toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Electric field tuning of the band gap in four layers of graphene with different stacking order Type P1 Proceeding
  Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal  
  Volume Issue Pages 84140-84148  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We investigated the effect of different stacking order of the four graphene layer system on the induced band gap when positively charged top and negatively charged back gates are applied to the system. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We show that the electric field does not open an energy gap if the multilayer graphene system contains a trilayer part with the ABA Bernal stacking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303856600012 Publication Date 2012-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 8414 Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the BelgianScience Policy (IAP). One of us (A.A.A.) was supported by a fellowship from the Belgian Federal Science Policy Office (BELSPO). ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113046 Serial 886  
Permanent link to this record
 

 
Author Zarenia, M.; Leenaerts, O.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Substrate-induced chiral states in graphene Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 8 Pages 085451  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Unidirectional chiral states are predicted in single layer graphene which originate from the breaking of the sublattice symmetry due to an asymmetric mass potential. The latter can be created experimentally using boron-nitride (BN) substrates with a line defect (B-B or N-N) that changes the induced mass potential in graphene. Solving the Dirac-Weyl equation, the obtained energy spectrum is compared with the one calculated using ab initio density functional calculations. We found that these one-dimensional chiral states are very robust and they can even exist in the presence of a small gap between the mass regions. In the latter case additional bound states are found that are topologically different from those chiral states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308005600015 Publication Date 2012-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the European Science Foundation (ESF) under the EUROCORES Program: EuroGRAPHENE (project CONGRAN). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101100 Serial 3347  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Čukarić, N.; Partoens, B.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Hole subbands in freestanding nanowires : six-band versus eight-band k.p modelling Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 13 Pages 135302-135302,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs, InAs and InSb nanowires is studied using the six-band and the eight-band k.p models. The effect of the different Luttinger-like parameters (in the eight-band model) on the hole band structure is investigated. Although GaAs nanostructures are often treated within a six-band model because of the large bandgap, it is shown that an eight-band model is necessary for a correct description of its hole spectrum. The camel-back structure usually found in the six-band model is not always present in the eight-band model. This camel-back structure depends on the interaction between light and heavy holes, especially the ones with opposite spin. The latter effect is less pronounced in an eight-band model, but could be very sensitive to the Kane inter-band energy (E-P) value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000302120100007 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 13 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl), Belgian Science Policy (IAP) and the Ministry of Education and Science of Serbia. ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:97763 Serial 1479  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic and dynamical properties of Si/Ge core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages 113411-113411,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Full ab initio techniques are applied to study the electronic and dynamical properties of free standing, hydrogen-passivated Si/Ge core-shell nanowires oriented along the [110] direction. All studied wires exhibit a direct band gap and are found to be structurally stable. The different contributions of the core and shell atoms to the phonon spectra are identified. The acoustic phonon velocities and the frequencies of some typical optical modes are compared with those of pure Si and Ge nanowires. These depend either on the concentration or on the type of core material. Optical modes are hardened and longitudinal acoustic velocities are softened with decreasing wire diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282270000001 Publication Date 2010-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and NOI-BOF (University of Antwerp). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85421 Serial 995  
Permanent link to this record
 

 
Author Zarenia, M.; Partoens, B.; Chakraborty, T.; Peeters, F.M. url  doi
openurl 
  Title Electron-electron interactions in bilayer graphene quantum dots Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 24 Pages 245432-245435  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A parabolic quantum dot (QD) as realized by biasing nanostructured gates on bilayer graphene is investigated in the presence of electron-electron interaction. The energy spectrum and the phase diagram reveal unexpected transitions as a function of a magnetic field. For example, in contrast to semiconductor QDs, we find a valley transition rather than only the usual singlet-triplet transition in the ground state of the interacting system. The origin of these features can be traced to the valley degree of freedom in bilayer graphene. These transitions have important consequences for cyclotron resonance experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328688600010 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), and the Methusalem foundation of the Flemish Government. T. C. is supported by the Canada Research Chairs program of the Government of Canada. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:113698 Serial 926  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Tunable double Dirac cone spectrum in bilayer \alpha-graphyne Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue 1 Pages 013105-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Monolayer alpha-graphyne was recently proposed as a new all-carbon material having an electronic spectrum consisting of Dirac cones. Based on a first-principles investigation of bilayer alpha-graphyne, we show that the electronic band structure is qualitatively different from its monolayer form and depends crucially on the stacking mode of the two layers. Two stable stacking modes are found: a configuration with a gapless parabolic band structure, similar to AB stacked bilayer graphene, and another one which exhibits a doubled Dirac-cone spectrum. The latter can be tuned by an electric field with a gap opening rate of 0.3 eA. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000321497200032 Publication Date 2013-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 58 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the ESF EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109821 Serial 3740  
Permanent link to this record
 

 
Author Peelaers, H.; Durgun, E.; Partoens, B.; Bilc, D.I.; Ghosez, P.; Van de Walle, C.G.; Peeters, F.M. pdf  doi
openurl 
  Title Ab initio study of hydrogenic effective mass impurities in Si nanowires Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 29 Issue 29 Pages 095303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of B and P dopants on the band structure of Si nanowires is studied using electronic structure calculations based on density functional theory. At low concentrations a dispersionless band is formed, clearly distinguishable from the valence and conduction bands. Although this band is evidently induced by the dopant impurity, it turns out to have purely Si character. These results can be rigorously analyzed in the framework of effective mass theory. In the process we resolve some common misconceptions about the physics of hydrogenic shallow impurities, which can be more clearly elucidated in the case of nanowires than would be possible for bulk Si. We also show the importance of correctly describing the effect of dielectric confinement, which is not included in traditional electronic structure calculations, by comparing the obtained results with those of G(0)W(0) calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000395103900002 Publication Date 2017-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 1 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl), the NSF MRSEC Program under award No. DMR11-21053, and the Army Research Office (W911NF-13-1-0380). DIB acknowledges financial support from the grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project No. PN-II-RU-TE-2011-3-0085. Ph G acknowledges a research professorship of the Francqui foundation and financial support of the ARC project AIMED and FNRS project HiT4FiT. This research used resources of the Ceci HPC Center funded by F R S-FNRS (Grant No. 2.5020.1) and of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:142447 Serial 4584  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure of InAs/GaSb core-shell nanowires Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 16 Pages 165439-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and optical properties of InAs/GaSb core-shell nanowires are investigated within the effective mass k . p approach. These systems have a broken band gap, which results in spatially separated confinement of electrons and holes. We investigated these structures for different sizes of the InAs and GaSb core and shell radius. We found that for certain configurations, the conduction band states penetrate into the valence band states resulting in a negative band gap (E-g < 0), which leads to a conduction band ground state that lies below the valence band ground state at the Gamma point. For certain core-shell wires, only one conduction band state penetrates into the valence band and in this case, a minigap Delta opens up away from the Gamma point and as a consequence the electronic properties of the nanowire now depend on both E-g and Delta values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310131400005 Publication Date 2012-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:102164 Serial 1014  
Permanent link to this record
 

 
Author Saniz, R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors : a Green function approach Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 6 Pages 064510-64513  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Green function approach to the Bardeen-Cooper-Schrieffer theory of superconductivity is used to study nanofilms. We go beyond previous models and include effects of confinement on the strength of the electron-phonon coupling as well as on the electronic spectrum and on the phonon modes. Within our approach, we find that in ultrathin films, confinement effects on the electronic screening become very important. Indeed, contrary to what has been advanced in recent years, the sudden increases of the density of states when new bands start to be occupied as the film thickness increases, tend to suppress the critical temperature rather than to enhance it. On the other hand, the increase of the number of phonon modes with increasing number of monolayers in the film leads to an increase in the critical temperature. As a consequence, the superconducting critical parameters in such nanofilms are determined by these two competing effects. Furthermore, in sufficiently thin films, the condensate consists of well-defined subcondensates associated with the occupied bands, each with a distinct coherence length. The subcondensates can interfere constructively or destructively giving rise to an interference pattern in the Cooper pair probability density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315374100009 Publication Date 2013-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vl). R.S. thanks M. R. Norman, B. Soree, and L. Komendova for useful comments. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107072 Serial 487  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; van den Broeck, C. url  doi
openurl 
  Title Diffusion of interacting particles in discrete geometries Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 11 Pages 110601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We evaluate the self-diffusion and transport diffusion of interacting particles in a discrete geometry consisting of a linear chain of cavities, with interactions within a cavity described by a free-energy function. Exact analytical expressions are obtained in the absence of correlations, showing that the self-diffusion can exceed the transport diffusion if the free-energy function is concave. The effect of correlations is elucidated by comparison with numerical results. Quantitative agreement is obtained with recent experimental data for diffusion in a nanoporous zeolitic imidazolate framework material, ZIF-8.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000324233800001 Publication Date 2013-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 22 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:111176 Serial 699  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C. url  doi
openurl 
  Title Adsorption and desorption in confined geometries : a discrete hopping model Type A1 Journal article
  Year 2014 Publication The European physical journal. Special topics Abbreviated Journal Eur Phys J-Spec Top  
  Volume 223 Issue 14 Pages 3243-3256  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the adsorption and desorption kinetics of interacting particles moving on a one-dimensional lattice. Confinement is introduced by limiting the number of particles on a lattice site. Adsorption and desorption are found to proceed at different rates, and are strongly influenced by the concentration-dependent transport diffusion. Analytical solutions for the transport and self-diffusion are given for systems of length 1 and 2 and for a zero-range process. In the last situation the self- and transport diffusion can be calculated analytically for any length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346416400015 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355;1951-6401; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.862 Times cited 4 Open Access  
  Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 1.862; 2014 IF: 1.399  
  Call Number UA @ lucian @ c:irua:122779 Serial 61  
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Partoens, B. url  doi
openurl 
  Title Band alignment of lateral two-dimensional heterostructures with a transverse dipole Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 110 Issue 110 Pages 181602  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It was recently shown that the electronic band alignment in lateral two-dimensional heterostructures is strongly dependent on the system geometry, such as heterostructure width and layer thickness. This is so even in the absence of polar edge terminations because of the appearance of an interface dipole between the two different materials. In this study, this work is expanded to include two-dimensional materials that possess an electronic dipole over their surface, i.e., in the direction transverse to the crystal plane. To this end, a heterostucture consisting of polar hydrofluorinated graphene and non-polar graphane layers is studied with first-principles calculations. As for nonpolar heterostructures, a significant geometry dependence is observed with two different limits for the band offset. For infinitely wide heterostructures, the potential step in the vacuum is equally divided over the two sides of the heterostructure, resulting in a finite potential step in the heterostructure. For infinitely thick heterostructure slabs, on the other hand, the band offset is reduced, similar to the three-dimensional case.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000400931900014 Publication Date 2017-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes (up) ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-VI). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:143755 Serial 4586  
Permanent link to this record
 

 
Author Esfahani; Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Structural transitions in monolayer MOS2 by lithium adsorption Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 10602-10609  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Based on first-principles calculations, we study the structural stability of the H and T phases of monolayer MoS2 upon Li doping. Our calculations demonstrate that it is possible to stabilize a distorted T phase of MoS2 over the H phase through adsorption of Li atoms on the MoS2 surface. Through molecular dynamics and phonon calculations, we show that the T phase of MoS2 is dynamically unstable and undergoes considerable distortions. The type of distortion depends on the concentration of adsorbed Li atoms and changes from zigzag-like to diamond-like when increasing the Li doping. There exists a substantial energy barrier to transform the stable H phase to the distorted T phases, which is considerably reduced by increasing the concentration of Li atoms. We show that it is necessary that the Li atoms adsorb on both sides of the MoS2 monolayer to reduce the barrier sufficiently. Two processes are examined that allow for such two-sided adsorption, namely, penetration through the MoS2 layer and diffusion over the MoS2 surface. We show that while there is only a small barrier of 0.24 eV for surface diffusion, the amount of energy needed to pass through a pure MoS2 layer is of the order of similar or equal to 2 eV. However, when the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain to penetrate the layer is drastically reduced and penetration becomes feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354912200051 Publication Date 2015-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 96 Open Access  
  Notes (up) ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem program of the Flemish government. H. S is supported by an FWO Pegasus-Long Marie Curie fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government department EWI. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126409 Serial 3270  
Permanent link to this record
 

 
Author Leenaerts, O.; Schoeters, B.; Partoens, B. url  doi
openurl 
  Title Stable kagome lattices from group IV elements Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 115202  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A thorough investigation of three-dimensional kagome lattices of group IV elements is performed with first-principles calculations. The investigated kagome lattices of silicon and germanium are found to be of similar stability as the recently proposed carbon kagome lattice. Carbon and silicon kagome lattices are both direct-gap semiconductors but they have qualitatively different electronic band structures. While direct optical transitions between the valence and conduction bands are allowed in the carbon case, no such transitions can be observed for silicon. The kagome lattice of germanium exhibits semimetallic behavior but can be transformed into a semiconductor after compression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351900700003 Publication Date 2015-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes (up) ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government – department EWI. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125516 Serial 3144  
Permanent link to this record
 

 
Author De Sloovere, D.; Safari, M.; Elen, K.; D'Haen, J.; Drozhzhin, O.A.; Abakumov, A.M.; Simenas, M.; Banys, J.; Bekaert, J.; Partoens, B.; Van Bael, M.K.; Hardy, A. pdf  doi
openurl 
  Title Reduced Na2+xTi4O9 composite : a durable anode for sodium-ion batteries Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 23 Pages 8521-8527  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Sodium-ion batteries (SIBs) are potential cost-effective solutions for stationary energy storage applications. Unavailability of suitable anode materials, however, is one of the important barriers to the maturity of SIBs. Here, we report a Na2+xTi4O9/C composite as a promising anode candidate for SIBs with high capacity and cycling stability. This anode is characterized by a capacity of 124 mAh g(-1) (plus 11 mAh g(-1) contributed by carbon black), an average discharge potential of 0.9 V vs Na/Na+, a good rate capability and a high stability (89% capacity retention after 250 cycles at a rate of 1 degrees C). The mechanisms of sodium insertion/deinsertion and of the formation of Na2+xTi4O9/C are investigated with the aid of various ex/in situ characterization techniques. The in situ formed carbon is necessary for the formation of the reduced sodium titanate. This synthesis method may enable the convenient synthesis of other composites of crystalline phases with amorphous carbon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453489300014 Publication Date 2018-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access  
  Notes (up) ; This work was supported by the FWO (Research Foundation Flanders, project G040116). O.A.D. and A.M.A. are grateful to the Russian Science Foundation for financial support (Grant 17-73-30006). The authors acknowledge Pieter Samyn for Raman spectroscopy, Fulya Ulu Okudur for preliminary TEM, Bart Ruttens for XRD, Hilde Pellaers for SEM, Tom Haeldermans for elemental analysis, and Karen Leyssen and Vera Meynen for physisorption measurements. ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:156235 Serial 5227  
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Spin-orbit-mediated manipulation of heavy-hole spin qubits in gated semiconductor nanodevices Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 10 Pages 107201  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A novel spintronic nanodevice is proposed that is able to manipulate the single heavy-hole spin state in a coherent manner. It can act as a single quantum logic gate. The heavy-hole spin transformations are realized by transporting the hole around closed loops defined by metal gates deposited on top of the nanodevice. The device exploits Dresselhaus spin-orbit interaction, which translates the spatial motion of the hole into a rotation of the spin. The proposed quantum gate operates on subnanosecond time scales and requires only the application of a weak static voltage which allows for addressing heavy-hole spin qubits individually. Our results are supported by quantum mechanical time-dependent calculations within the four-band Luttinger-Kohn model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308295700015 Publication Date 2012-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 41 Open Access  
  Notes (up) ; This work was supported by the Grant No. NN202 128337 from the Ministry of Science and Higher Education, as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advances Nanostructures” operated within the Foundation for Polish Science MPD Programme and cofinanced by European Regional Development Fund, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101849 Serial 3094  
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title 30-band k\cdot p model of electron and hole states in silicon quantum wells Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 20 Pages 205306  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We modeled the electron and hole states in Si/SiO2 quantum wells within a basis of standing waves using the 30-band k . p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions) and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is found to improve the accuracy of the computed hole states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327161500007 Publication Date 2013-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes (up) ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Belgian Science Policy (IAP), the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112704 Serial 18  
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M. doi  openurl
  Title The interband optical absorption in silicon quantum wells : application of the 30-band k . p model Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 24 Pages 242103  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interband optical absorption in Si/SiO2 quantum wells is calculated as function of the well width (W) and the evolution from an indirect to a direct gap material as function of the well width is investigated. In order to compute the electron states in the conduction band, the 30-band k . p model is employed, whereas the 6-band Luttinger-Kohn model is used for the hole states. We found that the effective direct band gap in the quantum well agrees very well with the W-2 scaling result of the single-band model. The interband matrix elements for linear polarized light oscillate with the quantum well width, which agrees qualitatively with a single band calculation. Our theoretical results indicate that the absorption can be maximized by a proper choice of the well width. However, the obtained absorption coefficients are at least an order of magnitude smaller than for a typical direct semiconductor even for a well width of 2 nm. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000337915000033 Publication Date 2014-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 1 Open Access  
  Notes (up) ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:118448 Serial 1689  
Permanent link to this record
 

 
Author Cukaric, N.A.; Partoens, B.; Tadic, M.Z.; Arsoski, V.V.; Peeters, F.M. pdf  doi
openurl 
  Title The 30-band k . p theory of valley splitting in silicon thin layers Type A1 Journal article
  Year 2016 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 28 Issue 28 Pages 195303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The valley splitting of the conduction-band states in a thin silicon-on-insulator layer is investigated using the 30-band k . p theory. The system composed of a few nm thick Si layer embedded within thick SiO2 layers is analyzed. The valley split states are found to cross periodically with increasing quantum well width, and therefore the energy splitting is an oscillatory function of the quantum well width, with period determined by the wave vector K-0 of the conduction band minimum. Because the valley split states are classified by parity, the optical transition between the ground hole state and one of those valley split conduction band states is forbidden. The oscillations in the valley splitting energy decrease with electric field and with smoothing of the composition profile between the well and the barrier by diffusion of oxygen from the SiO2 layers to the Si quantum well. Such a smoothing also leads to a decrease of the interband transition matrix elements. The obtained results are well parametrized by the effective two-valley model, but are found to disagree from previous 30-band calculations. This discrepancy could be traced back to the fact that the basis for the numerical solution of the eigenproblem must be restricted to the first Brillouin zone in order to obtain quantitatively correct results for the valley splitting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000374394700009 Publication Date 2016-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.649 Times cited Open Access  
  Notes (up) ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:133610 Serial 4261  
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Pawlowski, J.; Partoens, B. url  doi
openurl 
  Title All-electrical control of quantum gates for single heavy-hole spin qubits Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 19 Pages 195307-195312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper several nanodevices which realize basic single heavy-hole qubit operations are proposed and supported by time-dependent self-consistent Poisson-Schrodinger calculations using a four band heavy-hole-light-hole model. In particular we propose a set of nanodevices which can act as Pauli X, Y, Z quantum gates and as a gate that acts similar to a Hadamard gate (i.e., it creates a balanced superposition of basis states but with an additional phase factor) on the heavy-hole spin qubit. We also present the design and simulation of a gated semiconductor nanodevice which can realize an arbitrary sequence of all these proposed single quantum logic gates. The proposed devices exploit the self-focusing effect of the hole wave function which allows for guiding the hole along a given path in the form of a stable solitonlike wave packet. Thanks to the presence of the Dresselhaus spin-orbit coupling, the motion of the hole along a certain direction is equivalent to the application of an effective magnetic field which induces in turn a coherent rotation of the heavy-hole spin. The hole motion and consequently the quantum logic operation is initialized only by weak static voltages applied to the electrodes which cover the nanodevice. The proposed gates allow for an all electric and ultrafast (tens of picoseconds) heavy-hole spin manipulation and give the possibility to implement a scalable architecture of heavy-hole spin qubits for quantum computation applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319252200003 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes (up) ; This work was supported by the Polish National Science Center (Grant No. DEC-2011/03/N/ST3/02963), as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme, co-financed by the European Regional Development Fund. This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109002 Serial 88  
Permanent link to this record
 

 
Author Houben, K.; Jochum, J.K.; Lozano, D.P.; Bisht, M.; Menendez, E.; Merkel, D.G.; Ruffer, R.; Chumakov, A., I; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Couet, S.; Vantomme, A.; Temst, K.; Van Bael, M.J. url  doi
openurl 
  Title In situ study of the \alpha-Sn to \beta-Sn phase transition in low-dimensional systems : phonon behavior and thermodynamic properties Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 100 Issue 7 Pages 075408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The densities of phonon states of thin Sn films on InSb substrates are determined during different stages of the alpha-Sn to beta-Sn phase transition using nuclear inelastic x-ray scattering. The vibrational entropy and internal energy per atom as a function of temperature are obtained by numerical integration of the phonon density of states. The free energy as a function of temperature for the nanoscale samples is compared to the free energy obtained from ab initio calculations of bulk tin in the alpha-Sn and beta-Sn phase. In thin films this phase transition is governed by the interplay between the vibrational behavior of the film (the phase transition is driven by the vibrational entropy) and the stabilizing influence of the substrate (which depends on the film thickness). This brings a deeper understanding of the role of lattice vibrations in the phase transition of nanoscale Sn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000478992800005 Publication Date 2019-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes (up) ; This work was supported by the Research Foundation Flanders (FWO) and the Concerted Research Action (Grant No. GOA14/007). K.H., S.C., D.P.L., and E.M. wish to thank the FWO for financial support. The authors gratefully acknowledge the European Synchrotron Radiation Facility (ESRF) for the granted beam time and the use of the in situ UHV preparation chamber. The authors thank B. Opperdoes for technical support and T. Peissker and R. Lieten for fruitful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161836 Serial 5416  
Permanent link to this record
 

 
Author Van der Donck, M.; Conti, S.; Perali, A.; Hamilton, A.R.; Partoens, B.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Three-dimensional electron-hole superfluidity in a superlattice close to room temperature Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 6 Pages 060503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Although there is strong theoretical and experimental evidence for electron-hole superfluidity in separated sheets of electrons and holes at low T, extending superfluidity to high T is limited by strong two-dimensional fluctuations and Kosterlitz-Thouless effects. We show this limitation can be overcome using a superlattice of alternating electron- and hole-doped semiconductor monolayers. The superfluid transition in a three-dimensional superlattice is not topological, and for strong electron-hole pair coupling, the transition temperature T-c can be at room temperature. As a quantitative illustration, we show T-c can reach 270 K for a superfluid in a realistic superlattice of transition metal dichalcogenide monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000562320700001 Publication Date 2020-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 5 Open Access  
  Notes (up) ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for M.V.d.D., by the FLAG-ERA project TRANS-2D-TMD, and by the Australian Government through the Australian Research Council Centre of Excellence in Future Low-Energy Electronics (Project No. CE170100039). We thank Milorad V. Milossevi ' c, Pierbiagio Pieri, and Jacques Tempere for helpful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:172064 Serial 6628  
Permanent link to this record
 

 
Author Houben, K.; Couet, S.; Trekels, M.; Menendez, E.; Peissker, T.; Seo, J.W.; Hu, M.Y.; Zhao, J.Y.; Alp, E.E.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Bessas, D.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J. url  doi
openurl 
  Title Lattice dynamics in Sn nanoislands and cluster-assembled films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 15 Pages 155413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To unravel the effects of phonon confinement, the influence of size and morphology on the atomic vibrations is investigated in Sn nanoislands and cluster-assembled films. Nuclear resonant inelastic x-ray scattering is used to probe the phonon densities of states of the Sn nanostructures which show significant broadening of the features compared to bulk phonon behavior. Supported by ab initio calculations, the broadening is attributed to phonon scattering and can be described within the damped harmonic oscillator model. Contrary to the expectations based on previous research, the appearance of high-energy modes above the cutoff energy is not observed. From the thermodynamic properties extracted from the phonon densities of states, it was found that grain boundary Sn atoms are bound by weaker forces than bulk Sn atoms.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000401762400008 Publication Date 2017-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes (up) ; This work was supported by the Research Foundation-Flanders (FWO) and the Concerted Research Action (GOA/14/007). The authors acknowledge Hercules stichting (Projects No. AKUL/13/19 and No. AKUL/13/25). K.H. and S.C. thank the FWO for financial support. T.P. acknowledges the IWT for financial support. S.R., M.V.M., and B.P. acknowledge TOPBOF funding of the University of Antwerp Research Fund. J.W.S. acknowledges Hercules Stichting (Project No. AKUL/13/19). The authors want to thank R. Lieten for help with the XRD measurements and T. Picot for fruitful discussions. The authors gratefully acknowledge R. Ruffer and A. I. Chumakov for fruitful discussions and the European Synchrotron Radiation Facility for the measurement of the SnO<INF>2</INF> powder at the Nuclear Resonance beamline (ID-18). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144305 Serial 4667  
Permanent link to this record
 

 
Author Van der Donck, M.; De Beule, C.; Partoens, B.; Peeters, F.M.; Van Duppen, B. doi  openurl
  Title Piezoelectricity in asymmetrically strained bilayer graphene Type A1 Journal article
  Year 2016 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 3 Issue 3 Pages 035015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the electronic properties of commensurate faulted bilayer graphene by diagonalizing the one-particle Hamiltonian of the bilayer system in a complete basis of Bloch states of the individual graphene layers. Our novel approach is very general and can be easily extended to any commensurate graphene-based heterostructure. Here, we consider three cases: (i) twisted bilayer graphene, (ii) bilayer graphene where triaxial stress is applied to one layer and (iii) bilayer graphene where uniaxial stress is applied to one layer. We show that the resulting superstructures can be divided into distinct classes, depending on the twist angle or the magnitude of the induced strain. The different classes are distinguished from each other by the interlayer coupling mechanism, resulting in fundamentally different low-energy physics. For the cases of triaxial and uniaxial stress, the individual graphene layers tend to decouple and we find significant charge transfer between the layers. In addition, this piezoelectric effect can be tuned by applying a perpendicular electric field. Finally, we show how our approach can be generalized to multilayer systems.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000384072500003 Publication Date 2016-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 10 Open Access  
  Notes (up) ; This work was supported by the Research Foundation-Flanders (FWO-Vl) through aspirant research grants to MVDD, CDB, and BVD. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:137203 Serial 4361  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neyts, E.C.; Partoens, B. pdf  doi
openurl 
  Title van der Waals density functionals applied to corundum-type sesquioxides : bulk properties and adsorption of CH3 and C6H6 on (0001) surfaces Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 23139-23146  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract van der Waals (vdW) forces play an important role in the adsorption of molecules on the surface of solids. However, the choice of the most suitable vdW functional for different systems is an essential problem which must be addressed for different systems. The lack of a systematic study on the performance of the vdW functionals in the bulk and adsorption properties of metal-oxides motivated us to examine different vdW approaches and compute the bulk and molecular adsorption properties of alpha-Cr2O3, alpha-Fe2O3, and alpha-Al2O3. For the bulk properties, we compared our results for the heat of formation, cohesive energy, lattice parameters and bond distances between the different vdW functionals and available experimental data. Next we studied the adsorption of benzene and CH3 molecules on top of different oxide surfaces. We employed different approximations to exchange and correlation within DFT, namely, the Perdew-Burke-Ernzerhof (PBE) GGA, (PBE)+U, and vdW density functionals [ DFT(vdW-DF/DF2/optPBE/optB86b/optB88)+U] as well as DFT-D2/D3(+U) methods of Grimme for the bulk calculations and optB86b-vdW(+U) and DFT-D2(+U) for the adsorption energy calculations. Our results highlight the importance of vdW interactions not only in the adsorption of molecules, but importantly also for the bulk properties. Although the vdW contribution in the adsorption of CH3 (as a chemisorption interaction) is less important compared to the adsorption of benzene (as a physisorption interaction), this contribution is not negligible. Also adsorption of benzene on ferryl/chromyl terminated surfaces shows an important chemisorption contribution in which the vdW interactions become less significant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000382109300040 Publication Date 2016-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 6 Open Access  
  Notes (up) ; This work was supported by the Strategic Initiative Materials in Flanders (SIM). The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:135701 Serial 4311  
Permanent link to this record
 

 
Author Bekaert, J.; Bignardi, L.; Aperis, A.; van Abswoude, P.; Mattevi, C.; Gorovikov, S.; Petaccia, L.; Goldoni, A.; Partoens, B.; Oppeneer, P.M.; Peeters, F.M.; Milošević, M.V.; Rudolf, P.; Cepek, C. url  doi
openurl 
  Title Free surfaces recast superconductivity in few-monolayer MgB2 : combined first-principles and ARPES demonstration Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 14458  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like sigma-and pi-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as similar to 30 K for merely six monolayers thick MgB2. These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.'));  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000414231000059 Publication Date 2017-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 27 Open Access  
  Notes (up) ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Foundation for Fundamental Research on Matter (FOM)-part of the Netherlands Organisation for Scientific Research, the Swedish Research Council (VR) and the Rontgen-Angstrom Cluster. P.v.A. acknowledges an Ubbo Emmius fellowship for his PhD studies. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government – department EWI. Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). We thank D. Lonza for technical assistance in the experimental part. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:147426 Serial 4875  
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V. url  doi
openurl 
  Title Advanced first-principles theory of superconductivity including both lattice vibrations and spin fluctuations : the case of FeB4 Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 1 Pages 014503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental T-c similar to 2.4 K [H. Gou et al., Phys. Rev. Lett, 111, 157002 (2013)]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I = 1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q = 0, from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from T-c = 41 K, if they are not taken into account, to T-c = 1.7 K, in good agreement with the experimental value.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000419229100004 Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes (up) ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government-department EWI. Anisotropic Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148447UA @ admin @ c:irua:148447 Serial 4866  
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V. url  doi
openurl 
  Title Evolution of multigap superconductivity in the atomically thin limit : strain-enhanced three-gap superconductivity in monolayer MgB2 Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 9 Pages 094510  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2 at its ultrathin limit. Atomically thin MgB2 is distinctly different from bulk MgB2 in that surface states become comparable in electronic density to the bulklike sigma and pi bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we showthat monolayer MgB2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >50K under biaxial tensile strain of similar to 4%, which is an enhancement that is stronger than in any other graphene-related superconductor known to date.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000410166800008 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 56 Open Access  
  Notes (up) ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules Foundation and the Flemish Government (EWI Department). Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145623 Serial 4741  
Permanent link to this record
 

 
Author Reijniers, J.; Partoens, B.; Steckel, J.; Peremans, H. doi  openurl
  Title HRTF measurement by means of unsupervised head movements with respect to a single fixed speaker Type A1 Journal article
  Year 2020 Publication Ieee Access Abbreviated Journal Ieee Access  
  Volume 8 Issue Pages 92287-92300  
  Keywords A1 Journal article; Mass communications; Engineering Management (ENM); Condensed Matter Theory (CMT); Co-Design of Cyber-Physical Systems (Cosys-Lab)  
  Abstract In a standard state-of-the-art measurement the head-related transfer function (HRTF) is obtained in an anechoic room with an elaborate setup involving multiple calibrated loudspeakers. In search for a simplified method that would open up the possibility for an HRTF measurement in a home environment, it has been suggested that this setup could be replaced with one with a single, fixed loudspeaker. In such a setup, the subject samples different directions by moving the head with respect to this loudspeaker, while the head movements are tracked in some way. In this paper, the feasibility of such an approach is studied. To this end, the HRTF is measured in an unmodified (non-anechoic) room by means of a single external speaker and a high resolution head tracking system. The differences between the dynamically obtained HRTF and the standard static HRTF are investigated, and are shown to be mostly due to variable torso reflections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539041600001 Publication Date 2020-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 4 Open Access  
  Notes (up) ; This work was supported in part by the Research Foundation Flanders (FWO) under Grant G023619N, and in part by the Agency for Innovation and Entrepreneurship (VLAIO). ; Approved Most recent IF: 3.9; 2020 IF: 3.244  
  Call Number UA @ admin @ c:irua:170318 Serial 6539  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Giantomassi, M.; Rangel, T.; Goossens, E.; Rignanese, G.-M.; Gonze, X.; Peeters, F.M. url  doi
openurl 
  Title Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and the validity of scissor shifts Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 4 Pages 045306-045306,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from fully converged density-functional theory calculations, the quasiparticle corrections are calculated for different sized Si and Ge nanowires using the GW approximation. The effectiveness of recently developed techniques in speeding up the convergence of the quasiparticle calculations is demonstrated. The complete quasiparticle band structures are also obtained using an interpolation technique based on maximallylocalized Wannier functions. From the quasiparticle results, we assess the correctness of the commonly applied scissor-shift correction. Dispersion changes are observed, which are also reflected in changes in the effective band masses calculated taking into account quasiparticle corrections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286771400004 Publication Date 2011-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes (up) ; We are grateful to Yann Pouillon for valuable technical support with the build system of ABINIT, related to the WANNIER90 library. This work was supported by the Flemish Science Foundation (FWO-Vl) and by the Interuniversity Attraction Poles Program (P6/42)-Belgian State-Belgian Science Policy. X. G. and G.-M. R. acknowledge funding from the EU's 7th Framework Programme through the ETSF I3 e-Infrastructure project (Grant No. 211956), the Communaute francaise de Belgique through the Action de Recherche Concertee 07/12-003 “Nanosystemes hybrides metal-organiques,” and the Wallon Region Project No. 816849 “ European Theoretical Spectroscopy Facility” (WALL ETSF). M. G. acknowledges funding from the FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:86905 Serial 510  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: