toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shi, P.; Yu, K.; Niinemets, Ü.; Gielis, J. url  doi
openurl 
  Title Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae) Type A1 Journal article
  Year 2021 Publication Forests Abbreviated Journal Forests  
  Volume 12 Issue 1 Pages 41  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Leaf shape is closely related to economics of leaf support and leaf functions, including light interception, water use, and CO2 uptake, so correct quantification of leaf shape is helpful for studies of leaf structure/function relationships. There are some extant indices for quantifying leaf shape, including the leaf width/length ratio (W/L), leaf shape fractal dimension (FD), leaf dissection index, leaf roundness index, standardized bilateral symmetrical index, etc. W/L ratio is the simplest to calculate, and recent studies have shown the importance of the W/L ratio in explaining the scaling exponent of leaf dry mass vs. leaf surface area and that of leaf surface area vs. leaf length. Nevertheless, whether the W/L ratio could reflect sufficient geometrical information of leaf shape has been not tested. The FD might be the most accurate measure for the complexity of leaf shape because it can characterize the extent of the self-similarity and other planar geometrical features of leaf shape. However, it is unknown how strongly different indices of leaf shape complexity correlate with each other, especially whether W/L ratio and FD are highly correlated. In this study, the leaves of nine Magnoliaceae species (>140 leaves for each species) were chosen for the study. We calculated the FD value for each leaf using the box-counting approach, and measured leaf fresh mass, surface area, perimeter, length, and width. We found that FD is significantly correlated to the W/L ratio and leaf length. However, the correlation between FD and the W/L ratio was far stronger than that between FD and leaf length for each of the nine species. There were no strong correlations between FD and other leaf characteristics, including leaf area, ratio of leaf perimeter to area, fresh mass, ratio of leaf fresh mass to area, and leaf roundness index. Given the strong correlation between FD and W/L, we suggest that the simpler index, W/L ratio, can provide sufficient information of leaf shape for similarly-shaped leaves. Future studies are needed to characterize the relationships among FD and W/L in leaves with strongly varying shape, e.g., in highly dissected leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000611074700001 Publication Date (up) 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.951 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.951  
  Call Number UA @ admin @ c:irua:174473 Serial 7572  
Permanent link to this record
 

 
Author Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. url  doi
openurl 
  Title Challenges in the use of hydrogen for maritime applications Type A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume Issue Pages  
  Keywords A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications; Sustainable energy, air and water technology (DuEL)  
  Abstract Maritime shipping is a key factor that enables the global economy, however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses, the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions, the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed, starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods, and in this work we discuss the storage of hydrogen at high pressure, in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621101100009 Publication Date (up) 2021-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes For the completion of this work we would like to thank, Compagnie Maritime Belge for initial funding 9 of the research into maritime hydrogen storage and the University of Antwerp for funding of the 10 Doctoral Project that allowed for the completion of this work. Approved Most recent IF: 29.518  
  Call Number DuEL @ duel @c:irua:174754 Serial 6668  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date (up) 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Alloul, A.; Spanoghe, J.; Machado, D.; Vlaeminck, S.E. url  doi
openurl 
  Title Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels Type A1 Journal article
  Year 2022 Publication Microbial biotechnology Abbreviated Journal  
  Volume 15 Issue 1 Pages 6-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing world population and living standards urgently necessitate the transition towards a sustainable food system. One solution is microbial protein, i.e. using microbial biomass as alternative protein source for human nutrition, particularly based on renewable electron and carbon sources that do not require arable land. Upcoming green electrification and carbon capture initiatives enable this, yielding new routes to H2, CO2 and CO2-derived compounds like methane, methanol, formic- and acetic acid. Aerobic hydrogenotrophs, methylotrophs, acetotrophs and microalgae are the usual suspects for nutritious and palatable biomass production on these compounds. Interestingly, these compounds are largely un(der)explored for purple non-sulfur bacteria, even though these microbes may be suitable for growing aerobically and phototrophically on these substrates. Currently, selecting the best strains, metabolisms and cultivation conditions for nutritious and palatable microbial food mainly starts from empirical growth experiments, and mostly does not stretch beyond bulk protein. We propose a more target-driven and efficient approach starting from the genome-embedded potential to tuning towards, for instance, essential amino- and fatty acids, vitamins, taste,... Genome-scale metabolic models combined with flux balance analysis will facilitate this, narrowing down experimental variations and enabling to get the most out of the 'best' combinations of strain and electron and carbon sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613868600001 Publication Date (up) 2021-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.7  
  Call Number UA @ admin @ c:irua:176174 Serial 7225  
Permanent link to this record
 

 
Author Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. pdf  url
doi  openurl
  Title Green walls for mitigating urban particulate matter pollution : a review Type A1 Journal article
  Year 2021 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban For Urban Gree  
  Volume 59 Issue Pages 127014  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution caused by particulate matter (PM) is a well-known health issue in urban environments. Urban green infrastructure offers opportunities as a nature-based solution to urban PM pollution. Green walls have advantages over other types of urban green infrastructure, since they can be applied to the enormous available wall area in cities and since they do not interfere with the prevailing ventilation resulting in elevated PM levels. However, this has raised questions about the effectiveness of GW in removing PM and this could explain the limited applicability of green walls to tackle PM pollution. Nevertheless, it is suggested that green walls have a significant unexploited potential and this review article aims to address current knowledge gaps and to propose future research requirements for the implementation of green walls to mitigate urban PM pollution. An in-depth analysis is given of the mechanisms behind PM deposition and the influence of vegetation properties on this process, as well as the practices followed to model PM dispersion and deposition. It was suggested that particle deposition on green walls depends on the green wall species, pollution level, and the residence time of PM in a street (canyon). Rainfall plays an important role in the PM pathway, although it is not a necessary requirement to sustain PM deposition on plant leaves. There are still some discrepancies in the literature about the ideal plant characteristics for PM deposition in terms of the macro- and microstructures that require further investigation, especially in comparison with tree and shrub species. In addition, extensively validated models are required to accurately calculate the impact of green walls on air flow and the PM concentration on site.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632597600001 Publication Date (up) 2021-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.113 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.113  
  Call Number UA @ admin @ c:irua:175581 Serial 8011  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Perreault, P.; Lenaerts, S. pdf  doi
openurl 
  Title A new generalized empirical correlation for predicting methane hydrate equilibrium conditions in pure water Type A1 Journal article
  Year 2021 Publication Industrial & Engineering Chemistry Research Abbreviated Journal Ind Eng Chem Res  
  Volume 60 Issue 8 Pages 3474-3483  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work contributes to a new generalized empirical correlation for predicting methane (CH4) hydrate equilibrium conditions in pure water. Unlike the conventional thermodynamic approach that involves complex reckoning, the proposed empirical equation is developed by regressing 215 experimental data points from the literature and validating with 45 data points for predicting methane hydrate equilibrium conditions in pure water. The new correlation is proposed for a temperature and pressure range of 273.2–303.48 K and 2.63–72.26 MPa, respectively. The accuracy and performance of the proposed correlation is quantitatively evaluated using statistical error analysis. The proposed correlation was able to estimate CH4 hydrate equilibrium conditions satisfactorily with an R2 of 0.99987. The overall error analysis for the proposed correlation shows fair agreement with the experimental data reported within the literature. Concurrently, the new correlation showed better performance in predicting equilibrium conditions compared to those calculated by other empirical correlations available in the literature within the investigated range. In addition, the proposed empirical equation is also checked to evaluate its efficacy in fitting each set of experimental binary/ternary methane hydrates (BTMH) and binary hydrogen hydrates (BHH) for an accurate representation of equilibrium data over a wide range of composition, pressure, and temperature conditions. A maximum percentage deviation of 0.58% and 0.24% was observed between experimental and calculated equilibrium conditions for BTMH and BHH, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626326200017 Publication Date (up) 2021-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:175862 Serial 7394  
Permanent link to this record
 

 
Author Caratelli, D.; Gielis, J.; Natalini, P.; Ricci, P.E.; Tavkhelidze, I. pdf  doi
openurl 
  Title The Robin problem for the Helmholtz equation in a starlike planar domain Type A1 Journal article
  Year 2011 Publication Georgian mathematical journal Abbreviated Journal  
  Volume 18 Issue 3 Pages 465-479  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interior and exterior Robin problems for the Helmholtz equation in starlike planar domains are addressed by using a suitable Fourier-like technique. Attention is in particular focused on normal-polar domains whose boundaries are defined by the so-called superformula introduced by J. Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica© is developed in order to validate the proposed approach. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained. The computed results are found to be in good agreement with the theoretical findings on Fourier series expansion presented by L. Carleson.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296166100004 Publication Date (up) 2021-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1072-947x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:91086 Serial 8658  
Permanent link to this record
 

 
Author Dingenen, F.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Tapping hydrogen fuel from the ocean : a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater Type A1 Journal article
  Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 142 Issue Pages 110866  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO− formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632316600003 Publication Date (up) 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:175701 Serial 8642  
Permanent link to this record
 

 
Author Parchomenko, A.; Nelen, D.; Gillabel, J.; Vrancken, K.C.M.; Rechberger, H. url  doi
openurl 
  Title Resource effectiveness of the European automotive sector : a statistical entropy analysis over time Type A1 Journal article
  Year 2021 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 169 Issue Pages 105558  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The European automotive sector is faced with potentially disruptive challenges. In particular, the projected increase in the share of electric vehicles (EVs) and calls to prepare for the implementation of more circular economy (CE) strategies are increasingly demanding systemic adaptations. Given the goals of the CE, the adaptations should enable a maximal preservation of the function and value of products (e.g. extension of lifetime), components (e.g. reuse of parts) and materials (e.g., material recycling), thus saving on the energy, materials and effort that would be required to restore the lost functionalities. In this context, statistical entropy analysis (SEA) is proposed as a methodology to assess the effort needed for preserving and restoring functionality at different product, component and material life cycle stages. Effort is measured as changes in statistical entropy that are caused by concentration and dilution activities in the production – consumption – End-of-Life (EoL) system. SEA was applied to a generic model of the European automotive system, in combination with a stock-driven model and a material flow analysis (MFA), allowing statistical entropy changes to be projected over time. The paper demonstrates how SEA can facilitate decision making on the transition towards a more circular economy by quantifying the effects of particular CE strategies and their combinations. The results show that without any additional system adaptations, an increasing share of EVs towards the year 2050 will lead to substantially increased effort in production as well as end-of-life vehicle treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657320800074 Publication Date (up) 2021-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.313 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.313  
  Call Number UA @ admin @ c:irua:179770 Serial 8475  
Permanent link to this record
 

 
Author Voordeckers, D.; Meysman, F.J.R.; Billen, P.; Tytgat, T.; Van Acker, M. url  doi
openurl 
  Title The impact of street canyon morphology and traffic volume on NO₂ values in the street canyons of Antwerp Type A1 Journal article
  Year 2021 Publication Building And Environment Abbreviated Journal Build Environ  
  Volume 197 Issue Pages 107825-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Air pollution remains a major environmental and health concern in urban environments, especially in street canyons that show increased pollution levels due to a lack of natural ventilation. Previous studies have investigated the relationship between street canyon morphology and in-canyon pollution levels. However, these studies are typically limited to the scale of a single street canyon and city-wide assessments on this matter are scarce. In 2018, NO2 concentrations were measured in 321 street canyons in the city of Antwerp (Belgium) as part of the large-scale citizen-science project “CurieuzeNeuzen”. In our research, this data was used to study the correlation between morphological indices (e.g. aspect ratio (AR), lateral aspect ratio (LAR), presence of trees) and the traffic volumes on a city-wide scale. The maximum hourly traffic volume (TVmax) and AR correlated significantly with the measured NO2 values, making them useful indicators for air quality in street canyons. For street canyons with AR > 0.65, a TVmax of 300 vehicles/hour was found as a threshold value to guarantee acceptable air quality. No significant correlations were found for the other parameters. Finally, a number of typical street canyon types were defined, which can be of fundamental interest for further research and spatial policy making.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663167900003 Publication Date (up) 2021-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.053 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.053  
  Call Number UA @ admin @ c:irua:176925 Serial 8064  
Permanent link to this record
 

 
Author Gielis, J. pdf  url
doi  openurl
  Title Phi-bonacci in Ancient Greece Type A1 Journal article
  Year 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 1 Pages 25-40  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Fibonacci numbers are a very popular subject in mathematics, culture and science. A major open question is why the ancient Greeks overlooked this series, while they were very familiar with the golden mean and division in extreme and mean ratio. Furthermore, they could compute the square root of five to a high degree of precision using Theon 's ladder. This fact is based on tables built with side and diagonal numbers, and it is a simple and incredibly efficient method to compute roots of integers, though it is little known even now among most of the experts. The biologist D 'Arcy Wentworth Thompson showed that the same method could be used to generate the Fibonacci series using a simple shift in the computation of the tables. He argues, quite convincingly, that the ancient Greeks could not have overlooked this. Actually, the same method can be used to generate all possible regular phyllotaxis patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000643822700002 Publication Date (up) 2021-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178322 Serial 8376  
Permanent link to this record
 

 
Author Navare, K.; Muys, B.; Vrancken, K.C.; Van Acker, K. doi  openurl
  Title Circular economy monitoring – How to make it apt for biological cycles? Type A1 Journal article
  Year 2021 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 170 Issue Pages 105563  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Circular economy (CE) principles distinguish between technical and biological cycles. Technical cycles involve the management of stocks of non-renewable abiotic resources that cannot be appropriately returned to the biosphere, whereas, biological cycles involve the flows of renewable biotic resources that can safely cycle in and out of the biosphere. Despite this distinction, existing CE monitors are typically developed for technical cycles, and focus mainly on the extent to which resources are looped back in the technosphere. These monitors seem less apt to assess the circularity of biological cycles. This study aims to identify this gap by critically reviewing the CE monitoring criteria and CE assessment tools, and evaluate if they include the four key characteristics of biological cycles. Firstly, biotic resources, although renewable, require to be harvested sustainably. Secondly, while abiotic resources can be restored and recycled to their original quality, biotic resources degrade in quality with every subsequent use and are, hence, cascaded in use. Thirdly, biotic resources should safely return as nutrients to the biosphere to support the regeneration of ecosystems. Fourthly, biological cycles have environmental impacts due to resource extraction, resulting from land-use and resource-depletion and biogenic carbon flows. The CE monitoring criteria lack in thoroughly assessing these characteristics. With the growing demand for biotic resources, the gap in the assessment could exacerbate the overexploitation of natural resources and cause the degradation of ecosystems. The study discusses measures to bridge this gap and suggests ways to design a CE assessment framework that is also apt for biological cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000667309200009 Publication Date (up) 2021-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.313 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.313  
  Call Number UA @ admin @ c:irua:191685 Serial 7666  
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 292 Issue Pages 120204  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663216500001 Publication Date (up) 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177075 Serial 7989  
Permanent link to this record
 

 
Author Nunez Manzano, M.; Gonzalez Quiroga, A.; Perreault, P.; Madanikashani, S.; Vandewalle, L.A.; Marin, G.B.; Heynderickx, G.J.; Van Geem, K.M. pdf  url
doi  openurl
  Title Biomass fast pyrolysis in an innovative gas-solid vortex reactor : experimental proof of concept Type A1 Journal article
  Year 2021 Publication Journal Of Analytical And Applied Pyrolysis Abbreviated Journal J Anal Appl Pyrol  
  Volume 156 Issue Pages 105165-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Biomass fast pyrolysis has been considered one of the best alternatives for the thermal conversion of biomass into bio-oil. This work introduces a new reactor technology for biomass fast pyrolysis, the Gas-Solid Vortex Reactor (GSVR), to obtain high bio-oil yields. The GSVR was designed to decrease the residence time of the pyrolysis vapors; thus, the secondary cracking reactions are reduced, to enhance the segregation of the char and the unreacted biomass and to improve the heat transfer rate. Biomass fast pyrolysis experiments have been carried out for the first time in a Gas-Solid Vortex Reactor (GSVR) at 773 K, using softwood (pine) and hardwood (poplar) as feedstock. Char yields as low as 10 wt. % in the GSVR were comparable to those reported for the same feedstocks processed in conventional fluidized bed reactors. The yields of non-condensable gases in the range of 15–17 wt. % were significantly lower than those reported for other commonly used biomass fast pyrolysis reactors. Two-dimensional gas chromatography (GC × GC) revealed noticeable differences at the molecular level between the bio-oils from the GSVR and bio-oils from other reactors. The aromatics in the pine bio-oil consist almost entirely (85 wt. %) of guaiacols. For poplar bio-oils no predominant group of aromatics was found, but phenolics, syringols, and catechols were the most pronounced. The experimental results highlight the advantages of the GSVR for biomass pyrolysis, reaching stable operation in around 60 s, removing the formed char selectively during operation, and enabling fast entrainment of pyrolysis vapors. Results indicate a great potential for increasing yield and selectivity towards guaiacols in softwood (e.g., pine) bio-oil. Likewise, decreasing pyrolysis temperature could increase the yield of guaiacols and syringols in hardwood (e.g., poplar) bio-oil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663091200002 Publication Date (up) 2021-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-2370 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.471 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.471  
  Call Number UA @ admin @ c:irua:178743 Serial 7562  
Permanent link to this record
 

 
Author Wagaarachchige, J.; Idris, Z.; Kummamuru, N.B.; Sætre, K.A.; Halstensen, M.; Jens, K.-J. url  doi
openurl 
  Title A new sulfolane based solvent for CO₂ capture Type P1 Proceeding
  Year 2021 Publication SSRN electronic journal Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study presents novel sulfolane based non-aqueous CO2 capture solvents, as an alternative solution for capturing CO2 from industrial processes. In order to select the most promising amine system, five different amines were tested by monitoring CO2 absorption and desorption processes using the time-base Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. During absorption experiments, we observed the formation of Monomethyl Carbonate (MMC) in diisopropylamine (DIPA) and 2-amino-2-methyl-1-propanol (AMP) systems, while carbamate was observed as the main product for the other three amine systems tested. In regeneration experiments, the MMC could be desorbed relatively easily from the amine solution at a mild temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2021-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180364 Serial 8305  
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S. pdf  url
doi  openurl
  Title Selectivity in ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications Type A1 Journal article
  Year 2021 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages chem.202100029-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Functionalization of photocatalytic metal oxide nanoparticles of TiO 2 , ZnO, WO 3 and CuO with amine‐terminated (oleylamine) and thiol‐terminated (1‐dodecanethiol) alkyl chained ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO 2 and WO 3 , while 1‐dodecanethiol binds stably only to ZnO and CuO. Similarly, polar to non‐polar solvent phase transfer of TiO 2 and WO 3 nanoparticles could be achieved by using oleylamine, but not by 1‐dodecanethiol, while the contrary holds for ZnO and CuO. The surface chemistry of ligand functionalized nanoparticles was probed by ATR‐FTIR spectroscopy, that enabled to elucidate the occupation of the ligands at the active sites. The photo‐stability of the ligands on the nanoparticle surface was determined by the photocatalytic self‐cleaning properties of the material. While TiO 2 and WO 3 degrade the ligands within 24 hours under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, since the ligand functionalized nanoparticles are hydrophobic in nature, they can thus be self‐assembled at the air‐water interface, for obtaining nanoparticle films with demonstrated photocatalytic as well as anti‐fogging properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652651400001 Publication Date (up) 2021-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 15 Open Access OpenAccess  
  Notes R.B. and S.W.V. acknowledge financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Program by means of the grant agreement no. 731019 EUSMI and the ERC Consolidator grant no. 815128 REALNANO.; sygmaSB Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:177495 Serial 6787  
Permanent link to this record
 

 
Author Winterstetter, A.; Grodent, M.; Kini, V.; Ragaert, K.; Vrancken, K.C.M. url  doi
openurl 
  Title A review of technological solutions to prevent or reduce marine plastic litter in developing countries Type A1 Journal article
  Year 2021 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 13 Issue 9 Pages 4894  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Growing global plastic production combined with poor waste collection has led to increasing amounts of plastic debris being found in oceans, rivers and on shores. The goal of this study is to provide an overview on currently available technological solutions to tackle marine plastic litter and to assess their potential use in developing countries. To compile an inventory of technological solutions, a dedicated online platform was developed. A total of 51 out of initially 75 submitted solutions along the plastics value chain were assessed by independent experts. Collection systems represent more than half of the shortlisted solutions. A quarter include processing and treatment technologies, either as a stand-alone solution (30%) or, more commonly, in combination with a first litter capturing step. Ten percent offer digital solutions. The rest focuses on integrated waste management solutions. For each stage in the source-to-sea spectrum-land, rivers, sea-two illustrative examples are described in detail. This study concludes that the most cost-effective type of solution tackles land-based sources of marine litter and combines technology with people-oriented practices, runs on own energy sources, connects throughout the plastics value chain with a convincing valorization plan for captured debris, and involves all relevant stakeholders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650920900001 Publication Date (up) 2021-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.789 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.789  
  Call Number UA @ admin @ c:irua:178368 Serial 7396  
Permanent link to this record
 

 
Author Gielis, J. pdf  doi
openurl 
  Title Double helix of phyllotaxis : analysis of the geometric model of plant morphogenesis, by Boris Rozin Type Review
  Year 2021 Publication Quarterly Review Of Biology Abbreviated Journal Q Rev Biol  
  Volume 96 Issue 2 Pages 139-140  
  Keywords Review; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2021-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-5770; 1539-7718 ISBN Additional Links UA library record  
  Impact Factor 4.25 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.25  
  Call Number UA @ admin @ c:irua:178829 Serial 7824  
Permanent link to this record
 

 
Author Cerruti, M.; Stevens, B.; Ebrahimi, S.; Alloul, A.; Vlaeminck, S.E.; Weissbrodt, D.G. url  doi
openurl 
  Title Enrichment and aggregation of purple non-sulfur bacteria in a mixed-culture sequencing-batch photobioreactor for biological nutrient removal from wastewater Type A1 Journal article
  Year 2020 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 8 Issue Pages 557234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mixed-culture biotechnologies are widely used to capture nutrients from wastewater. Purple non-sulfur bacteria (PNSB), a guild of anoxygenic photomixotrophic organisms, rise interest for their ability to directly assimilate nutrients in the biomass. One challenge targets the aggregation and accumulation of PNSB biomass to separate it from the treated water. Our aim was to enrich and produce a concentrated, fast-settling PNSB biomass with high nutrient removal capacity in a 1.5-L, stirred-tank, anaerobic sequencing-batch photobioreactor (SBR). PNSB were rapidly enriched after inoculation with activated sludge at 0.1 gVSS L–1 in a first batch of 24 h under continuous irradiance of infrared (IR) light (>700 nm) at 375 W m–2, with Rhodobacter reaching 54% of amplicon sequencing read counts. SBR operations with decreasing hydraulic retention times (48 to 16 h, i.e., 1–3 cycles d–1) and increasing volumetric organic loading rates (0.2–1.3 kg COD d–1 m–3) stimulated biomass aggregation, settling, and accumulation in the system, reaching as high as 3.8 g VSS L–1. The sludge retention time (SRT) increased freely from 2.5 to 11 days. Acetate, ammonium, and orthophosphate were removed up to 96% at a rate of 1.1 kg COD d–1 m–3, 77% at 113 g N d–1 m–3, and 73% at 15 g P d–1 m–3, respectively, with COD:N:P assimilation ratio of 100:6.7:0.9 m/m/m. SBR regime shifts sequentially selected for Rhodobacter (90%) under shorter SRT and non-limiting concentration of acetate during reaction phases, for Rhodopseudomonas (70%) under longer SRT and acetate limitation during reaction, and Blastochloris (10%) under higher biomass concentrations, underlying competition for substrate and photons in the PNSB guild. With SBR operations we produced a fast-settling biomass, highly (>90%) enriched in PNSB. A high nutrient removal was achieved by biomass assimilation, reaching the European nutrient discharge limits. We opened further insights on the microbial ecology of PNSB-based processes for water resource recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603626100001 Publication Date (up) 2021-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:174085 Serial 7921  
Permanent link to this record
 

 
Author Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 337 Issue Pages 125364  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694862500007 Publication Date (up) 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:178752 Serial 8243  
Permanent link to this record
 

 
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8287-8298  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900052 Publication Date (up) 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179779 Serial 7862  
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8278-8286  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900051 Publication Date (up) 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179768 Serial 8334  
Permanent link to this record
 

 
Author Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K. pdf  url
doi  openurl
  Title Surface plasmon resonance-induced visible light photocatalytic TiO₂ modified with AuNPs for the quantification of hydroquinone Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 389 Issue Pages 138734  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The impregnation of size-controlled gold nanoparticles (AuNPs) on an anatase TiO2 structure (AuNPs@TiO2) was studied for the photoelectrochemical detection of hydroquinone (HQ) under visible light illumination integrated into a flow injection analysis (FIA) setup. The crystalline form of TiO2 was preserved during synthesis and the homogeneous distribution of AuNPs over the TiO2 structure was confirmed. Its photoelectrocatalytic activity was improved due to the presence of AuNPs, preventing charge recombination in TiO2 and improving its light absorption ability by the surface plasmon resonance effect (SPR). The FIA system was used in order to significantly reduce the electrode fouling during electroanalysis through periodic washing steps of the electrode surface. During the amperometric detection process, reactive oxygen species (ROS), generated by visible light illumination of AuNPs@TiO2, participate in the oxidation process of HQ. The reduction of the oxidized form of HQ, i.e. benzoquinone (BQ) occurs by applying a negative potential and the measurable amperometric response will be proportional to the initial HQ concentration. The influencing parameters on the response of the amperometric photocurrent such as applied potential, flow rate and pH were investigated. The linear correlation between the amperometric response and the concentration of HQ was recorded (range 0.0125 – 1.0 µM) with a limit of detection (LOD) of 33.8 nM and sensitivity of 0.22 A M−1 cm−2. In this study, we illustrated for the first time that the impregnation of AuNPs in TiO2 allows the sensitive detection of phenolic substances under green laser illumination by using a photoelectrochemical flow system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687283100018 Publication Date (up) 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:178908 Serial 8626  
Permanent link to this record
 

 
Author Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M. url  doi
openurl 
  Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 41 Issue Pages 69-107  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000685118300009 Publication Date (up) 2021-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178744 Serial 8045  
Permanent link to this record
 

 
Author Firmansyah, I.; Carsjens, G.J.; de Ruijter, F.J.; Zeeman, G.; Spiller, M. url  doi
openurl 
  Title An integrated assessment of environmental, economic, social and technological parameters of source separated and conventional sanitation concepts : a contribution to sustainability analysis Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 295 Issue Pages 113131  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery and reuse from domestic wastewater has become an important subject for the current development of sanitation technologies and infrastructures. Different technologies are available and combined into sanitation concepts, with different performances. This study provides a methodological approach to evaluate the sustainability of these sanitation concepts with focus on resource recovery and reuse. St. Eustatius, a small tropical island in the Caribbean, was used as a case study for the evaluation. Three source separation-communityon-site and two combined sewerage island-scale concepts were selected and compared in terms of environmental (net energy use, nutrient recovery/reuse, BOD/COD, pathogens, and GHG emission, land use), economic (CAPEX and OPEX), social cultural (acceptance, required competences and education), and technological (flexibility/ adaptability, reliability/continuity of service) indicators. The best performing concept, is the application of Upflow Anaerobic Sludge Bed (UASB) and Trickling Filter (TF) at island level for combined domestic wastewater treatment with subsequent reuse in agriculture. Its overall average normalised score across the four categories (i. e., average of average per category) is about 15% (0.85) higher than the values of the remaining systems and with a score of 0.73 (conventional activated sludge – centralised level), 0.77 (UASB-septic tank (ST)), 0.76 (UASB-TF – community level), and 0.75 (ST – household level). The higher score of the UASB-TF at community level is mainly due to much better performance in the environmental and economic categories. In conclusion, the case study provides a methodological approach that can support urban planning and decision-making in selecting more sustainable sanitation concepts, allowing resource recovery and reuse in small island context or in other contexts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000681105800003 Publication Date (up) 2021-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180488 Serial 7437  
Permanent link to this record
 

 
Author Chapman, D.; Gielis, J. doi  openurl
  Title Gielis transformations for the audiovisual geometry database Type A1 Journal article
  Year 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 2 Pages 177-180  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This publication introduces the audiovisual geometry database with Gielis transformations as initial records for a prototype of the database. A concise overview is given of the rationale behind the database and studying wave phenomena with Gielis transformations. First results on a form of timbral polyphony observed in Gielis curves and future work are briefly discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180965 Serial 8004  
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S. doi  openurl
  Title The apeirogon and dual numbers Type A1 Journal article
  Year 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 2 Pages 157-160  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The richness, diversity, connection, depth and pleasure of studying symmetry continue to open doors. Here we report a connection between Coxeter's Apeirogon and the geometry associated with pictorial space, parabolic rotation and dual numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670122100011 Publication Date (up) 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179759 Serial 8652  
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G. url  doi
openurl 
  Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
  Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 17 Pages 6501-6514  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000683056500001 Publication Date (up) 2021-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:180511 Serial 7558  
Permanent link to this record
 

 
Author Van Winckel, T.; Cools, J.; Vlaeminck, S.E.; Joos, P.; Van Meenen, E.; Borregán-Ochando, E.; Van Den Steen, K.; Geerts, R.; Vandermoere, F.; Blust, R. pdf  url
doi  openurl
  Title Towards harmonization of water quality management : a comparison of chemical drinking water and surface water quality standards around the globe Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 298 Issue Pages 113447-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract Water quality standards (WQS) set the legal definition for safe and desirable water. WQS impose regulatory concentration limits to act as a jurisdiction-specific legislative risk-management tool. Despite its importance in shaping a universal definition of safe, clean water, little information exists with respect to (dis)similarity of chemical WQS worldwide. Therefore, this paper compares chemical WQS for drinking and surface water matrices in eight jurisdictions representing a global geographic distribution: Australia, Brazil, Canada, China, the European Union, the region of Flanders in Belgium, the United States of America, and South Africa. The World Health Organization's list is used as a reference for drinking water standards. Sørensen–Dice indices (SDI) showed little qualitative similarity in the compounds that are regulated in drinking water (median SDI = 40%) and surface water (median SDI = 33%), indicating that the heterogeneity within a matrix is substantial at the level of the standard. Quantitative similarity for matching standards was higher than the qualitative per Kendall correlation (median = 0.73 and 0.58 for drinking water and surface water respectively), yet variance observed within standards remained inexplicably high for organic compounds. Variations in WQS were more pronounced for organic compounds. Most differences cannot be easily explained from a toxicological or risk-based point-of-view. Historical development, ease of measurement, and (toxicological) knowledge gaps on the risk of a vast number of organic compounds are theorized to be the drivers. Therefore, this study argues for a more tailored, risk-based approach in which standards incorporated into water safety plans are dynamically set for compounds that are persistent and could pose a risk for human health and/or aquatic ecosystems. Global variations in WQS should therefore not necessarily be avoided but rather globally harmonized with enough flexibility to ensure a global, up-to-date definition of safe and desirable water everywhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000700577400005 Publication Date (up) 2021-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180765 Serial 8681  
Permanent link to this record
 

 
Author Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. url  doi
openurl 
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 9 Issue Pages 733753  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697897900001 Publication Date (up) 2021-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180591 Serial 7985  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: