toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Prabhakara, V.; Nuytten, T.; Bender, H.; Vandervorst, W.; Bals, S.; Verbeeck, J. pdf  url
doi  openurl
  Title Linearized radially polarized light for improved precision in strain measurements using micro-Raman spectroscopy Type A1 Journal article
  Year 2021 Publication (up) Optics Express Abbreviated Journal Opt Express  
  Volume 29 Issue 21 Pages 34531  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in semiconductor transistor devices has become vital in the semiconductor industry due to the ever-increasing need for performance enhancement at the nanoscale. Raman spectroscopy is a non-invasive measurement technique with high sensitivity to mechanical stress that does not require any special sample preparation procedures in comparison to characterization involving transmission electron microscopy (TEM), making it suitable for inline strain measurement in the semiconductor industry. Indeed, at present, strain measurements using Raman spectroscopy are already routinely carried out in semiconductor devices as it is cost effective, fast and non-destructive. In this paper we explore the usage of linearized radially polarized light as an excitation source, which does provide significantly enhanced accuracy and precision as compared to linearly polarized light for this application. Numerical simulations are done to quantitatively evaluate the electric field intensities that contribute to this enhanced sensitivity. We benchmark the experimental results against TEM diffraction-based techniques like nano-beam diffraction and Bessel diffraction. Differences between both approaches are assigned to strain relaxation due to sample thinning required in TEM setups, demonstrating the benefit of Raman for nondestructive inline testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708940500144 Publication Date 2021-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 2 Open Access OpenAccess  
  Notes Horizon 2020 Framework Programme, 823717 – ESTEEM3 ; GOA project, “Solarpaint” ; Herculesstichting;; esteem3jra; esteem3reported; Approved Most recent IF: 3.307  
  Call Number EMAT @ emat @c:irua:182472 Serial 6816  
Permanent link to this record
 

 
Author Ata, I.; Ben Dkhil, S.; Pfannmoeller, M.; Bals, S.; Duche, D.; Simon, J.-J.; Koganezawa, T.; Yoshimoto, N.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J.; Baeuerle, P. url  doi
openurl 
  Title The influence of branched alkyl side chains in A-D-A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells Type A1 Journal article
  Year 2017 Publication (up) Organic chemistry frontiers : an international journal of organic chemistry Abbreviated Journal Org Chem Front  
  Volume 4 Issue 4 Pages 1561-1573  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Besides providing sufficient solubility, branched alkyl chains also affect the film-forming and packing properties of organic semiconductors. In order to avoid steric hindrance as it is present in wide-spread alkyl chains comprising a branching point position at the C2-position, i.e., 2-ethylhexyl, the branching point can be moved away from the pi-conjugated backbone. In this report, we study the influence of the modification of the branching point position from the C2-position in 2-hexyldecylamine (1) to the C4-position in 4-hexyldecylamine (2) connected to the central dithieno[3,2-b: 2', 3'-d] pyrrole (DTP) moiety in a well-studied A-D-A oligothiophene on the optoelectronic properties and photovoltaic performance in solution- processed bulk heterojunction solar cells (BHJSCs) with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor material. Post-treatment of the photoactive layers is performed via solvent vapor annealing (SVA) in order to improve the film microstructure of the bulk heterojunction. The time evolution of nanoscale morphological changes is followed by combining scanning transmission electron microscopy with low-energy-loss spectroscopic imaging (STEM-SI), solid-state absorption spectroscopy, and two-dimensional grazing incidence X-ray diffraction (2D-GIXRD). Our results show an improvement of the photovoltaic performance that is dependent on the branching point position in the donor oligomer. Optical spacers are utilized to increase light absorption inside the co-oligomer 2-based BHJSCs leading to increased power conversion efficiencies (PCEs) of 8.2% when compared to the corresponding co-oligomer 1-based devices. A STEM-SI analysis of the respective device cross-sections of active layers containing 1 and 2 as donor materials indeed reveals significant differences in their respective active layer morphologies.  
  Address  
  Corporate Author Thesis  
  Publisher RSC Publishing Place of Publication London Editor  
  Language Wos 000406374800013 Publication Date 2017-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-4129 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.955 Times cited 24 Open Access OpenAccess  
  Notes ; We acknowledge financial support by the European Commission under the project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594) and S.B. acknowledges the ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 4.955  
  Call Number UA @ lucian @ c:irua:145176UA @ admin @ c:irua:145176 Serial 4727  
Permanent link to this record
 

 
Author Guerrero, A.; Pfannmöller, M.; Kovalenko, A.; Ripolles, T.S.; Heidari, H.; Bals, S.; Kaufmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G. pdf  url
doi  openurl
  Title Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity Type A1 Journal article
  Year 2015 Publication (up) Organic electronics: physics, materials, applications Abbreviated Journal Org Electron  
  Volume 16 Issue 16 Pages 227-233  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Organic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance-voltage (C-V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000345649500029 Publication Date 2014-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1566-1199; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.399 Times cited 24 Open Access OpenAccess  
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 3.399; 2015 IF: 3.827  
  Call Number c:irua:122169 Serial 2267  
Permanent link to this record
 

 
Author Vanrompay, H.; Buurlage, J.‐W.; Pelt, D.M.; Kumar, V.; Zhuo, X.; Liz‐Marzán, L.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Real‐Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles Type A1 Journal article
  Year 2020 Publication (up) Particle & Particle Systems Characterization Abbreviated Journal Part Part Syst Char  
  Volume 37 Issue 37 Pages 2000073  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A detailed 3D investigation of nanoparticles at a local scale is of great importance to connect their structure and composition to their properties. Electron tomography has therefore become an important tool for the 3D characterization of nanomaterials. 3D investigations typically comprise multiple steps, including acquisition, reconstruction, and analysis/quantification. Usually, the latter two steps are performed offline, at a dedicated workstation. This sequential workflow prevents on-the-fly control of experimental parameters to improve the quality of the 3D reconstruction, to select a relevant nanoparticle for further characterization or to steer an in-situ tomography experiment. Here, we present an efficient approach to overcome these limitations, based on the real-time reconstruction of arbitrary 2D reconstructed slices through a 3D object. Implementation of this method may lead to generalized implementation of electron tomography for routine nanoparticle characterization in 3D.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536357100001 Publication Date 2020-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 10 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1S32617N ; Fonds Wetenschappelijk Onderzoek, G026718N ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 639.073.506 016.Veni.192.235 ; H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G026718N). Financial support was provided by The Netherlands Organization for Scientific Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). H.V. and J.-W.B contributed equally to this work.; sygma Approved Most recent IF: 2.7; 2020 IF: 4.474  
  Call Number EMAT @ emat @c:irua:169704 Serial 6371  
Permanent link to this record
 

 
Author Shenderova, O.; Hens, S.; Vlasov, I.; Turner, S.; Lu, Y.-G.; Van Tendeloo, G.; Schrand, A.; Burikov, S.A.; Dolenko, T.A. pdf  doi
openurl 
  Title Carbon-dot-decorated nanodiamonds Type A1 Journal article
  Year 2014 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 31 Issue 5 Pages 580-590  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of a new class of fluorescent carbon nanomaterials, carbon-dot-decorated nanodiamonds (CDD-ND), is reported. These CDD-NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 12 atomic layers thick and 12 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD-ND. The CDD-ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well-purified NDs and can be tailored by changing the oxidation process parameters. Carbon-dot-decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000335518900008 Publication Date 2014-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 30 Open Access  
  Notes Fwo; 262348 Esmi; 246791 Countatoms Approved Most recent IF: 4.474; 2014 IF: 3.081  
  Call Number UA @ lucian @ c:irua:117332 Serial 280  
Permanent link to this record
 

 
Author Sentosun, K.; Sanz Ortiz, M.N.; Batenburg, K.J.; Liz-Marzán, L.M.; Bals, S. pdf  url
doi  openurl
  Title Combination of HAADF-STEM and ADF-STEM Tomography for Core-Shell Hybrid Materials Type A1 Journal article
  Year 2015 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 32 Issue 32 Pages 1063-1067  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Characterization of core-shell type nanoparticles in 3D by transmission electron microscopy (TEM) can be very challenging. Especially when both heavy and light elements co-exist within the same nanostructure, artefacts in the 3D reconstruction are often present. A representative example would be a particle comprising an anisotropic metallic (Au) nanoparticle coated with a (mesoporous) silica shell. To obtain a reliable 3D characterization of such an object, we propose a dose-efficient strategy to simultaneously acquire high angle annular dark field scanning TEM and annular dark field tilt series for tomography. The 3D reconstruction is further improved by applying an advanced masking and interpolation approach to the acquired data. This new methodology enables us to obtain high quality reconstructions from which also quantitative information can be extracted. This approach is broadly applicable to investigate hybrid core-shell materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368446800003 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 13 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant #335078-COLOURATOM). L.M. acknowledges funding from the EU, Grant# 310651-2 Self-Assembly in Confined Space (SACS). K.J.B acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO), project number 639.072.005 and NWO CW 700.57.026. Networking support was provided by COST Action MP1207. The authors acknowledge the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 for financial support.; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.474; 2015 IF: 3.081  
  Call Number c:irua:129590 c:irua:129590 Serial 3967  
Permanent link to this record
 

 
Author Altantzis, T.; Goris, B.; Sánchez-Iglesias, A.; Grzelczak, M.; Liz-Marzán, L.M.; Bals, S. pdf  url
doi  openurl
  Title Quantitative structure determination of large three-dimensional nanoparticle assemblies Type A1 Journal article
  Year 2013 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 30 Issue 1 Pages 84-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thumbnail image of graphical abstract To investigate nanoassemblies in three dimensions, electron tomography is an important tool. For large nanoassemblies, it is not straightforward to obtain quantitative results in three dimensions. An optimized acquisition technique, incoherent bright field scanning transmission electron microscopy, is combined with an advanced 3D reconstruction algorithm. The approach is applied to quantitatively analyze large nanoassemblies in three dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310806000008 Publication Date 2012-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 23 Open Access  
  Notes Goa; Fwo; 267867 Plasmaquo; 262348 Esmi Approved Most recent IF: 4.474; 2013 IF: 0.537  
  Call Number UA @ lucian @ c:irua:101776 Serial 2763  
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Filippousi, M.; Leus, K.; Lobato, I.; Ramachandran, R.K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MIL-101 Type A1 Journal article
  Year 2016 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 382-387  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract MIL-101 giant-pore metal-organic framework (MOF) materials have been loaded with Pt nanoparticles using atomic layer deposition. The final structure has been investigated by aberration-corrected annular dark-field scanning transmission electron microscopy under strictly controlled low dose conditions. By combining the acquired experimental data with image simulations, the position of the small clusters within the individual pores of a metal-organic framework has been determined. The embedding of the Pt nanoparticles is confirmed by electron tomography, which shows a distinct ordering of the highly uniform Pt nanoparticles. The results show that atomic layer deposition is particularly well-suited for the deposition of individual nanoparticles inside MOF framework pores and that, upon proper regulation of the incident electron dose, annular dark-field scanning transmission electron microscopy is a powerful tool for the characterization of this type of materials at a local scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379970000006 Publication Date 2016-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 11 Open Access  
  Notes S.T. and J.D. gratefully acknowledge the FWO Vlaanderen for a postdoctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. K.L. acknowledges the financial support from the Ghent University BOF postdoctoral Grant 01P06813T and UGent GOA Grant 01G00710. C.D. thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513), and the Hercules Foundation (AUGE/09/014) for financial support. Approved Most recent IF: 4.474  
  Call Number c:irua:131913 Serial 4028  
Permanent link to this record
 

 
Author Zanaga, D.; Altantzis, T.; Polavarapu, L.; Liz-Marzán, L.M.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title A New Method for Quantitative XEDS Tomography of Complex Heteronanostructures Type A1 Journal article
  Year 2016 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 396-403  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Reliable quantification of 3D results obtained by X-ray Energy Dispersive Spectroscopy (XEDS) tomography is currently hampered by the presence of shadowing effects and poor spatial resolution. Here, we present a method that overcomes these problems by synergistically combining quantified XEDS data and High Angle Annular Dark Field – Scanning Transmission Electron Microscopy (HAADF-STEM) tomography. As a proof of principle, the approach is applied to characterize a complex Au/Ag nanorattle obtained through a galvanic replacement reaction. However, the technique we propose here is widely applicable to a broad range of nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379970000008 Publication Date 2016-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 29 Open Access OpenAccess  
  Notes The authors acknowledge financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS, ERC Advanced Grant # 291667 HierarSACol and ERC Advanced Grant 267867 – PLASMAQUO), the European Union under the FP7 (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI and N. 312483 ESTEEM2).; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.474  
  Call Number c:irua:132643 c:irua:132643 Serial 4052  
Permanent link to this record
 

 
Author Varambhia, A.M.; Jones, L.; De Backer, A.; Fauske, V.T.; Van Aert, S.; Ozkaya, D.; Nellist, P.D. pdf  url
doi  openurl
  Title Quantifying a Heterogeneous Ru Catalyst on Carbon Black Using ADF STEM Type A1 Journal article
  Year 2016 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 438-444  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ru catalysts are part of a set of late transition metal nanocatalysts that have garnered much interest for catalytic applications such as ammonia synthesis and fuel cell production. Their performance varies greatly depending on their morphology and size, these catalysts are widely studied using electron microscopy. Using recent developments in Annular Dark Field (ADF) Scanning Transmission Electron Microscopy (STEM) quantification techniques, a rapid atom counting procedure was utilized to document the evolution of a heterogeneous Ru catalyst supported on carbon black. Areas of the catalyst were imaged for approximately 15 minutes using ADF STEM. When the Ru clusters were exposed to the electron beam, the clusters changed phase from amorphous to crystalline. To quantify the thickness of the crystalline clusters, two techniques were applied (simulation and statistical decomposition) and compared. These techniques show that stable face centredcubic crystal structures in the form of rafts, between 2 and 8 atoms thick, were formed after the initial wetting of the carbon support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379970000012 Publication Date 2016-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 4 Open Access  
  Notes The authors would like to thank the EPSRC and Johnson Matthey for funding this work as part of a CASE-Award studentship. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). We would like to thank Brian Theobald and Jonathan Sharman from JMTC for provision of the samples The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a postdoctoral grant to ADB. The microscope used was funded by the INFRASTRUKTUR Grant 197405 (NORTEM) program of the Research Council of Norway.; esteem2_jra2 Approved Most recent IF: 4.474  
  Call Number c:irua:134036 c:irua:134036 Serial 4086  
Permanent link to this record
 

 
Author Liz-Marzan, L.; Bals, S. pdf  doi
openurl 
  Title Advanced particle characterization techniques Type Editorial
  Year 2016 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 350-351  
  Keywords Editorial; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Wiley-v c h verlag gmbh Place of Publication Weinheim Editor  
  Language Wos 000379970000001 Publication Date 2016-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.474 Times cited Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 4.474  
  Call Number UA @ lucian @ c:irua:134957 Serial 4136  
Permanent link to this record
 

 
Author Chinchilla, L.E.; Olmos, C.; Kurttepeli, M.; Bals, S.; Van Tendeloo, G.; Villa, A.; Prati, L.; Blanco, G.; Calvino, J.J.; Chen, X.; Hungría, A.B. pdf  url
doi  openurl
  Title Combined macroscopic, nanoscopic, and atomic-scale characterization of gold-ruthenium bimetallic catalysts for octanol oxidation Type A1 Journal article
  Year 2016 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 419-437  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A series of gold-ruthenium bimetallic catalysts of increasing Au:Ru molar ratios supported on a Ce0.62Zr0.38O2 mixed oxide are prepared and their structural and chemical features characterized by a combination of macroscopic and atomic-scale techniques based on scanning transmission electron microscopy. The influence of the temperature of the final reduction treatment used as activation step (350-700 degrees C range) is also investigated. The preparation method used allows catalysts to be successfully prepared where a major fraction of the metal nanoparticles is in the size range below 5 nm. The structural complexities characteristic of this type of catalysts are evidenced, as well as the capabilities and limitations of both the macroscopic and microscopic techniques in the characterization of the system of metal nanoparticles. A positive influence of the addition of Ru on both the resistance against sintering and the catalytic performance of the starting supported Au catalyst is evidenced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000379970000011 Publication Date 2016-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 7 Open Access OpenAccess  
  Notes ; This work was supported by the Ministry of Science and Innovation of Spain/ FEDER Program of the EU (Project Nos.: MAT 2013-40823-R and CSD2009-00013), ESTEEM2 (FP7-INFRASTUCTURE-2012-1-312493), Junta de Andalucia (FQM334 and FQM110 and Project: FQM3994). S.B. acknowledges the European Research Council, ERC grant No. 335078 – Colouratom. M.K. is grateful to the Fund for Scientific Research Flanders. X.C. thanks the Ramon y Cajal Program. ; ecas_sara Approved Most recent IF: 4.474  
  Call Number UA @ lucian @ c:irua:134958 Serial 4150  
Permanent link to this record
 

 
Author Sentosun, K.; Lobato, I.; Bladt, E.; Zhang, Y.; Palenstijn, W.J.; Batenburg, K.J.; Van Dyck, D.; Bals, S. pdf  url
doi  openurl
  Title Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography Type A1 Journal article
  Year 2017 Publication (up) Particle and particle systems characterization Abbreviated Journal Part. Part. Syst. Charact.  
  Volume 34 Issue 34 Pages 1700287  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Electron tomography is a well-known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418416100005 Publication Date 2017-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4117 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes K.S. and S.B. acknowledge support from the Fund for Scientific ResearchFlanders (FWO) (G019014N and G021814N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). The authors would like to thank Prof. Luis Liz-Marzán for provision of the samples. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:147857UA @ admin @ c:irua:147857 Serial 4798  
Permanent link to this record
 

 
Author Amini, M.N.; Altantzis, T.; Lobato, I.; Grzelczak, M.; Sánchez-Iglesias, A.; Van Aert, S.; Liz-Marzán, L.M.; Partoens, B.; Bals, S.; Neyts, E.C. url  doi
openurl 
  Title Understanding the Effect of Iodide Ions on the Morphology of Gold Nanorods Type A1 Journal article
  Year 2018 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 35 Issue 35 Pages 1800051  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The presence of iodide ions during the growth of gold nanorods strongly affects the shape of the final products, which is proposed to be due to selective iodide adsorption on certain crystallographic facets. Therefore, a detailed structural and morphological characterization of the starting rods is crucial toward understanding this effect. Electron tomography is used to determine the crystallographic indices of the lateral facets of gold nanorods, as well as those present at the tips. Based on this information, density functional theory calculations are used to determine the surface and interface energies of the observed facets and provide insight into the relationship between the amount of iodide ions in the growth solution and the final morphology of anisotropic gold nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441893400002 Publication Date 2018-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 6 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (grant 335078 COLOURATOM to S.B.). T.A., S.V.A. S.B. and E.C.N., acknowledge funding from the Research Foundation Flanders (FWO, Belgium), through project funding (G.0218.14N and G.0369.15N) and a postdoctoral grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). Mozhgan N. Amini and Thomas Altantzis contributed equally to this work. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @c:irua:152998UA @ admin @ c:irua:152998 Serial 5010  
Permanent link to this record
 

 
Author Zhang, Y.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Understanding CeO2-Based Nanostructures through Advanced Electron Microscopy in 2D and 3D Type A1 Journal article
  Year 2019 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 36 Issue 36 Pages 1800287  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Engineering morphology and size of CeO2-based nanostructures on a (sub)nanometer scale will greatly influence their performance; this is because of their high oxygen storage capacity and unique redox properties, which allow faster switching of the oxidation state between Ce4+ and Ce3+. Although tremendous research has been carried out on the shapecontrolled synthesis of CeO2, the characterization of these nanostructures at the atomic scale remains a major challenge and the origin of debate. The rapid developments of aberration-corrected transmission electron microscopy (AC-TEM) have pushed the resolution below 1 Å, both in TEM and in scanning transmission electron microscopy (STEM) mode. At present, not only morphology and structure, but also composition and electronic structure can be analyzed at an atomic scale, even in 3D. This review summarizes recent significant achievements using TEM/ STEM and associated spectroscopic techniques to study CeO2-based nanostructures and related catalytic phenomena. Recent results have shed light on the understanding of the different mechanisms. The potential and limitations, including future needs of various techniques, are discussed with recommendations to facilitate further developments of new and highly efficient CeO2-based nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455414600012 Publication Date 2018-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 22 Open Access OpenAccess  
  Notes Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska- Curie grant agreement no. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). S.B. acknowledges funding from the European Research Council, ERC grant no. 335078-Colouratom. ; ecas_sara Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156391 Serial 5151  
Permanent link to this record
 

 
Author Vanrompay, H.; Béché, A.; Verbeeck, J.; Bals, S. pdf  doi
openurl 
  Title Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles Type A1 Journal article
  Year 2019 Publication (up) Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 36 Issue 36 Pages 1900096  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract One of the emerging challenges in the field of 3D characterization of nanoparticles by electron tomography is to avoid degradation and deformation of the samples during the acquisition of a tilt series. In order to reduce the required electron dose, various undersampling approaches have been proposed. These methods include lowering the number of 2D projection images, reducing the probe current during the acquisition, and scanning a smaller number of pixels in the 2D images. A comparison is made between these approaches based on tilt series acquired for a gold nanoparticle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477679400014 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 12 Open Access Not_Open_Access  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO Grant No. 1S32617N). A.B. and J.V. acknowledge FWO project 6093417N “Compressed sensing enabling low dose imaging in STEM.” The authors thank G. González-Rubio, A. Sánchez-Iglesias, and L.M. Liz-Marzán for provision of the samples. Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159986 Serial 5175  
Permanent link to this record
 

 
Author Chen, Q.; Skorikov, A.; van der Hoeven, J.E.S.; van Blaaderen, A.; Albrecht, W.; Perez-Garza, H.H.; Bals, S. pdf  doi
openurl 
  Title Estimation of temperature homogeneity in MEMS-based heating nanochips via quantitative HAADF-STEM tomography Type A1 Journal article
  Year 2023 Publication (up) Particle and particle systems characterization Abbreviated Journal  
  Volume 41 Issue 2 Pages 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sample holders for transmission electron microscopy (TEM) based on micro-electro-mechanical systems (MEMS) have recently become popular for investigating the behavior of nanomaterials under in situ or environmental conditions. The accuracy and reproducibility of these in situ holders are essential to ensure the reliability of experimental results. In addition, the uniformity of an applied temperature trigger across the MEMS chip is a crucial parameter. In this work, it is measured the temperature homogeneity of MEMS-based heating sample supports by locally analyzing the dynamics of heat-induced alloying of Au@Ag nanoparticles located in different regions of the support through quantitative fast high-angle annular dark-field scanning TEM tomography. These results demonstrate the superior temperature homogeneity of a microheater design based on a heating element shaped as a circular spiral with a width decreasing outwards compared to a double spiral-shaped designed microheater. The proposed approach to measure the local temperature homogeneity based on the thermal properties of bimetallic nanoparticles will support the future development of MEMS-based heating supports with improved thermal properties and in situ studies where high precision in the temperature at a certain position is required. This schematic delineates an approach to quantifying potential localized temperature deviation within a nanochip. Employing two comparable nanoparticles as thermal probes in discrete nanochip regions, the alloying kinetics of these nanoparticles are monitorable using in situ quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography, thus enabling the precise estimation of local temperature deviations.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060394600001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access Not_Open_Access  
  Notes This project was funded from the European Commission and The Marie Sklodowska-Curie Innovative Training Network MUMMERING (Grant Agreement no. 765604) Approved Most recent IF: 2.7; 2023 IF: 4.474  
  Call Number UA @ admin @ c:irua:199219 Serial 8863  
Permanent link to this record
 

 
Author Fomin, V.M.; Misko, V.R.; Devreese, J.T.; Moshchalkov, V.V. openurl 
  Title Evolution of superconducting islands in a square mesoscopic loop Type A1 Journal article
  Year 1996 Publication (up) Phantoms newsletter Abbreviated Journal  
  Volume 12 Issue Pages 7  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:16187 Serial 1101  
Permanent link to this record
 

 
Author Schryvers, D.; Van Aert, S.; Delville, R.; Idrissi, H.; Turner, S.; Salje, E.K.H. pdf  doi
openurl 
  Title Dedicated TEM on domain boundaries from phase transformations and crystal growth Type A1 Journal article
  Year 2013 Publication (up) Phase transitions Abbreviated Journal Phase Transit  
  Volume 86 Issue 1 Pages 15-22  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Investigating domain boundaries and their effects on the behaviour of materials automatically implies the need for detailed knowledge on the structural aspects of the atomic configurations at these interfaces. Not only in view of nearest neighbour interactions but also at a larger scale, often surpassing the unit cell, the boundaries can contain structural elements that do not exist in the bulk. In the present contribution, a number of special boundaries resulting from phase transformations or crystal growth and those recently investigated by advanced transmission electron microscopy techniques in different systems will be reviewed. These include macrotwins between microtwinned martensite plates in NiAl, austenite-single variant martensite habit planes in low hysteresis NiTiPd, nanotwins in non-textured nanostructured Pd and ferroelastic domain boundaries in CaTiO3. In all discussed cases these boundaries play an essential role in the properties of the respective materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000312586700003 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited Open Access  
  Notes Fwo; Iap Approved Most recent IF: 1.06; 2013 IF: 1.044  
  Call Number UA @ lucian @ c:irua:101222 Serial 612  
Permanent link to this record
 

 
Author Bismayer, U.; Mathes, D.; Oroyo, M.; Bosbach, D.; Putnis, A.; Van Tendeloo, G.; Güttler, B. pdf  doi
openurl 
  Title Ferroelastic domains in lead phosphate-arsenate: an AFM, X-ray diffraction, TEM and raman study Type A1 Journal article
  Year 2000 Publication (up) Phase transitions Abbreviated Journal Phase Transit  
  Volume 71 Issue Pages 243-270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000088137000006 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.06; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:54723 Serial 1177  
Permanent link to this record
 

 
Author Abakumov, A.M.; Lebedev, O.I.; Nistor, L.; Van Tendeloo, G.; Amelinckx, S. pdf  doi
openurl 
  Title The ferroelectric phase transition in tridymite type BaAl2O4 studied by electron microscopy Type A1 Journal article
  Year 2000 Publication (up) Phase transitions Abbreviated Journal Phase Transit  
  Volume 71 Issue Pages 143-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000088795800005 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited 21 Open Access  
  Notes Approved Most recent IF: 1.06; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:54724 Serial 1181  
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Ding, X.; Salje, E.K.H. pdf  doi
openurl 
  Title Functional twin boundaries Type A1 Journal article
  Year 2013 Publication (up) Phase transitions Abbreviated Journal Phase Transit  
  Volume 86 Issue 11 Pages 1052-1059  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Functional interfaces are at the core of research in the emerging field of domain boundary engineering where polar, conducting, chiral, and other interfaces and twin boundaries have been discovered. Ferroelectricity was found in twin walls of paraelectric CaTiO3. We show that the effect of functional interfaces can be optimized if the number of twin boundaries is increased in densely twinned materials. Such materials can be produced by shear in the ferroelastic phase rather than by rapid quench from the paraelastic phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000327475900002 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.06; 2013 IF: 1.044  
  Call Number UA @ lucian @ c:irua:107344 Serial 1304  
Permanent link to this record
 

 
Author Meyer, H.W.; Bismayer, U.; Adiwidjaja, G.; Zhang, M.; Nistor, L.; Van Tendeloo, G. pdf  doi
openurl 
  Title Natural titanite and malayite: structural investigations and the 500K anomaly Type A1 Journal article
  Year 1998 Publication (up) Phase transitions Abbreviated Journal Phase Transit  
  Volume 67 Issue Pages 27-49  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000079806000003 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited 9 Open Access  
  Notes ) Approved Most recent IF: 1.06; 1998 IF: 0.551  
  Call Number UA @ lucian @ c:irua:25683 Serial 2287  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Amelinckx, S. pdf  doi
openurl 
  Title The origin of diffuse intensity in electron diffraction patterns Type A1 Journal article
  Year 1998 Publication (up) Phase transitions Abbreviated Journal Phase Transit  
  Volume 67 Issue Pages 101-135  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000079806000006 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited 17 Open Access  
  Notes Approved Most recent IF: 1.06; 1998 IF: 0.551  
  Call Number UA @ lucian @ c:irua:25682 Serial 2523  
Permanent link to this record
 

 
Author Nistor, L.; Van Tendeloo, G.; Amelinckx, S. openurl 
  Title The paraelectric-ferroelectric phase transition of Bi4Ti3O12 studied by electron microscopy Type A1 Journal article
  Year 1996 Publication (up) Phase transitions Abbreviated Journal Phase Transit  
  Volume 59 Issue Pages 135-153  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos A1996WL56200010 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.954 Times cited 6 Open Access  
  Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #  
  Call Number UA @ lucian @ c:irua:16870 Serial 2551  
Permanent link to this record
 

 
Author Lemmens, H.; Amelinckx, S.; Van Tendeloo, G.; Abakumov, A.M.; Rozova, M.G.; Antipov, E.V. pdf  doi
openurl 
  Title Transmission electron microscopy study of polymorphism in barium gallate BaGa2O4 Type A1 Journal article
  Year 2003 Publication (up) Phase transitions Abbreviated Journal Phase Transit  
  Volume 76 Issue 7 Pages 653-670  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000184129400004 Publication Date 2003-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.06; 2003 IF: 0.558  
  Call Number UA @ lucian @ c:irua:54857 Serial 3719  
Permanent link to this record
 

 
Author Ghica, C.; Nistor, L.C.; Bender, H.; Richard, O.; Van Tendeloo, G.; Ulyashin, A.; pdf  doi
openurl 
  Title Characterization of {111} planar defects induced in silicon by hydrogen plasma treatments Type A1 Journal article
  Year 2006 Publication (up) Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 86 Issue 32 Pages 5137-5151  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000239756300010 Publication Date 2006-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 12 Open Access  
  Notes Bil 01/73 Approved Most recent IF: 1.505; 2006 IF: 1.354  
  Call Number UA @ lucian @ c:irua:60895 Serial 315  
Permanent link to this record
 

 
Author Nistor, L.C.; Van Tendeloo, G.; Dincã, G. pdf  doi
openurl 
  Title Crystallographic aspects related to the high pressure-high temperature phase transformation of boron nitride Type A1 Journal article
  Year 2005 Publication (up) Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 85 Issue 11 Pages 1145-1158  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000227675400003 Publication Date 2007-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 13 Open Access  
  Notes Bil 01/73; Iap V-1 Approved Most recent IF: 1.505; 2005 IF: 1.470  
  Call Number UA @ lucian @ c:irua:54756 Serial 587  
Permanent link to this record
 

 
Author Rossi, E.H.M.; Van Tendeloo, G.; Rosenauer, A. doi  openurl
  Title Influence of strain, specimen orientation and background estimation on composition evaluation of InAs/GaAs by TEM Type A1 Journal article
  Year 2007 Publication (up) Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 87 Issue 29 Pages 4461-4473  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000249890700003 Publication Date 2007-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.505; 2007 IF: 1.486  
  Call Number UA @ lucian @ c:irua:66612 Serial 1638  
Permanent link to this record
 

 
Author Piscopiello, E.; Rosenauer, A.; Passaseo, A.; Montoya Rossi, E.H.; Van Tendeloo, G. pdf  doi
openurl 
  Title Segregation in InxGa1-xAs/GaAs Stranski-Krastanow layers grown by metal-organic chemical vapour deposition Type A1 Journal article
  Year 2005 Publication (up) Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 85 Issue 32 Pages 3857-3870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000233171500007 Publication Date 2005-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.505; 2005 IF: 1.470  
  Call Number UA @ lucian @ c:irua:59054 Serial 2961  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: