toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yang, W.; Misko, V.R.; Nelissen, K.; Kong, M.; Peeters, F.M. doi  openurl
  Title Using self-driven microswimmers for particle separation Type A1 Journal article
  Year 2012 Publication Soft matter Abbreviated Journal Soft Matter  
  Volume 8 Issue 19 Pages 5175-5179  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Microscopic self-propelled swimmers capable of autonomous navigation through complex environments provide appealing opportunities for localization, pick-up and delivery of micro and nanoscopic objects. Inspired by motile cells and bacteria, man-made microswimmers have been fabricated, and their motion in patterned surroundings has been experimentally studied. We propose to use self-driven artificial microswimmers for the separation of binary mixtures of colloids. We revealed different regimes of separation, including one with a velocity inversion. Our findings could be of use for various biological and medical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000303208700009 Publication Date 2012-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-683X;1744-6848; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.889 Times cited 45 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-V1) (Belgium), the National Natural Science Foundation of China (No. 11047111), the State Key Program of National Natural Science of China (No. 51135007), the Research Fund for the Doctoral Program of Higher Education of China (No. 20111415120002), and the Major State Basic Research Development Program of China (973) (No. 2009CB724201). ; Approved Most recent IF: 3.889; 2012 IF: 3.909  
  Call Number UA @ lucian @ c:irua:98326 Serial 3826  
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Dynamics of multishell vortex structures in mesoscopic superconducting Corbino disks Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 13 Pages 134504,1-134504,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the dynamics of vortex shells in mesoscopic superconducting Corbino disks, where vortices form shells as recently observed in micrometer-sized Nb disks. Due to the interplay between the vortex-vortex interaction, the gradient Lorentz force and the (in)commensurability between the numbers of vortices in shells, the process of angular melting of vortex-shell configurations becomes complex. Angular melting can start either from the center of the disk (where the shear stress is maximum) or from its boundary (where the shear stress is minimum) depending on the specific vortex configuration. Furthermore, we found that two kinds of defects can exist in such vortex-shell structures: intrashell and intershell defects. An intrashell defect may lead to an inverse dynamic behavior, i.e., one of the vortex shells under a stronger driving force can rotate slower than the adjacent shell that is driven by a weaker Lorentz force. An intershell defect always locks more than two shells until the gradient of the Lorentz force becomes large enough to break the rigid-body rotation of the locked shells. Such a lock-unlock process leads to hysteresis in the angular velocities of the shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277207900079 Publication Date 2010-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” program of the Flemish Government and the Flemish Science Foundation (FWO-V1), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-V1. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82803 Serial 779  
Permanent link to this record
 

 
Author Misko, V.R.; Bothner, D.; Kemmler, M.; Kleiner, R.; Koelle, D.; Peeters, F.M.; Nori, F. url  doi
openurl 
  Title Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 18 Pages 184512-184512,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quasiperiodic pinning arrays, as recently demonstrated theoretically and experimentally using a fivefold Penrose tiling, can lead to a significant enhancement of the critical current Ic as compared to traditional regular pinning arrays. However, while regular arrays showed only a sharp peak in Ic(Φ) at the matching flux Φ1 and quasiperiodic arrays provided a much broader maximum at Φ<Φ1, both types of pinning arrays turned out to be inefficient for fluxes larger than Φ1. We demonstrate theoretically and experimentally the enhancement of Ic(Φ) for Φ>Φ1 by using non-Penrose quasiperiodic pinning arrays. This result is based on a qualitatively different mechanism of flux pinning by quasiperiodic pinning arrays and could be potentially useful for applications in superconducting microelectronic devices operating in a broad range of magnetic fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000283923400006 Publication Date 2010-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, the FWO-Vl, and by the DFG via SFB/TRR21. V. R. M. is grateful to the FWO-Vl for the support of the research stay at the DML (ASI, RIKEN), and to F. N. for hospitality. M. K. gratefully acknowledges support from the Carl-Zeiss-Stiftung, and D. B. from the Evangelisches Studienwerk e.V. Villigst. F. N. acknowledges partial support from the Laboratory of Physical Sciences, National Security Agency, Army Research Office, DARPA, AFOSR, National Science Foundation under Grant No. 0726909, JSPS-RFBR under Contract No. 09-02-92114, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and Funding Program for Innovative R&D on S&T (FIRST). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85800 Serial 1066  
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Dynamics of self-organized driven particles with competing range interaction Type A1 Journal article
  Year 2013 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 88 Issue 2 Pages 022914-22917  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nonequilibrium self-organized patterns formed by particles interacting through competing range interaction are driven over a substrate by an external force. We show that, with increasing driving force, the preexisted static patterns evolve into dynamic patterns either via disordered phase or depinned patterns or via the formation of nonequilibrium stripes. Strikingly, the stripes are formed either in the direction of the driving force or in the transverse direction, depending on the pinning strength. The revealed dynamical patterns are summarized in a dynamical phase diagram.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000323333000014 Publication Date 2013-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 23 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.366; 2013 IF: 2.326  
  Call Number UA @ lucian @ c:irua:110743 Serial 783  
Permanent link to this record
 

 
Author Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. pdf  doi
openurl 
  Title Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
  Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 2 Pages 27003-27006  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000319617700019 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 8 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109859 Serial 2257  
Permanent link to this record
 

 
Author Orlova, N.V.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.; Vagov, A.V.; Axt, V.M. url  doi
openurl 
  Title Ginzburg-Landau theory for multiband superconductors : microscopic derivation Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134510-134518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard Gor'kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken time-reversal symmetry. DOI: 10.1103/PhysRevB.87.134510  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317586700002 Publication Date 2013-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 57 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). A.A.S. acknowledges useful discussions with D. Neilson. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108464 Serial 1344  
Permanent link to this record
 

 
Author Pogosov, W.V.; Zhao, H.J.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Kink-antikink vortex transfer in periodic-plus-random pinning potential : theoretical analysis and numerical experiments Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 2 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of random pinning on the vortex dynamics in a periodic square potential under an external drive is investigated. Using numerical experiments and theoretical approach, we found several dynamical regimes of vortex motion that are different from the ones for a regular pinning potential. Vortex transfer is controlled by kinks and antikinks, which either pre-exist in the system or appear spontaneously in pairs and then propagate. When kinks and antikinks collide, they annihilate. We provide clear physical interpretations of the observed features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000274002100087 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish government, FWO-Vl, and IAP. W.V.P. acknowledges support from RFBR (Contract No. 09-02-00248). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81251 Serial 1761  
Permanent link to this record
 

 
Author Pogosov, W.V.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Geometry-induced localization of thermal fluctuations in ultrathin superconducting structures Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 5 Pages 054523-054523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thermal fluctuations of the order parameter in an ultrathin triangular-shaped superconducting structure are studied near Tc, in zero applied field. We find that the order parameter is prone to much larger fluctuations in the corners of the structure as compared to its interior. This geometry-induced localization of thermal fluctuations is attributed to the fact that condensate confinement in the corners is characterized by a lower effective dimensionality, which favors stronger fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281294700006 Publication Date 2010-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish government, FWO-Vl, and the Belgian Science Policy (IAP). W. V. P. acknowledges supports from the RFBR [Project No. 09-02-00248] and the “Dynasty Foundation.” ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84470 Serial 1334  
Permanent link to this record
 

 
Author Shanenko, A.A.; Vagov, A.; Peeters, F.M.; Aguiar, J.A. doi  openurl
  Title Nanofilms as effectively multiband superconductors: Intraband-pairing approximation and Ginzburg-Landau theory Type A1 Journal article
  Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 455 Issue Pages 3-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is well-known that the Ginzburg-Landau (GL) theory is a reliable and powerful theoretical tool to investigate the magnetic response of a superconducting state. However, in its standard form, this approach is not applicable to atomically uniform nano-thin superconducting films which are effective multiband superconductors. Here we discuss a relevant generalization of the GL theory, focusing on the underlying intraband-pairing approximation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000344239200002 Publication Date 2014-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.386 Times cited 1 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-VI), and the Methusalem program. A.A.S. acknowledges the support of the Brazilian agencies CNPq and FACEPE (APQ-0589-1.05/08). ; Approved Most recent IF: 1.386; 2014 IF: 1.319  
  Call Number UA @ lucian @ c:irua:121192 Serial 2256  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Vortex anomaly in low-dimensional fermionic condensates : quantum confinement breaks chirality Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 5 Pages 054513-54515  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Chiral fermions are responsible for low-temperature properties of vortices in fermionic condensates, both superconducting (charged) and superfluid (neutral). One of the most striking consequences of this fact is that the core of a single-quantum vortex collapses at low temperatures, T -> 0 (i.e., the Kramer-Pesch effect for superconductors), due to the presence of chiral quasiparticles in the vortex-core region. We show that the situation changes drastically for fermionic condensates confined in quasi-one-dimensional and quasi-two-dimensional geometries. Here quantum confinement breaks the chirality of in-core fermions. As a result, instead of the ultimate shrinking, the core of a single-quantum vortex extends at low temperatures, and the condensate profile surprisingly mimics the multiquantum vortex behavior. Our findings are relevant for nanoscale superconductors, such as recent metallic nanoislands on silicon, and also for ultracold superfluid Fermi gases in cigar-shaped and pancake-shaped atomic traps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332396800005 Publication Date 2014-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes (up) ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), the Methusalem Program, and the National Science Foundation of China under Grant No. NSFC-11304134. A. A. S. acknowledges the support of Brazilian agencies CNPq and FACEPE (Grant No. APQ-0589-1.05/08). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115822 Serial 3850  
Permanent link to this record
 

 
Author Kapra, A.V.; Misko, V.R.; Vodolazov, D.Y.; Peeters, F.M. pdf  doi
openurl 
  Title The guidance of vortex-antivortex pairs by in-plane magnetic dipoles in a superconducting finite-size film Type A1 Journal article
  Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 24 Issue 2 Pages 024014-024014,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The possibility of manipulating vortex matter by using various artificial pinning arrays is of significant importance for possible applications in nano and micro fluxonics devices. By numerically solving the time-dependent GinzburgLandau equations, we study the vortexantivortex (vav) dynamics in a hybrid structure consisting of a finite-size superconductor with magnetic dipoles on top which generate vav pairs in the presence of an external current. The vav dynamics is analyzed for different arrangements and magnetic moments of the dipoles, as a function of angle α between the direction of the magnetic dipole and that of the Lorentz force produced by the applied current. The interplay of the attractive interaction between a vav pair and the Lorentz force leads either to the separation of (anti)vortices and their motion in opposite directions or to their annihilation. We found a critical angle αc, below which vortices and antivortices are repelled, while for larger angles they annihilate. In case of a single (few) magnetic dipole(s), this magnetic dipole induced vav guidance is influenced by the self-interaction of the vav pairs with their images in a finite-size sample, while for a periodic array of dipoles the guidance is determined by the interaction of a vav pair with other dipoles and vav pairs created by them. This effect is tunable through the external current and the magnetization and size of the magnetic dipoles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000286379900015 Publication Date 2011-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 28 Open Access  
  Notes (up) ; This work was supported by the 'Odysseus' program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-Vl. DYV acknowledges support from the Russian Fund for Basic Research and Russian Agency of Education under the Federal Programme 'Scientific and educational personnel of innovative Russia in 2009-2013'. ; Approved Most recent IF: 2.878; 2011 IF: 2.662  
  Call Number UA @ lucian @ c:irua:88732 Serial 1399  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Metallic nanograins : spatially nonuniform pairing induced by quantum confinement Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214509-214509,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is well known that the formation of discrete electron levels strongly influences the pairing in metallic nanograins. Here, we focus on another effect of quantum confinement in superconducting grains that was not studied previously, i.e., spatially nonuniform pairing. This effect is very significant when single-electron levels form bunches and/or a kind of shell structure. We find that, in highly symmetric grains, the order parameter can exhibit variations with position by an order of magnitude. Nonuniform pairing is closely related to a quantum-confinement-induced modification of the pairing-interaction matrix elements and size-dependent pinning of the chemical potential to groups of degenerate or nearly degenerate levels. For illustrative purposes, we consider spherical metallic nanograins and also rectangular shapes. We show that the relevant matrix elements are, as a rule, enhanced in the presence of quantum confinement, which favors spatial variations of the order parameter, compensating the corresponding energy cost. The size-dependent pinning of the chemical potential further increases the spatial variation of the pair condensate. The role of nonuniform pairing is smaller in less symmetric confining geometries and/or in the presence of disorder. However, it always remains of importance when the energy spacing between discrete electron levels δ is approaching the scale of the bulk gap ΔB, i.e., δ>0.10.2 ΔB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291310000006 Publication Date 2011-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes (up) ; This work was supported by the Alexander von Humboldt Foundation, the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP). M. D. C. acknowledges support of the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90081 Serial 2010  
Permanent link to this record
 

 
Author Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Suslu, A.; Wu, K.; Peeters, F.; Meng, X.; Tongay, S. pdf  doi
openurl 
  Title Exciton pumping across type-I gallium chalcogenide heterojunctions Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 065203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quasi-two-dimensional gallium chalcogenide heterostructures are created by transferring exfoliated few-layer GaSe onto bulk GaTe sheets. Luminescence spectroscopy measurements reveal that the light emission from underlying GaTe layers drastically increases on heterojunction regions where GaSe layers make contact with the GaTe. Density functional theory (DFT) and band offset calculations show that conduction band minimum (CBM) (valance band maximum (VBM)) values of GaSe are higher (lower) in energy compared to GaTe, forming type-I band alignment at the interface. Consequently, GaSe layers provide photo-excited electrons and holes to GaTe sheets through relatively large built-in potential at the interface, increasing overall exciton population and light emission from GaTe. Observed results are not specific to the GaSe/GaTe system but observed on GaS/GaSe heterolayers with type-I band alignment. Observed experimental findings and theoretical studies provide unique insights into interface effects across dissimilar gallium chalcogenides and offer new ways to boost optical performance by simple epitaxial coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000368897100008 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 15 Open Access  
  Notes (up) ; This work was supported by the Arizona State University seeding program, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of the John M Cowley Center for High Resolution Electron Microscopy at Arizona State University. The authors thank Anupum Pant for useful discussions. We gratefully acknowledge the use of the facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. S Tongay acknowledges support from DMR-1552220. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:131570 Serial 4179  
Permanent link to this record
 

 
Author Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M.I.; Peeters, F.M.; Tongay, S. doi  openurl
  Title Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 5326-5332  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of group VI transition metal dichalcogenides possess direct gaps in the visible spectrum with the exception of MoTe2, where its gap is suitably located in the infrared region but its stability is of particular interest, as tellurium compounds are acutely sensitive to oxygen exposure. Here, our environmental (time-dependent) measurements reveal two distinct effects on MoTe2 monolayers: For weakly luminescent monolayers, photoluminescence signal and optical contrast disappear, as if they are decomposed, but yet remain intact as evidenced by AFM and Raman measurements. In contrast, strongly luminescent monolayers retain their optical contrast for a prolonged amount of time, while their PL peak blue-shifts and PL intensity saturates to slightly lower values. Our X-ray photoelectron spectroscopy measurements and DFT calculations suggest that the presence of defects and functionalization of these defect sites with O-2 molecules strongly dictate their material properties and aging response by changing the excitonic dynamics due to deep or shallow states that are created within the optical band gap. Presented results not only shed light on environmental effects on fundamental material properties and excitonic dynamics of MoTe2 monolayers but also highlight striking material transformation for metastable 20 systems such as WTe2, silicone, and phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355383000068 Publication Date 2015-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 150 Open Access  
  Notes (up) ; This work was supported by the Arizona State University seeding program. The authors thank Hui Cai and Kedi Wu for useful discussions. We gratefully acknowledge the use of facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:126441 Serial 1068  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. pdf  doi
openurl 
  Title Influence of disorder on superconducting correlations in nanoparticles Type A1 Journal article
  Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 29 Issue 29 Pages 605-609  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate how the interplay of quantum confinement and level broadening caused by disorder affects superconducting correlations in ultra-small metallic grains. We use the electron-phonon interaction-induced electron mass renormalization and the reduced static-path approximation of the BCS formalism to calculate the critical temperature as a function of the grain size. We show how the strong electron-impurity scattering additionally smears the peak structure in the electronic density of states of a metallic grain and imposes additional limits on the critical temperature under strong quantum confinement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000371089500013 Publication Date 2016-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.18 Times cited 7 Open Access  
  Notes (up) ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO-Vl. ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:132286 Serial 4195  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Phonon limited superconducting correlations in metallic nanograins Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 16515  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electronphonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest T-c achievable by quantum confinement.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000364647700001 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 9 Open Access  
  Notes (up) ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Research Foundation Flanders (FWO), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO. M.D.C. acknowledges fruitful discussions with V. Z. Kresin, S. N. Klimin and V. N. Gladilin. ; Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number UA @ lucian @ c:irua:129543 Serial 4224  
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M. doi  openurl
  Title D- shallow donor near a semiconductor-metal and a semiconductor-dielectric interface Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 11 Pages 115303,1-115313,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The ground state energy and the extent of the wavefunction of a negatively charged donor (D − ) located near a semiconductormetal or a semiconductordielectric interface are obtained. We apply the effective mass approximation and use a variational two-electron wavefunction that takes into account the influence of all image charges that arise due to the presence of the interface, as well as the correlation between the two electrons bound to the donor. For a semiconductormetal interface, the D − binding energy is enhanced for donor positions d > 1.5aB (aB is the effective Bohr radius) due to the additional attraction of the electrons with their images. When the donor approaches the interface (i.e. d < 1.5aB) the D − binding energy drops and eventually it becomes unbound. For a semiconductordielectric (or a semiconductorvacuum) interface the D − binding energy is reduced for any donor position as compared to the bulk case and the system becomes rapidly unbound when the donor approaches the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000287969200013 Publication Date 2011-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 5 Open Access  
  Notes (up) ; This work was supported by the Belgian Science Policy (IAP) and the Brazilian Science Foundation CNPq. One of us (AAA) was supported by a fellowship from the Belgian Federal Science Policy Office (IAP). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:88828 Serial 3528  
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Carbon clusters: from ring structures to nanographene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 19 Pages 195414,1-195414,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The lowest-energy configurations of Cn(n≤55) clusters are obtained using the energy-minimization technique with the conjugate gradient method where a modified Brenner potential is invoked to describe the carbon and hydrocarbon interaction. We found that the ground-state configuration consists of a single ring for small number of C atoms and multiring structures are found with increasing n, which can be in planar, bowl-like or caplike form. Contrary to previous predictions, the binding energy Eb does not show even-odd oscillations and only small jumps are found in the Eb(n) curve as a consequence of specific types of edges or equivalently the number of secondary atoms. We found that hydrogenation of the edge atoms may change the ground-state configuration of the nanocluster. In both cases we determined the magic clusters. Special attention is paid to trigonal and hexagonal shaped carbon clusters and to clusters having a graphenelike configuration. Trigonal clusters are never the ground state while hexagonal-shaped clusters are only the ground state when they have zigzag edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278142000103 Publication Date 2010-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes (up) ; This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83385 Serial 278  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernández-Nieves, A.D.; Milošević, M.V.; Peeters, F.M.; Dominguez, D. url  doi
openurl 
  Title Flux-quantum-discretized dynamics of magnetic flux entry, exit, and annihilation in current-driven mesoscopic type-I superconductors Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 9 Pages 092502-092502,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study nonlinear flux dynamics in a current-carrying type-I superconductor. The stray magnetic field of the current induces the intermediate state, where nucleation of flux domains is discretized to a single fluxoid at a time, while their final shape (tubular or laminar), size, and nucleation rate depend on applied current and edge conditions. The current induces opposite flux domains on opposite sides of the sample, and subsequently drives them to annihilation-which is also discretized, as a sequence of vortex-antivortex pairs. The discretization of both nucleation and annihilation leaves measurable traces in the voltage across the sample and in locally probed magnetization. The reported dynamic phenomena thus provide an unambiguous proof of a flux quantum being the smallest building block of the intermediate state in type-I superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301183000002 Publication Date 2012-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes (up) ; This work was supported by the Belgian Science Policy (IAP), the Flemish Science Foundation (FWO-Vl), and the collaborative project FWO-MINCyT (Project No. FW/08/01). G. R. B. and A. D. H acknowledge support from FWO-Vl. A. D. H. and D. D. acknowledge support from CONICET, CNEA, and ANPCyT (Grant No. PICT07-824). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97180 Serial 1243  
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 6 Issue 5 Pages 2337-2345  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000423981200049 Publication Date 2018-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 131 Open Access  
  Notes (up) ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945  
Permanent link to this record
 

 
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions Type A1 Journal article
  Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 29 Issue 29 Pages 295202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract There is an increasing need to understand interfaces between two-dimensional materials to realize an energy efficient boundary with low contact resistance and small heat dissipation. In this respect, we investigated the impact of charge and substitutional atom doping on the electronic transport properties of the hybrid metallic-semiconducting lateral junctions, formed between metallic (1T and 1T(d)) and semiconducting (1H) phases of MoS2 by means of first-principles and non-equilibrium Green function formalism based calculations. Our results clearly revealed the strong influence of the type of interface and crystallographic orientation of the metallic phase on the transport properties of these systems. The Schottky barrier height, which is the dominant mechanism for contact resistance, was found to be as large as 0.63 eV and 1.19 eV for holes and electrons, respectively. We found that armchair interfaces are more conductive as compared to zigzag termination due to the presence of the metallic Mo zigzag chains that are directed along the transport direction. In order to manipulate these barrier heights we investigated the influence of electron doping of the metallic part (i.e. 1T(d) -MoS2). We observed that the Fermi level of the hybrid system moves towards the conduction band of semiconducting 1H-MoS2 due to filling of 4d-orbital of metallic MoS2, and thus the Schottky barrier for electrons decreases considerably. Besides electron doping, we also investigated the effect of substitutional doping of metallic MoS2 by replacing Mo atoms with either Re or Ta. Due to its valency, Re (Ta) behaves as a donor (acceptor) and reduces the Schottky barrier for electrons (holes). Since Re and Ta based transition metal dichalcogenides crystallize in either the 1T(d) or 1T phase, substitutional doping with these atom favors the stabilization of the 1T(d) phase of MoS2. Co-doping of hybrid structure results in an electronic structure, which facilities easy dissociation of excitons created in the 1H part.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000432823800002 Publication Date 2018-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 4 Open Access  
  Notes (up) ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:151451UA @ admin @ c:irua:151451 Serial 5029  
Permanent link to this record
 

 
Author Sevik, C.; Wallbank, J.R.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title Gate induced monolayer behavior in twisted bilayer black phosphorus Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 4 Issue 3 Pages 035025  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90 degrees. These calculations are complemented with a simple (k) over right arrow . (p) over right arrow model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90 degrees twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90 degrees simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V angstrom(1) out-of-plane electric field results in a similar to 60% increase in the hole effective mass along the y (x) axis and enhances the m(y)*/m(x)* (m(x)*/m(y)*) ratio as much as by a factor of 40. Our DFT and (k) over right arrow . (p) over right arrow simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000406926600001 Publication Date 2017-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 13 Open Access  
  Notes (up) ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024), ERC Synergy grant Hetero2D and the EU Graphene Flagship Project. We also thank Vladimir Fal'ko for helpful discussions. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:145151 Serial 4717  
Permanent link to this record
 

 
Author Sen, H.S.; Sahin, H.; Peeters, F.M.; Durgun, E. doi  openurl
  Title Monolayers of MoS2 as an oxidation protective nanocoating material Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 116 Issue 8 Pages 083508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS2 monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS2 monolayer is prevented by a very high diffusion barrier indicating that MoS2 can serve as a protective layer for oxidation. The analysis is extended to WS2 and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS2 and WS2 monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000342821600017 Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 52 Open Access  
  Notes (up) ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). E.D. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. H.S. is supported by an FWO Pegasus-long Marie Curie Fellowship. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:121101 Serial 2194  
Permanent link to this record
 

 
Author Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H. pdf  url
doi  openurl
  Title Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
  Year 2016 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem  
  Volume 17 Issue 17 Pages 3985-3991  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000389534800018 Publication Date 2016-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 12 Open Access  
  Notes (up) ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075  
  Call Number UA @ lucian @ c:irua:140245 Serial 4458  
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Landau levels in biased graphene structures with monolayer-bilayer interfaces Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 12 Pages 125430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000411321800003 Publication Date 2017-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes (up) ; This work was supported by the BOF-UA (Bijzonder Onderzoeks Fonds), the Canadian NSERC through Grant No. OGP0121756 (P.V.), and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:146746 Serial 4787  
Permanent link to this record
 

 
Author Ramos, I.R.O.; Ferreira, W.P.; Munarin, F.F.; Peeters, F.M. url  doi
openurl 
  Title Dynamical properties and melting of binary two-dimensional colloidal alloys Type A1 Journal article
  Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 90 Issue 6 Pages 062311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A two-dimensional (2D) binary colloidal system consisting of interacting dipoles is investigated using an analytical approach. Within the harmonic approximation we obtain the phonon spectrum of the system as a function of the composition, dipole-moment ratio, and mass ratio between the small and big particles. Through a systematic analysis of the phonon spectra we are able to determine the stability region of the different lattice structures of the colloidal alloys. The gaps in the phonon frequency spectrum, the optical frequencies in the long-wavelength limit, and the sound velocity are discussed as well. Using the modified Lindemann criterion and within the harmonic approximation we estimate the melting temperature of the sublattice generated by the big particles.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000346833500007 Publication Date 2014-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 4 Open Access  
  Notes (up) ; This work was supported by the Brazilian agencies CNPq (Program Science Without Border), CAPES, and FUNCAP (International cooperation program); the Flemish Science Foundation (FWO-Vl); the bilateral program between Flanders and Brazil (CNPq-FWO collaborating project); and the VLIR-UOS (University Development Cooperation). I.R.O.R. is grateful to Professor E. B. Barros for fruitful discussions. W. P. F. thanks Professor D. Martin A. Buzza for his illuminating comments on this manuscript. ; Approved Most recent IF: 2.366; 2014 IF: 2.288  
  Call Number UA @ lucian @ c:irua:122797 Serial 771  
Permanent link to this record
 

 
Author Carvalho, J.C.N.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Yukawa particles confined in a channel and subject to a periodic potential : ground state and normal modes Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 9 Pages 094109-094109,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider a classical system of two-dimensional (2D) charged particles, interacting through a repulsive Yukawa potential exp(-r/λ)/r, and confined in a parabolic channel that limits the motion of the particles in the y direction. Along the x direction, the particles are subject to a periodic potential. The ground-state configurations and the normal-mode spectra of the system are obtained as a function of the periodicity and strength of the periodic potential (V0) and density. An interesting set of tunable ground-state configurations are found, with first- or second-order structural transitions between them. A configuration with particles aligned, perpendicular to the x direction, in each minimum of the periodic potential is obtained for V0 larger than some critical value that has a power-law dependence on the density. The phonon spectrum of different configurations was also calculated. A localization of the modes into a small frequency interval is observed for sufficiently large strength of the periodic potential, and a tunable gap in the phonon spectrum is found as a function of V0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288119700001 Publication Date 2011-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes (up) ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88779 Serial 3928  
Permanent link to this record
 

 
Author Carvalho, J.C.N.; Nelissen, K.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Diffusion in a quasi-one-dimensional system on a periodic substrate Type A1 Journal article
  Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 85 Issue 2:1 Pages 021136-021136,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The diffusion of charged particles interacting through a repulsive Yukawa potential, exp(-r/lambda)/r, confined by a parabolic potential in the y direction and subjected to a periodic substrate potential in the x direction is investigated. Langevin dynamic simulations are used to investigate the effect of the particle density, the amplitude of the periodic substrate, and the range of the interparticle interaction potential on the diffusive behavior of the particles. We found that in general the diffusion is suppressed with increasing the amplitude of the periodic potential, but for specific values of the strength of the substrate potential a remarkable increase of the diffusion is found with increasing the periodic potential amplitude. In addition, we found a strong dependence of the diffusion on the specific arrangement of the particles, e. g., single-chain versus multichain configuration. For certain particle configurations, a reentrant behavior of the diffusion is found as a function of the substrate strength due to structural transitions in the ordering of the particles.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000300671500007 Publication Date 2012-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 9 Open Access  
  Notes (up) ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), the Flemish Science Foundation (FWO-Vl), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 2.366; 2012 IF: 2.313  
  Call Number UA @ lucian @ c:irua:97203 Serial 698  
Permanent link to this record
 

 
Author Ramos, I.R.O.; Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Bilayer crystals of charged magnetic dipoles : structure and phonon spectrum Type A1 Journal article
  Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 85 Issue 5:1 Pages 051404-051404,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the structure and phonon spectrum of a two-dimensional bilayer system of classical charged dipoles oriented perpendicular to the plane of the layers for equal density in each layer. This system can be tuned through six different crystalline phases by changing the interlayer separation or the charge and/or dipole moment of the particle. The presence of the charge on the dipole particles is responsible for the nucleation of five staggered phases and a disordered phase which are not found in the magnetic dipole bilayer system. These extra phases are a consequence of the competition between the repulsive Coulomb and the attractive dipole interlayer interaction. We present the phase diagram and determine the order of the phase transitions. The phonon spectrum of the system was calculated within the harmonic approximation, and a nonmonotonic behavior of the phonon spectrum is found as a function of the effective strength of the interparticle interaction. The stability of the different phases is determined.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000304403400002 Publication Date 2012-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 8 Open Access  
  Notes (up) ; This work was supported by the Brazilian agencies CNPq, CAPES, and FUNCAP (PRONEX grant), the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, and the CNPq-FWO collaborating project. The authors are grateful to Prof. G. Goldoni for some technical clarifications concerning Ref. [18]. ; Approved Most recent IF: 2.366; 2012 IF: 2.313  
  Call Number UA @ lucian @ c:irua:98940 Serial 233  
Permanent link to this record
 

 
Author Hai, G.-Q.; Candido, L.; Brito, B.G.A.; Peeters, F.M. url  doi
openurl 
  Title Electron pairing: from metastable electron pair to bipolaron Type A1 Journal article
  Year 2018 Publication Journal of physics communications Abbreviated Journal  
  Volume 2 Issue 3 Pages Unsp 035017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the shell structure in atoms and the significant correlation within electron pairs, we distinguish the exchange-correlation effects between two electrons of opposite spins occupying the same orbital from the average correlation among many electrons in a crystal. In the periodic potential of the crystal with lattice constant larger than the effective Bohr radius of the valence electrons, these correlated electron pairs can form a metastable energy band above the corresponding single-electron band separated by an energy gap. In order to determine if these metastable electron pairs can be stabilized, we calculate the many-electron exchange-correlation renormalization and the polaron correction to the two-band system with single electrons and electron pairs. We find that the electron-phonon interaction is essential to counterbalance the Coulomb repulsion and to stabilize the electron pairs. The interplay of the electron-electron and electron-phonon interactions, manifested in the exchange-correlation energies, polaron effects, and screening, is responsible for the formation of electron pairs (bipolarons) that are located on the Fermi surface of the single-electron band.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000434996900022 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-6528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes (up) ; This work was supported by the Brazilian agencies FAPESP and CNPq. GQH would like to thank Prof. Bangfen Zhu for his invaluable support and expert advice. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:152079UA @ admin @ c:irua:152079 Serial 5022  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: