|   | 
Details
   web
Records
Author Li, K.; Béché, A.; Song, M.; Sha, G.; Lu, X.; Zhang, K.; Du, Y.; Ringer, S.P.; Schryvers, D.
Title Atomistic structure of Cu-containing \beta" precipitates in an Al-Mg-Si-Cu alloy Type A1 Journal article
Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 75 Issue Pages 86-89
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The beta '' precipitates in a peak-aged Al-Mg-Si-Cu alloy were measured with an average composition of 28.6Al-38.7Mg-26.5Si-5.17Cu (at.%) using atom probe tomography. High-angle annular dark-field observations revealed that Cu incompletely substitutes for the Mg-1 and Si-3 columns, preferentially for one column in each pair of Si-3. Cu-free Si columns form a parallelogram-shaped network that constitutes the basis of subsequent precipitates in the system, with a = 0.37 nm, b = 0.38 nm, gamma = 113 degrees and c = 0.405 nm. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Oxford Editor
Language Wos 000331025200022 Publication Date 2013-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 22 Open Access
Notes Approved Most recent IF: 3.747; 2014 IF: 3.224
Call Number UA @ lucian @ c:irua:115749 Serial 201
Permanent link to this record
 

 
Author van Huis, M.A.; Figuerola, A.; Fang, C.; Béché, A.; Zandbergen, H.W.; Manna, L.
Title Letter Chemical transformation of Au-tipped CdS nanorods into AuS/Cd core/shell particles by electron beam irradiation Type A1 Journal article
Year 2011 Publication Nano letters Abbreviated Journal Nano Lett
Volume 11 Issue 11 Pages 4555-4561
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that electron irradiation of colloidal CdS nanorods carrying Au domains causes their evolution into AuS/Cd core/shell nanoparticles as a result of a concurrent chemical and morphological transformation. The shrinkage of the CdS nanorods and the growth of the Cd shell around the Au tips are imaged in real time, while the displacement of S atoms from the CdS nanorod to the Au domains is evidenced by high-sensitivity energy-dispersive X-ray (EDX) spectroscopy. The various nanodomains display different susceptibility to the irradiation, which results in nanoconfigurations that are very different from those obtained after thermal annealing. Such physical manipulations of colloidal nanocrystals can be exploited as a tool to access novel nanocrystal heterostructures.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Washington Editor
Language Wos 000296674700009 Publication Date 2011-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 25 Open Access
Notes Approved Most recent IF: 12.712; 2011 IF: 13.198
Call Number UA @ lucian @ c:irua:93710 Serial 1814
Permanent link to this record
 

 
Author Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J.
Title Magnetic monopole field exposed by electrons Type A1 Journal article
Year 2014 Publication Nature physics Abbreviated Journal Nat Phys
Volume 10 Issue 1 Pages 26-29
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000328940100012 Publication Date 2013-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 131 Open Access
Notes Vortex; Countatoms; Fwo ECASJO_; Approved Most recent IF: 22.806; 2014 IF: 20.147
Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G.
Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue 2-3 Pages 190-199
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Paris Editor
Language Wos 000334013600009 Publication Date 2014-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 22 Open Access
Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992
Permanent link to this record
 

 
Author Béché, A.; Rouviere, J.L.; Barnes, J.P.; Cooper, D.
Title Strain measurement at the nanoscale : comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography Type A1 Journal article
Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 131 Issue Pages 10-23
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Convergent beam electron diffraction (CBED), nano-beam electron diffraction (NBED or NBD), high resolution imaging (HRTEM and HRSTEM) and dark field electron holography (DFEH or HoloDark) are five TEM based techniques able to quantitatively measure strain at the nanometer scale. In order to demonstrate the advantages and disadvantages of each technique, two samples composed of epitaxial silicon-germanium layers embedded in a silicon matrix have been investigated. The five techniques are then compared in terms of strain precision and accuracy, spatial resolution, field of view, mapping abilities and ease of performance and analysis. (C) 2013 Elsevier By. All rights reserved.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000322631200002 Publication Date 2013-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 73 Open Access
Notes Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:109774 Serial 3171
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J.-L.
Title Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope Type A1 Journal article
Year 2016 Publication Micron Abbreviated Journal Micron
Volume 80 Issue 80 Pages 145-165
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Oxford Editor
Language Wos 000366770100018 Publication Date 2015-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 50 Open Access
Notes Approved Most recent IF: 1.98
Call Number UA @ lucian @ c:irua:136446 Serial 4401
Permanent link to this record
 

 
Author Béché, A.; Rouvière, J.L.; Barnes, J.P.; Cooper, D.
Title Dark field electron holography for strain measurement Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 3 Pages 227-238
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000288638200007 Publication Date 2010-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 31 Open Access
Notes Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:136368 Serial 4496
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B.
Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
Year 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A
Volume 209 Issue 2 Pages 265-267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000303382700005 Publication Date 2011-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 3 Open Access
Notes Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:136430 Serial 4497
Permanent link to this record
 

 
Author Cooper, D.; de la Peña, F.; Béché, A.; Rouvière, J.-L.; Servanton, G.; Pantel, R.; Morin, P.
Title Field mapping with nanometer-scale resolution for the next generation of electronic devices Type A1 Journal article
Year 2011 Publication Nano letters Abbreviated Journal Nano Lett
Volume 11 Issue 11 Pages 4585-4590
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In order to improve the performance of todays nanoscaled semiconductor devices, characterization techniques that can provide information about the position and activity of dopant atoms and the strain fields are essential. Here we demonstrate that by using a modern transmission electron microscope it is possible to apply multiple techniques to advanced materials systems in order to provide information about the structure, fields, and composition with nanometer-scale resolution. Off-axis electron holography has been used to map the active dopant potentials in state-of-the-art semiconductor devices with 1 nm resolution. These dopant maps have been compared to electron energy loss spectroscopy maps that show the positions of the dopant atoms. The strain fields in the devices have been measured by both dark field electron holography and nanobeam electron diffraction.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Washington Editor
Language Wos 000296674700014 Publication Date 2011-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access
Notes Approved Most recent IF: 12.712; 2011 IF: 13.198
Call Number UA @ lucian @ c:irua:136369 Serial 4499
Permanent link to this record
 

 
Author Jones, L.; Martinez, G.T.; Béché, A.; Van Aert, S.; Nellist, P.D.
Title Getting the best from an imperfect detector : an alternative normalisation procedure for quantitative HAADF STEM Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue S3 Pages 126-127
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:136445 Serial 4500
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S.
Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting : what are the limits? Type A1 Journal article
Year 2015 Publication Journal of physics : conference series Abbreviated Journal
Volume 644 Issue Pages 012034-4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Bristol Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:129198 Serial 4506
Permanent link to this record
 

 
Author Denneulin, T.; Rouvière, J.L.; Béché, A.; Py, M.; Barnes, J.P.; Rochat, N.; Hartmann, J.M.; Cooper, D.
Title The reduction of the substitutional C content in annealed Si/SiGeC superlattices studied by dark-field electron holography Type A1 Journal article
Year 2011 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech
Volume 26 Issue 12 Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Si/Si(1 − x − y)GexCy superlattices are used in the construction of new microelectronic architectures such as multichannel transistors. The introduction of carbon in SiGe allows for compensation of the strain and to avoid plastic relaxation. However, the formation of incoherent β-SiC clusters during annealing limits the processability of SiGeC. This precipitation leads to a modification of the strain in the alloy due to the reduction of the substitutional carbon content. Here, we investigated the strain in annealed Si/Si0.744Ge0.244C0.012 superlattices grown by reduced pressure chemical vapour deposition using dark-field electron holography. The variation of the substitutional C content was calculated by correlating the results with finite-element simulations. The obtained values were then compared with Fourier-transformed infrared spectrometry measurements. It was shown that after annealing for 2 min at 1050 °C carbon no longer has any influence on strain in the superlattice, which behaves like pure SiGe. However, a significant proportion of substitutional C atoms remain in a third-nearest neighbour (3nn) configuration. It was deduced that the influence of 3nn C on strain is negligible and that only isolated atoms have a significant contribution. It was also proposed that the 3nn configuration is an intermediary step during the formation of SiC clusters.
Address
Corporate Author Thesis
Publisher (up) Place of Publication London Editor
Language Wos 000300151300010 Publication Date 2011-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.305 Times cited Open Access
Notes Approved Most recent IF: 2.305; 2011 IF: 1.723
Call Number UA @ lucian @ c:irua:136427 Serial 4508
Permanent link to this record
 

 
Author Bhat, S.G.; Gauquelin, N.; Sebastian, N.K.; Sil, A.; Béché, A.; Verbeeck, J.; Samal, D.; Kumar, P.S.A.
Title Orthorhombic vs. hexagonal epitaxial SrIrO3 thin films : structural stability and related electrical transport properties Type A1 Journal article
Year 2018 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 122 Issue 2 Pages 28003
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metastable orthorhombic SrIrO3 (SIO) is an arch-type spin-orbit coupled material. We demonstrate here a controlled growth of relatively thick (200 nm) SIO films that transform from bulk “6H-type” structure with monoclinic distortion to an orthorhombic lattice by controlling growth temperature. Extensive studies based on high-resolution X-ray diffraction and transmission electron microscopy infer a two distinct structural phases of SIO. Electrical transport reveals a weak temperature-dependent semi-metallic character for both phases. However, the temperature-dependent Hall-coefficient for the orthorhombic SIO exhibits a prominent sign change, suggesting a multiband character in the vicinity of E-F. Our findings thus unravel the subtle structure-property relation in SIO epitaxial thin films. Copyright (C) EPLA, 2018
Address
Corporate Author Thesis
Publisher (up) Place of Publication Paris Editor
Language Wos 000435517300001 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access Not_Open_Access
Notes ; SGB and DS acknowledge useful discussions with E. P. Houwman, University of Twente, on X-ray diffraction. DS would like to thank H. Takagi, Max-Planck Institute for Solid State Research, Stuttgart, for the fruitful discussion on the transport properties of SIO thin films. SGB and NKS thank A. Aravind, Bishop Moore College, Mavelikara, for his valuable inputs while depositing the thin films of SIO. SGB, NKS and PSAK acknowledge Nano Mission Council, Department of Science & Technology, India, for the funding. DS acknowledges the financial support from Max-Planck Society through MaxPlanck Partner Group. NG, AB and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G093417N. ; Approved Most recent IF: 1.957
Call Number UA @ lucian @ c:irua:152074UA @ admin @ c:irua:152074 Serial 5034
Permanent link to this record
 

 
Author Becker, M.; Guzzinati, G.; Béché, A.; Verbeeck, J.; Batelaan, H.
Title Asymmetry and non-dispersivity in the Aharonov-Bohm effect Type A1 Journal article
Year 2019 Publication Nature communications Abbreviated Journal Nat Commun
Volume 10 Issue 10 Pages 1700
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger's theorem describes this absence of classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov's prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov's prediction and Zeilinger's theorem. The experiment consists of the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov's predictions and giving indirect experimental evidence for the presence of a quantum “force”. Our theoretical analysis shows that Zeilinger's theorem and Shelankov's result are both special cases of one theorem.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000464338100011 Publication Date 2019-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 12 Open Access OpenAccess
Notes ; H.B. would like to thank Michael Berry for bringing the presence of a quantum “force” to our attention. A.B., G.G. and J.V. acknowledge support from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. G.G. acknowledges support from the Fonds Wetenschappelijk Onderzoek -Vlaanderen (FWO). M.B. and H.B. acknowledge support by the U.S. National Science Foundation under Grant No. 1602755. ; Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:159341 Serial 5241
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A.
Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 203 Issue 203 Pages 95-104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000465021000013 Publication Date 2018-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access OpenAccess
Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.843
Call Number UA @ admin @ c:irua:160213 Serial 5242
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
Title Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169114 Serial 6865
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Rotation of electron beams in the presence of localised, longitudinal magnetic fields Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Electron Bessel beams have been generated by inserting an annular aperture in the illumination system of a TEM. These beams have passed through a localised magnetic field. As a result a low amount of image rotation (which is expected to be proportional to the longitudinal component of the magnetic field) is observed in the far field. A measure of this rotation should give access to the magneti field. The two datasets have been acquired in a FEI Titan3 microscope, operated at 300kV. The file focalseries.tif contains a series of images acquired varying the magnetic field through the objective lens. The file lineprofile.ser contains a series of images acquired by scanning the beam over a sample with several magnetised nanopillars. For reference, check the associated publication.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169135 Serial 6883
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J.
Title Spectrocopic coincidence experiment in transmission electron microscopy Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract This dataset contains individual EEL and EDX events where for every event (electron or X-ray), their energy and time of arrival is stored. The experiment was performed in a transmission electron microscope (Tecnai Osiris) at 200 keV. The material investigated is an Al-Mg-Si-Cu alloy. The 'full_dataset.mat' contains the full dataset and the 'subset.mat' has the first five frames of the full dataset. The attached 'EELS-EDX.ipynb' is a jupyter notebook file. This file describes the data processing in order to observe the temporal correlation between the electrons and X-rays.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169112 Serial 6888
Permanent link to this record
 

 
Author Idrissi, H.; Béché, A.; Gauquelin, N.; Ul-Haq, I.; Bollinger, C.; Demouchy, S.; Verbeeck, J.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 239 Issue Pages 118247-118249
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Intragranular amorphization shear lamellae are found in deformed olivine aggregates. The detailed trans-mission electron microscopy analysis of intragranular lamella arrested in the core of a grain provides novel information on the amorphization mechanism. The deformation field is complex and heteroge-neous, corresponding to a shear crack type instability involving mode I, II and III loading components. The formation and propagation of the amorphous lamella is accompanied by the formation of crystal defects ahead of the tip. These defects are geometrically necessary [001] dislocations, characteristics of high-stress deformation in olivine, and rotational nanodomains which are tentatively interpreted as disclinations. We show that these defects play an important role in dictating the path followed by the amorphous lamella. Stress-induced amorphization in olivine would thus result from a direct crystal-to -amorphous transformation associated with a shear instability and not from a mechanical destabilization due to the accumulation of high number of defects from an intense preliminary deformation. The pref-erential alignment of some lamellae along (010) is a proof of the lower ultimate mechanical strength of these planes.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000861076600004 Publication Date 2022-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited 5 Open Access OpenAccess
Notes The QuanTEM microscope was partially funded by the Flemish government. The K2 camera was funded by FWO Hercules fund G0H4316N 'Direct electron detector for soft matter TEM'. A. Beche acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T011322F and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787,198 Time Man. J-L Rouviere is acknowledged for his support with the GPA softawre. Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:191432 Serial 7186
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A.
Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 5653
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000347227700003 Publication Date 2014-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 197 Open Access
Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166
Permanent link to this record
 

 
Author de Backer, A.; Martinez, G.T.; MacArthur, K.E.; Jones, L.; Béché, A.; Nellist, P.D.; Van Aert, S.
Title Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 56-61
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000351237800008 Publication Date 2014-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 29 Open Access
Notes 312483 Esteem2; 278510 Vortex; Fwo G039311; G006410; G037413; esteem2ta; ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:123927 c:irua:123927 Serial 753
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Lubk, A.; Mazilu, M.; Van Boxem, R.; Verbeeck, J.
Title Exploiting lens aberrations to create electron-vortex beams Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 6 Pages 064801-64805
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A model for a new electron-vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condenser plane. Experimental results are found to be in good agreement with simulations.
Address
Corporate Author Thesis
Publisher (up) Place of Publication New York, N.Y. Editor
Language Wos 000322921200009 Publication Date 2013-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 66 Open Access
Notes Vortex; Esteem2; Countatoms; FWO; Esteem2jra3 ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:109340UA @ admin @ c:irua:109340 Serial 1148
Permanent link to this record
 

 
Author Béché, A.; Winkler, R.; Plank, H.; Hofer, F.; Verbeeck, J.
Title Focused electron beam induced deposition as a tool to create electron vortices Type A1 Journal article
Year 2015 Publication Micron Abbreviated Journal Micron
Volume 80 Issue 80 Pages 34-38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Focused electron beam induced deposition (FEBID) is a microscopic technique that allows geometrically controlled material deposition with very high spatial resolution. This technique was used to create a spiral aperture capable of generating electron vortex beams in a transmission electron microscope (TEM). The vortex was then fully characterized using different TEM techniques, estimating the average orbital angular momentum to be approximately 0.8variant Planck's over 2pi per electron with almost 60% of the beam ending up in the l=1 state.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Wos 000366770100006 Publication Date 2015-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 21 Open Access
Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V., R.W., H.P. and F.H. acknowledge financial support from the European Union under the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). R.W and H.P also acknowledge financial support by the COST action CELINA (Nr. CM1301) and the EUROSTARS project TRIPLE-S (Nr. E!8213). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government.; esteem2jra3 ECASJO; Approved Most recent IF: 1.98; 2015 IF: 1.988
Call Number c:irua:129203 c:irua:129203UA @ admin @ c:irua:129203 Serial 3946
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; van den Broek, W.
Title A holographic method to measure the source size broadening in STEM Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 120 Issue Pages 35-40
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Source size broadening is an important resolution limiting effect in modern STEM experiments. Here, we propose an alternative method to measure the source size broadening making use of a holographic biprism to create interference patterns in an empty Ronchigram. This allows us to measure the exact shape of the source size broadening with a much better sampling than previously possible. We find that the shape of the demagnified source deviates considerably from a Gaussian profile that is often assumed. We fit the profile with a linear combination of a Gaussian and a bivariate Cauchy distribution showing that even though the full width at half maximum is similar to previously reported measurements, the tails of the profile are considerable wider. This is of fundamental importance for quantitative comparison of STEM simulations with experiments as these tails make the image contrast dependent on the interatomic distance, an effect that cannot be reproduced by a single Gaussian profile of fixed width alone.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000308082600005 Publication Date 2012-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 29 Open Access
Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 246791 COUNTATOMS and ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. W. Van den Broek acknowledges funding from the Condor project, a project under the supervision of the Embedded Systems Institute (ESI) and FEI. This project is partially supported by the Dutch Ministry of Economic Affairs under the BSIK program. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:100466UA @ admin @ c:irua:100466 Serial 1483
Permanent link to this record
 

 
Author Tan, H.; Egoavil, R.; Béché, A.; Martinez, G.T.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Rotella, H.; Boullay, P.; Pautrat, A.; Prellier, W.
Title Mapping electronic reconstruction at the metal-insulator interface in LaVO3/SrVO3 heterostructures Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 15 Pages 155123-155126
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A (LaVO3)6/(SrVO3)(3) superlattice is studied with a combination of sub-A resolved scanning transmission electron microscopy and monochromated electron energy-loss spectroscopy. The V oxidation state is mapped with atomic spatial resolution enabling us to investigate electronic reconstruction at the LaVO3/SrVO3 interfaces. Surprisingly, asymmetric charge distribution is found at adjacent chemically symmetric interfaces. The local structure is proposed and simulated with a double channeling calculation which agrees qualitatively with our experiment. We demonstrate that local strain asymmetry is the likely cause of the electronic asymmetry of the interfaces. The electronic reconstruction at the interfaces extends much further than the chemical composition, varying from 0.5 to 1.2 nm. This distance corresponds to the length of charge transfer previously found in the (LaVO3)./(SrVO3). metal/insulating and the (LaAlO3)./(SrTiO3). insulating/insulating interfaces.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Wos 000326087100003 Publication Date 2013-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO; GOA XANES meets ELNES; esteem2jra3 ECASJO; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112733UA @ admin @ c:irua:112733 Serial 1944
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Verbeeck, J.
Title Measuring the orbital angular momentum of electron beams Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue Pages 025803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Lancaster, Pa Editor
Language Wos 000332224100014 Publication Date 2014-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 42 Open Access
Notes Vortex; FP7; Countatoms; ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:114577UA @ admin @ c:irua:114577 Serial 1972
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Béché, A.
Title A new way of producing electron vortex probes for STEM Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 113 Issue Pages 83-87
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A spiral holographic aperture is used in the condensor plane of a scanning transmission electron microscope to produce a focussed electron vortex probe carrying a topological charge of either −1, 0 or +1. The spiral aperture design has a major advantage over the previously used forked aperture in that the three beams with topological charge m=−1, 0, and 1 are not side by side in the specimen plane, but rather on top of each other, focussed at different heights. This allows us to have only one selected beam in focus on the sample while the others contribute only to a background signal. In this paper we describe the working principle as well as first experimental results demonstrating atomic resolution HAADF STEM images obtained with electron vortex probes. These results pave the way for atomic resolution magnetic information when combined with electron energy loss spectroscopy.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000300554400002 Publication Date 2011-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 62 Open Access
Notes J.V. wants to thank Miles Padgett for suggesting this setup and pointing to the relevant optics literature. Peter Schattschneider is acknowledged for in depth discussions on related topics. J.V acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant no. 46791-COUN-TATOMS and ERC Starting Grant no. 278510 VORTEX. The Qu-Ant-EM microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:93624UA @ admin @ c:irua:93624 Serial 2336
Permanent link to this record
 

 
Author Egoavil, R.; Huehn, S.; Jungbauer, M.; Gauquelin, N.; Béché, A.; Van Tendeloo, G.; Verbeeck; Moshnyaga, V.
Title Phase problem in the B-site ordering of La2CoMnO6 : impact on structure and magnetism Type A1 Journal article
Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 7 Issue 7 Pages 9835-9843
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Epitaxial double perovskite La2CoMnO6 (LCMO) films were grown by metalorganic aerosol deposition on SrTiO3(111) substrates. A high Curie temperature, T-C = 226 K, and large magnetization close to saturation, M-S(5 K) = 5.8 mu(B)/f.u., indicate a 97% degree of B-site (Co,Mn) ordering within the film. The Co/Mn ordering was directly imaged at the atomic scale by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX). Local electron-energy-loss spectroscopy (EELS) measurements reveal that the B-sites are predominantly occupied by Co2+ and Mn4+ ions in quantitative agreement with magnetic data. Relatively small values of the (1/2 1/2 1/2) superstructure peak intensity, obtained by X-ray diffraction (XRD), point out the existence of ordered domains with an arbitrary phase relationship across the domain boundary. The size of these domains is estimated to be in the range 35-170 nm according to TEM observations and modelling the magnetization data. These observations provide important information towards the complexity of the cation ordering phenomenon and its implications on magnetism in double perovskites, and similar materials.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Cambridge Editor
Language Wos 000354983100060 Publication Date 2015-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 37 Open Access
Notes 312483 ESTEEM2; FWO G004413N; 246102 IFOX; Hercules; esteem2_jra3 Approved Most recent IF: 7.367; 2015 IF: 7.394
Call Number c:irua:126423 c:irua:126423 Serial 2586
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Juchtmans, R.; Van Boxem, R.; Mazilu, M.; Verbeeck, J.
Title Prospects for versatile phase manipulation in the TEM : beyond aberration correction Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 85-93
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose׳s legacy in aberration correction and electron optics in general would open an exciting field of research and applications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Amsterdam Editor
Language Wos 000351237800012 Publication Date 2014-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 19 Open Access
Notes 278510 Vortex; Fwo; 312483 Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:121405 c:irua:121405UA @ admin @ c:irua:121405 Serial 2731
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J.
Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 5 Pages 053818
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Lancaster, Pa Editor
Language Wos 000335826300012 Publication Date 2014-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 23 Open Access
Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758
Permanent link to this record