs of The Netherlands (www.adem- innovationlab.nl), and the STW Vidi grant of A.S., Grant No. 10782. The PALS study is based upon experiments performed at the PLEPS instrument of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany, and was supported by the European Commission under the 7 th Framework Programme, Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. 226507, NMI3. The work at University of Maine was supported by the National Science Foundation under Grant No. DMR-1206940. Research at the University of Antwerp was supported by FWO grants G022414N and G015013. The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. The work at the Weizmann Institute was supported by the Sidney E. Frank Foundation through the Israel Science Foundation, by the Israel Ministry of Science, and the Israel National Nano-Initiative. D.C. holds the Sylvia and Rowland Schaefer Chair in Energy Research. Approved Most recent IF: NA  
  Call Number CMT @ cmt @ c:irua:140850 Serial 4426  
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Structural and electronic properties of defects at grain boundaries in CuInSe2 Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 19 Pages 14770-14780  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We report on a first-principles study of the structural and electronic properties of a Sigma3 (112) grain boundary model in CuInSe2. The study focuses on a coherent, stoichiometry preserving, cation–Se terminated grain boundary, addressing the properties of the grain boundary as such, as well as the effect

of well known defects in CuInSe2. We show that in spite of its apparent simplicity, such a grain boundary exhibits a very rich phenomenology, providing an explanation for several of the experimentally observed properties of grain boundaries in CuInSe2 thin films. In particular, we show that the combined effect of Cu vacancies and cation antisites can result in the observed Cu depletion with no In enrichment at the grain boundaries. Furthermore, Cu vacancies are unlikely to produce a hole barrier at the grain boundaries, but Na may indeed have such an effect. We find that Na-on-Cu defects will tend to form abundantly at

the grain boundaries, and can provide a mechanism for the carrier depletion and/or type inversion experimentally reported.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000403327200059 Publication Date 2017-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 12 Open Access OpenAccess  
  Notes We thank B. Schoeters for his assistance running the GBstudio software. We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @ c:irua:143869 Serial 4577  
Permanent link to this record
 

 
Author Chirayath, V.A.; Callewaert, V.; Fairchild, A.J.; Chrysler, M.D.; Gladen, R.W.; Mcdonald, A.D.; Imam, S.K.; Shastry, K.; Koymen, A.R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A.H. pdf  url
doi  openurl
  Title Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 16116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000405398200001 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 20 Open Access  
  Notes The experiments in this work were supported by the grant NSF DMR 1508719. A.H.W and A.R.K. gratefully acknowledge support for the building of advanced positron beam through the grant NSF DMR MRI 1338130. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 12.124  
  Call Number CMT @ cmt @ c:irua:144625 Serial 4627  
Permanent link to this record
 

 
Author Shi, W.; Callewaert, V.; Barbiellini, B.; Saniz, R.; Butterling, M.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Brück, E.; Partoens, B.; Bansil, A.; Eijt, S.W. H. pdf  url
doi  openurl
  Title Nature of the Positron State in CdSe Quantum Dots Type A1 Journal article
  Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 121 Issue 5 Pages 057401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Previous studies have shown that positron-annihilation spectroscopy is a highly sensitive probe of the electronic structure and surface composition of ligand-capped semiconductor quantum dots (QDs) embedded in thin films. The nature of the associated positron state, however, whether the positron is confined inside the QDs or localized at their surfaces, has so far remained unresolved. Our positron-annihilation lifetime spectroscopy studies of CdSe QDs reveal the presence of a strong lifetime component in the narrow range of 358–371 ps, indicating abundant trapping and annihilation of positrons at the surfaces of the QDs. Furthermore, our ab initio calculations of the positron wave function and lifetime employing a recent formulation of the weighted density approximation demonstrate the presence of a positron surface state and predict positron lifetimes close to experimental values. Our study thus resolves the long-standing question regarding the nature of the positron state in semiconductor QDs and opens the way to extract quantitative information on surface composition and ligand-surface interactions of colloidal semiconductor QDs through highly sensitive positron-annihilation techniques.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000440635300012 Publication Date 2018-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 6 Open Access  
  Notes The work at Delft University of Technology was supported by the China Scholarship Council (CSC) grant of W. S. We acknowledge financial support for this research from ADEM, A green Deal in Energy Materials of the Ministry of Economic Affairs of The Netherlands. The PALS study is based upon experiments performed at the PLEPS instrument of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany, and was supported by the European Commission under the 7th Framework Program, Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. 226507, NMI3. The work at the University of Maine was supported by the National Science Foundation under Grant No. DMR-1206940. V. C. and R. S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. Computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government (EWI Department). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the National Energy Research Scientific Computing Center (NERSC) through DOE Grant No. DE-AC02-05CH11231, and support (functionals for modeling positron spectros- copies of layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 8.462  
  Call Number CMT @ cmt @c:irua:152999UA @ admin @ c:irua:152999 Serial 5009  
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 132 Issue Pages 172-181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000472124700023 Publication Date 2019-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021  
  Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170  
Permanent link to this record
 

 
Author Marchetti, A.; Saniz, R.; Krishnan, D.; Rabbachin, L.; Nuyts, G.; De Meyer, S.; Verbeeck, J.; Janssens, K.; Pelosi, C.; Lamoen, D.; Partoens, B.; De Wael, K. pdf  url
doi  openurl
  Title Unraveling the Role of Lattice Substitutions on the Stabilization of the Intrinsically Unstable Pb2Sb2O7Pyrochlore: Explaining the Lightfastness of Lead Pyroantimonate Artists’ Pigments Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 32 Issue 7 Pages 2863-2873  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The pyroantimonate pigments Naples yellow and lead tin antimonate yellow are recognized as some of the most stable synthetic yellow pigments in the history of art. However, this exceptional lightfastness is in contrast with experimental evidence suggesting that this class of mixed oxides is of semiconducting nature. In this study the electronic structure and light-induced behavior of the lead pyroantimonate pigments were determined by means of a combined multifaceted analytical and computational approach (photoelectrochemical measurements, UV-vis diffuse reflectance spectroscopy, STEM-EDS, STEM-HAADF, and density functional theory calculations). The results demonstrate both the semiconducting nature and the lightfastness of these pigments. Poor optical absorption and minority carrier mobility are the main properties responsible for the observed stability. In addition, novel fundamental insights into the role played by Na atoms in the stabilization of the otherwise intrinsically unstable Pb2Sb2O7 pyrochlore were obtained.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000526394000016 Publication Date 2020-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 8 Open Access OpenAccess  
  Notes Universiteit Antwerpen; Belgian Federal Science Policy Office; Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:168819 Serial 6363  
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of defects at Σ3 grain boundaries in CuGaSe2 Type A1 Journal article
  Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume Issue Pages 114263  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract We present a first-principles computational study of cation–Se 3 (112) grain boundaries in CuGaSe. We discuss the structure of these grain boundaries, as well as the effect of native defects and Na impurities on their electronic properties. The formation energies show that the defects will tend to form preferentially at the grain boundaries, rather than in the grain interiors. We find that in Ga-rich growth conditions Cu vacancies as well as Ga at Cu and Cu at Ga antisites are mainly responsible for having the equilibrium Fermi level pinned toward the middle of the gap, resulting in carrier depletion. The Na at Cu impurity in its +1 charge state contributes to this. In Ga-poor growth conditions, on the other hand, the formation energies of Cu vacancies and Ga at Cu antisites are comparatively too high for any significant influence on carrier density or on the equilibrium Fermi level position. Thus, under these conditions, the Cu at Ga antisites give rise to a -type grain boundary. Also, their formation energy is lower than the formation energy of Na at Cu impurities. Thus, the latter will fail to act as a hole barrier preventing recombination at the grain boundary, in contrast to what occurs in CuInSe grain boundaries. We also discuss the effect of the defects on the electronic properties of bulk CuGaSe, which we assume reflect the properties of the grain interiors.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000652668500013 Publication Date 2021-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access OpenAccess  
  Notes Fwo; We acknowledge the financial support of FWO-Vlaanderen, Belgium through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.554  
  Call Number EMAT @ emat @c:irua:176544 Serial 6703  
Permanent link to this record
 

 
Author Leinders, G.; Baldinozzi, G.; Ritter, C.; Saniz, R.; Arts, I.; Lamoen, D.; Verwerft, M. pdf  url
doi  openurl
  Title Charge Localization and Magnetic Correlations in the Refined Structure of U3O7 Type A1 Journal article
  Year 2021 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 60 Issue 14 Pages 10550-10564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin–orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) “oxo-type” bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 μB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000675430900049 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD – Spent Fuel CORrosion MODeling). This work was performed in part using HPC resources from GENCI-IDRIS (Grants 2020-101450 and 2020-101601), and in part by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. GL thanks E. Suard and C. Schreinemachers for assistance during the neutron scattering experiments at the ILL. GB acknowledges V. Petříček for suggestions on using JANA2006. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:179907 Serial 6801  
Permanent link to this record
 

 
Author Saniz, R.; Baldinozzi, G.; Arts, I.; Lamoen, D.; Leinders, G.; Verwerft, M. pdf  url
doi  openurl
  Title Charge order, frustration relief, and spin-orbit coupling in U3O8 Type A1 Journal Article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 5 Pages 054410  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Research efforts on the description of the low-temperature magnetic order and electronic properties of U3O8 have been inconclusive so far. Reinterpreting neutron scattering results, we use group representation theory to show that the ground state presents collinear out-of-plane magnetic moments, with antiferromagnetic coupling both in-layer and between layers. Charge order relieves the initial geometric frustration, generating a slightly distorted honeycomb sublattice with Néel-type order. The precise knowledge of the characteristics of this magnetic ground state is then used to explain the fine features of the band gap. In this system, spin-orbit coupling (SOC) is of critical importance, as it strongly affects the electronic structure, narrowing the gap by ∼38%, compared to calculations neglecting SOC. The predicted electronic structure actually explains the salient features of recent optical absorption measurements, further demonstrating the excellent agreement between the calculated ground state properties and experiment.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 001041429800007 Publication Date 2023-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD Spent Fuel CORrosion MODeling).Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:197043 Serial 8796  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Ab initio study of shallow acceptors in bixbyite V2O3 Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 015703  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the results of our study on p-type dopability of bixbyite V2O3 using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) within the density functional theory (DFT) formalism. We study vanadium and oxygen vacancies as intrinsic defects and substitutional Mg, Sc, and Y as extrinsic defects. We find that Mg substituting V acts as a shallow acceptor, and that oxygen vacancies are electrically neutral. Hence, we predict Mg-doped V2O3 to be a p-type conductor. Our results also show that vanadium vacancies are relatively shallow, with a binding energy of 0.14 eV, so that they might also lead to p-type conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000347958600067 Publication Date 2015-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:122728 Serial 35  
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of carbon impurities in CuInSe2 and CuGaSe2, present in non-vacuum synthesis methods Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 015104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A first-principles study of the structural and electronic properties of carbon impurities in CuInSe2 and CuGaSe2 is presented. Carbon is present in organic molecules in the precursor solutions used in non-vacuum growth methods for CuInSe2 and CuGaSe2 based photovoltaic cells. These growth methods make more efficient use of material, time, and energy than traditional vacuum methods. The formation energies of several carbon impurities are calculated using the hybrid HSE06 functional. C Cu acts as a shallow donor, CIn and interstitial C yield deep donor levels in CuInSe2, while in CuGaSe2 CGa and interstitial C act as deep amphoteric defects. So, these defects reduce the majority carrier (hole) concentration in p-type CuInSe2 and CuGaSe2 by compensating the acceptor levels. The deep defects are likely to act as recombination centers for the photogenerated charge carriers and are thus detrimental for the performance of the photovoltaic cells. On the other hand, the formation energies of the carbon impurities are high, even under C-rich growth conditions. Thus, few C impurities will form in CuInSe2 and CuGaSe2 in thermodynamic equilibrium. However, the deposition of the precursor solution in non-vacuum growth methods presents conditions far from thermodynamic equilibrium. In this case, our calculations show that C impurities formed in non-equilibrium tend to segregate from CuInSe2 and CuGaSe2 by approaching thermodynamic equilibrium, e.g., via thorough annealing.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000347958600055 Publication Date 2015-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:122064 Serial 1215  
Permanent link to this record
 

 
Author Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B. doi  openurl
  Title Hydrogen impurities and native defects in CdO Type A1 Journal article
  Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 110 Issue 6 Pages 063521,1-063521,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We have used first-principles calculations based on density functional theory to study point defects in CdO within the local density approximation and beyond (LDA+U). Hydrogen interstitials and oxygen vacancies are found to act as shallow donors and can be interpreted as the cause of conductivity in CdO. Hydrogen can also occupy an oxygen vacancy in its substitutional form and also acts as a shallow donor. Similar to what was found for ZnO and MgO, hydrogen creates a multicenter bond with its six oxygen neighbors in CdO. The charge neutrality level for native defects and hydrogen impurities has been calculated. It is shown that in the case of native defects, it is not uniquely defined. Indeed, this level depends highly on the chemical potentials of the species and one can obtain different values for different end states in the experiment. Therefore, a comparison with experiment can only be made if the chemical potentials of the species in the experiment are well defined. However, for the hydrogen interstitial defect, since this level is independent of the chemical potential of hydrogen, one can obtain a unique value for the charge neutrality level. We find that the Fermi level stabilizes at 0.43 eV above the conduction band minimum in the case of the hydrogen interstitial defect, which is in good agreement with the experimentally reported value of 0.4 eV.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000295619300041 Publication Date 2011-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 13 Open Access  
  Notes ; The authors gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project, the FWO-Vlaanderen through Project G.0191.08 and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 2.068; 2011 IF: 2.168  
  Call Number UA @ lucian @ c:irua:93613 Serial 1533  
Permanent link to this record
 

 
Author Saniz, R.; Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title Quasiparticle energies and uniaxial pressure effects on the properties of SnO2 Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 97 Issue Pages 261901-261901,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We calculate the quasiparticle energy spectrum of SnO2 within the GW approximation, properly taking into account the contribution of core levels to the energy corrections. The calculated fundamental gap is of 3.85 eV. We propose that the difference with respect to the experimental optical gap (3.6 eV) is due to excitonic effects in the latter. We further consider the effect applied on uniaxial pressure along the c-axis. Compared to GW, the effect of pressure on the quasiparticle energies and band gap is underestimated by the local-density approximation. The quasiparticle effective masses, however, appear to be well described by the latter.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000285768100015 Publication Date 2010-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 23 Open Access  
  Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:85759 Serial 2803  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: