toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Michiels, R.; Engelmann, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis for CO2Hydrogenation: Unlocking New Pathways toward CH3OH Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 47 Pages 25859-25872  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract We developed a microkinetic model to reveal the effects of plasma-generated radicals, intermediates, and vibrationally excited species on the catalytic hydrogenation of CO2 to CH3OH on a Cu(111) surface. As a benchmark, we first present the mechanisms of thermal catalytic CH3OH formation. Our model predicts that the reverse water-gas shift reaction followed by CO hydrogenation, together with the formate path, mainly contribute to CH3OH formation in thermal catalysis. Adding plasma-generated radicals and intermediates results in a higher CH3OH turnover frequency (TOF) by six to seven orders of magnitude, showing the potential of plasma-catalytic CO2 hydrogenation into CH3OH, in accordance with the literature. In addition, CO2 vibrational excitation further increases the CH3OH TOF, but the effect is limited due to relatively low vibrational temperatures under typical plasma catalysis conditions. The predicted increase in CH3OH formation by plasma catalysis is mainly attributed to the increased importance of the formate path. In addition, the conversion of plasma-generated CO to HCO* and subsequent HCOO* or H2CO* formation contribute to CH3OH formation. Both pathways bypass the HCOO* formation from CO2, which is the main bottleneck in the process. Hence, our model points toward the important role of CO, but also O, OH, and H radicals, as they influence the reactions that consume CO2 and CO. In addition, our model reveals that the H pressure should not be smaller than ca. half of the O pressure in the plasma as this would cause O* poisoning, which would result in very small product TOFs. Thus, plasma conditions should be targeted with a high CO and H content as this is favorable for CH3OH formation, while the O content should be minimized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595545800023 Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access: Available from 15.07.2021  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; We acknowledge the financial support from the Fund for Scientific Research (FWO-Vlaanderen; grant ID 1114921N) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 − SCOPE ERC Synergy project) as well as from the DOC-PRO3 and the TOPBOF projects of the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:173864 Serial 6443  
Permanent link to this record
 

 
Author Spanoghe, J.; Grunert, O.; Wambacq, E.; Sakarika, M.; Papini, G.; Alloul, A.; Spiller, M.; Derycke, V.; Stragier, L.; Verstraete, H.; Fauconnier, K.; Verstraete, W.; Haesaert, G.; Vlaeminck, S.E. url  doi
openurl 
  Title Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer Type A1 Journal article
  Year 2020 Publication Microbial biotechnology Abbreviated Journal Microb. Biotechnol.  
  Volume Issue Pages 1-13  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery. Microbial fertilizers (MFs) constitute an emerging class of organic fertilizers and consist of dried microbial biomass, for instance produced on effluents from the food and beverage industry. In this study, three groups of organisms were tested as MFs: a high-rate consortium aerobic bacteria (CAB), the microalga Arthrospira platensis (‘Spirulina’) and a purple non-sulfur bacterium (PNSB) Rhodobacter sp. During storage as dry products, the MFs showed light hygroscopic activity, but the mineral and organic fractions remained stable over a storage period of 91 days. For biological tests, a reference organic fertilizer (ROF) was used as positive control, and a commercial organic growing medium (GM) as substrate. The mineralization patterns without and with plants were similar for all MFs and ROF, with more than 70% of the organic nitrogen mineralized in 77 days. In a first fertilization trial with parsley, all MFs showed equal performance compared to ROF, and the plant fresh weight was even higher with CAB fertilization. CAB was subsequently used in a follow-up trial with petunia and resulted in elevated plant height, comparable chlorophyll content and a higher amount of flowers compared to ROF. Finally, a cost estimation for packed GM with supplemented fertilizer indicated that CAB and a blend of CAB/PNSB (85%/15%) were most cost competitive, with an increase of 6% and 7% in cost compared to ROF. In conclusion, as biobased fertilizers, MFs have the potential to contribute to sustainable plant nutrition, performing as good as a commercially available organic fertilizer, and to a circular economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000563539700001 Publication Date 2020-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes The authors would like to kindly acknowledge (i) the MIP i‐Cleantech Flanders (Milieu‐innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD) for financial support, (ii) the DOCPRO4 project ‘PurpleTech’, funded by the BOF (Bijzonder onderzoeksfonds; Special research fund) from the University of Antwerp for financially supporting J.S., (iii) all MicroNOD partners, including the University of Antwerp, Ghent University, AgrAqua, Greenyard Horticulture and Avecom; and (iv) all steering committee members, including Greenyard Frozen, Agristo, AVBS, Vlakwa, het Innovatiesteunpunt, VCM and OVAM. Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number DuEL @ duel @c:irua:167595 Serial 6357  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6367  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6368  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Props, R.; Carvajal-Arroyo, J.M.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Adaptation and characterization of thermophilic anammox in bioreactors Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 172 Issue Pages 115462  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Anammox, the oxidation of ammonium with nitrite, is a key microbial process in the nitrogen cycle. Under mesophilic conditions (below 40 °C), it is widely implemented to remove nitrogen from wastewaters lacking organic carbon. Despite evidence of the presence of anammox bacteria in high-temperature environments, reports on the cultivation of thermophilic anammox bacteria are limited to a short-term experiment of 2 weeks. This study showcases the adaptation of a mesophilic inoculum to thermophilic conditions, and its characterization. First, an attached growth technology was chosen to obtain the process. In an anoxic fixed-bed biofilm bioreactor (FBBR), a slow linear temperature increase from 38 to over 48 °C (0.05–0.07 °C d−1) was imposed to the community over 220 days, after which the reactor was operated at 48 °C for over 200 days. Maximum total nitrogen removal rates reached up to 0.62 g N L−1 d−1. Given this promising performance, a suspended growth system was tested. The obtained enrichment culture served as inoculum for membrane bioreactors (MBR) operated at 50 °C, reaching a maximum total nitrogen removal rate of 1.7 g N L−1 d−1 after 35 days. The biomass in the MBR had a maximum specific anammox activity of 1.1 ± 0.1 g NH4+-N g−1 VSS d−1, and the growth rate was estimated at 0.075–0.19 d−1. The thermophilic cultures displayed nitrogen stoichiometry ratios typical for mesophilic anammox: 0.93–1.42 g NO2--Nremoved g−1 NH4+-Nremoved and 0.16–0.35 g NO3--Nproduced g−1 NH4+-Nremoved. Amplicon and Sanger sequencing of the 16S rRNA genes revealed a disappearance of the original “Ca. Brocadia” and “Ca. Jettenia” taxa, yielding Planctomycetes members with only 94–95% similarity to “Ca. Brocadia anammoxidans” and “Ca. B. caroliniensis”, accounting for 45% of the bacterial FBBR community. The long-term operation of thermophilic anammox reactors and snapshot views on the nitrogen stoichiometry, kinetics and microbial community open up the development path of thermophilic partial nitritation/anammox. A first economic assessment highlighted that treatment of sludge reject water from thermophilic anaerobic digestion of sewage sludge may become attractive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517663600014 Publication Date 2020-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 5 Open Access  
  Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding T.G.L.V., (ii) Ghent University (BOFDOC2015000601) and the Belgian Nuclear Research Centre (SCK.CEN) for funding R.P., (iii) Bart De Gusseme from Farys/UGent for providing the hollow fiber membranes, (iv) Tim Lacoere for performing the DNA extraction and data processing of the Sanger sequencing and 16S rRNA gene amplicon sequencing data, (v) Tim Hendrickx from Paques BV for providing the inoculum, (vi) Bert Bundervoet and Wim Groen in 't Woud from Colsen for the valuable input on the economic assessment and (vii) Joop Colsen, Stijn Van Hulle, Mark Van Loosdrecht, Erik Smolders and Leen De Gelder for their constructive discussions on this work. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:165392 Serial 6449  
Permanent link to this record
 

 
Author De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. pdf  doi
openurl 
  Title Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 185 Issue Pages 116223  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery from source-separated urine can shorten nutrient cycles on Earth and is essential in regenerative life support systems for deep-space exploration. In this study, a robust two-stage, energy-efficient, gravity-independent urine treatment system was developed to transform fresh real human urine into a stable nutrient solution. In the first stage, up to 85% of the COD was removed in a microbial electrolysis cell (MEC), converting part of the energy in organic compounds (27-46%) into hydrogen gas and enabling full nitrogen recovery by preventing nitrogen losses through denitrification in the second stage. Besides COD removal, all urea was hydrolysed in the MEC, resulting in a stream rich in ammoniacal nitrogen and alkalinity, and low in COD. This stream was fed into a membrane-aerated biofilm reactor (MABR) in order to convert the volatile and toxic ammoniacal nitrogen to non-volatile nitrate by nitrification. Bio-electrochemical pre-treatment allowed to recover all nitrogen as nitrate in the MABR at a bulk-phase dissolved oxygen level below 0.1 mg O2 L-1. In contrast, feeding the MABR directly with raw urine (omitting the first stage), at the same nitrogen loading rate, resulted in nitrogen loss (18%) due to denitrification. The MEC and MABR were characterised by very distinct and diverse microbial communities. While (strictly) anaerobic genera, such as Geobacter (electroactive bacteria), Thiopseudomonas, a Lentimicrobiaceae member, Alcaligenes and Proteiniphilum prevailed in the MEC, the MABR was dominated by aerobic genera, including Nitrosomonas (a known ammonium oxidiser), Moheibacter and Gordonia. The two-stage approach yielded a stable nitrate-rich, COD-low nutrient solution, suitable for plant and microalgae cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580639800035 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited Open Access  
  Notes Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:170524 Serial 6461  
Permanent link to this record
 

 
Author Tian, F.; Wang, Y.; Sandhu, H.S.; Gielis, J.; Shi, P. pdf  url
doi  openurl
  Title Comparison of seed morphology of two ginkgo cultivars Type A1 Journal article
  Year 2020 Publication Journal Of Forestry Research Abbreviated Journal J Forestry Res  
  Volume 31 Issue 3 Pages 751-758  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Ginkgo biloba L. is a precious relic tree species with important economic value. Seeds, as a vital reproductive organ of plants, can be used to distinguish cultivars of the species. We chose 400 seeds from two cultivars of ginkgo (Fozhi and Maling; 200 seeds for each cultivar) as the study material and used the Gielis equation to fit the projected shape of these seeds. The coefficients of variation (CV) in root mean squared errors (RMSE) obtained from the fitted data were used to compare the level of inter-cultivar variations in seed shape. We also used the covariance analysis to compare the allometric relationships between seed weights and projected areas of these two cultivars. The Gielis equation fitted well the seed shapes of two ginkgo cultivars. The lower CV in RMSE of cultivar Fozhi than Maling indicated a less symmetrical seed shape in the latter than the former. The bootstrap percentile method showed that the seed shape differences between the two cultivars were significant. However, there was no significant difference in the exponents between the seed weights and the projected areas of these two cultivars. Overall, the significant differences in shapes between the seeds of two ginkgo cultivars were well explained by the Gielis equation; this model can be further extended to compare morphological differences in other ginkgo cultivars, and even for plant seeds or animal eggs that have similar oval shapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529367600005 Publication Date 2018-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1007-662x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 3; 2020 IF: 0.774  
  Call Number UA @ admin @ c:irua:154987 Serial 6474  
Permanent link to this record
 

 
Author Muys, M.; Papini, G.; Spiller, M.; Sakarika, M.; Schwaiger, B.; Lesueur, C.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 307 Issue Pages 123242-11  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528857700051 Publication Date 2020-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; The authors kindly thank (i) i-Cleantech Flanders MIP (Milieu-innovatieplatform) for financial support through the MicroNOD project (Microbial Nutrients on Demand), (ii) Erik Fransen (StatUA) for the helpful advice on the statistical analysis, and (iii) Ilse De Leersnyder and Diederik Leenknecht for assistance with the EAA analysis. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:169452 Serial 6491  
Permanent link to this record
 

 
Author Sui, Y.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dunaliella microalgae for nutritional protein : an undervalued asset Type A1 Journal article
  Year 2020 Publication Trends in biotechnology : regular edition Abbreviated Journal  
  Volume 38 Issue 1 Pages 10-12  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract β-carotene production using Dunaliella microalgae is established, yet their potential as a source of protein for food and feed applications appears to be overlooked. The rich protein content and nutritional tunability of Dunaliella make these algae intriguing sources of sustainable protein. Thus, it is of societal interest to exploit these promising proteinaceous Dunaliella traits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503376700004 Publication Date 2019-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1879-3096; 0167-7799 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.3 Times cited 2 Open Access  
  Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Clean-tech Flanders (Milieu-innovatieplatform; Environment Innovation Platform) project Microbial Nutrients on Demand (MicroNOD). Dr Michele Moretti from University of Antwerp is acknowledged for proofreading the manuscript. ; Approved Most recent IF: 17.3; 2020 IF: 11.126  
  Call Number UA @ admin @ c:irua:164903 Serial 6495  
Permanent link to this record
 

 
Author Zhu, W.; Li, J.; Wang, B.; Chen, G. pdf  doi
openurl 
  Title Enhancement of pollutants removal from saline wastewater through simultaneous anammox and denitrification (SAD) process with glycine betaine addition Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 315 Issue Pages 123784  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Enhanced pollutants removal from saline wastewater was investigated in simultaneous anammox and denitrification (SAD) process with glycine betaine (GB) addition. Long-term operation indicated the optimal GB dose was around 0.4 mM, which enhanced both anammox and denitrifying activity by 30% and 45%, respectively. The total nitrogen and organic removal rates were 0.38 +/- 0.2 kgN/m(3)/d and 0.34 +/- 0.3 kgCOD/m(3)/d, respectively, which increased by 34.5% and 20.5%. Independent of GB dose, denitrifying activity was promoted, but anammox activity was drastically deteriorated after excessive GB addition. The optimal GB dose predicated by both Gaussian and Modified-Boltzmann models were 0.42-0.45 mM. Besides, the bacterial activity recovery after excessive GB addition could be analyzed by the Modified-Boltzmann model. With 1.5 mM GB, granular floatation occurred since numerous gas bubbles were inside the granules. In general, exogenous GB addition can mitigate salinity inhibition and promote pollutants removal from saline wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560717900013 Publication Date 2020-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was financially supported by the National Natural Science Foundation of China (51878362), China Postdoctoral Science Foundation (2017M610410, 2018T110665) and State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-environmental Sciences, Chinese Academy of Sciences) (18K02ESPCR). The authors also thank Dr. Yuan Hou and Dr. Chao Fang from University of Antwerp for numerous discussion. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:171118 Serial 6508  
Permanent link to this record
 

 
Author Shi, P.; Ratkowsky, D.A.; Gielis, J. url  doi
openurl 
  Title The generalized Gielis geometric equation and its application Type A1 Journal article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 4 Pages 645-10  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural shapes exhibit surprising symmetry and can be described by the Gielis equation, which has several classical geometric equations (for example, the circle, ellipse and superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse shapes due to limitations of its power-law hypothesis. In the present study, we propose a generalized version by introducing a link function. Thus, the original Gielis equation can be deemed to be a special case of the generalized Gielis equation (GGE) with a power-law link function. The link function can be based on the morphological features of different objects so that the GGE is more flexible in fitting the data of the shape than its original version. The GGE is shown to be valid in depicting the shapes of some starfish and plant leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540222200156 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 4 Open Access  
  Notes ; This research was funded by the Jiangsu Government Scholarship for Overseas Studies (grant number: JS-2018-038). ; Approved Most recent IF: 2.7; 2020 IF: 1.457  
  Call Number UA @ admin @ c:irua:168141 Serial 6526  
Permanent link to this record
 

 
Author Balemans, S.; Vlaeminck, S.E.; Torfs, E.; Hartog, L.; Zaharova, L.; Rehman, U.; Nopens, I. url  doi
openurl 
  Title The impact of local hydrodynamics on high-rate activated sludge flocculation in laboratory and full-scale reactors Type A1 Journal article
  Year 2020 Publication Processes Abbreviated Journal  
  Volume 8 Issue 2 Pages 131-18  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High rate activated sludge (HRAS) processes have a high potential for carbon and energy recovery from sewage, yet they suffer frequently from poor settleability due to flocculation issues. The process of flocculation is generally optimized using jar tests. However, detailed jar hydrodynamics are often unknown, and average quantities are used, which can significantly differ from the local conditions. The presented work combined experimental and numerical data to investigate the impact of local hydrodynamics on HRAS flocculation for two different jar test configurations (i.e., radial vs. axial impellers at different impeller velocities) and compared the hydrodynamics in these jar tests to those in a representative section of a full scale reactor using computational fluid dynamics (CFD). The analysis showed that the flocculation performance was highly influenced by the impeller type and its speed. The axial impeller appeared to be more appropriate for floc formation over a range of impeller speeds as it produced a more homogeneous distribution of local velocity gradients compared to the radial impeller. In contrast, the radial impeller generated larger volumes (%) of high velocity gradients in which floc breakage may occur. Comparison to local velocity gradients in a full scale system showed that also here, high velocity gradients occurred in the region around the impeller, which might significantly hamper the HRAS flocculation process. As such, this study showed that a model based approach was necessary to translate lab scale results to full scale. These new insights can help improve future experimental setups and reactor design for improved HRAS flocculation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000521167900088 Publication Date 2020-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9717 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; This research was funded by Research Foundation Flanders (FWO SB Grant 1.S.705.18N). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165420 Serial 6543  
Permanent link to this record
 

 
Author Lu, Y.; Liu, Y.-X.; He, L.; Wang, L.-Y.; Liu, X.-L.; Liu, J.-W.; Li, Y.-Z.; Tian, G.; Zhao, H.; Yang, X.-H.; Liu, J.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.; Su, B.-L. doi  openurl
  Title Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO₂ for enhancement of carrier transport Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue 15 Pages 8364-8370  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 degrees C/Ar and 350 degrees C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H-2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new “interfacial co-existence of oxygen and titanium vacancies” phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529201500029 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (51861135313, U1663225, U1662134, and 51472190), the International Science & Technology Cooperation Program of China (2015DFE52870), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the Fundamental Research Funds for the Central Universities (19lgpy113 and 19lgzd16), the Jilin Province Science and Technology Development Plan (20180101208JC) and the Hubei Provincial Natural Science Foundation of China (2016CFA033). ; Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ admin @ c:irua:169578 Serial 6550  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal Arroyo, J.M.; Van Tendeloo, M.; Chatzigiannidou, I.; Molina, J.; Nop, S.; Boon, N.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Mainstream partial nitritation/anammox with integrated fixed-film activated sludge : combined aeration and floc retention time control strategies limit nitrate production Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 314 Issue Pages 123711-10  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Implementation of mainstream partial nitritation/anammox (PN/A) can lead to more sustainable and cost-effective sewage treatment. For mainstream PN/A reactor, an integrated fixed-film activated sludge (IFAS) was operated (26 °C). The effects of floccular aerobic sludge retention time (AerSRT_floc), a novel aeration strategy, and N-loading rate were tested to optimize the operational strategy. The best performance was observed with a low, but sufficient AerSRTfloc (~7d) and continuous aeration with two alternating dissolved oxygen setpoints: 10 min at 0.07–0.13 mg O2 L−1 and 5 min at 0.27–0.43 mg O2 L−1. Nitrogen removal rates were 122 ± 23 mg N L−1 d−1, and removal efficiencies 73 ± 13%. These conditions enabled flocs to act as nitrite sources while the carriers were nitrite sinks, with low abundance of nitrite oxidizing bacteria. The operational strategies in the source-sink framework can serve as a guideline for successful operation of mainstream PN/A reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558601200004 Publication Date 2020-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 3 Open Access  
  Notes ; D.S. was supported by a Ph.D. grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWTVlaanderen, SB-131769). M.V.T. was supported by a Ph.D. SB Fellowship from the Research Foundation -Flanders (FWO-Vlaanderen, 1S03218N). ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:170054 Serial 6559  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Boon, N.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Pioneering on single-sludge nitrification/denitrification at 50 °C Type A1 Journal article
  Year 2020 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 252 Issue Pages 126527-10  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Thermophilic nitrification has been proven in lab-scale bioreactors at 50 °C. The challenge is now to develop a solution for thermophilic nitrogen removal, integrating nitrification with denitrification and aerobic carbon removal. This pioneering study aimed at a single-sludge nitrification/denitrification process at 50 °C, through exposing nitrification in a step by step approach to anoxia and/or organics. Firstly, recurrent anoxia was tolerated by a nitrifying community during long-term membrane bioreactor (MBR) operation (85 days), with high ammonium oxidation efficiencies (>98%). Secondly, five organic carbon sources did not affect thermophilic ammonium and nitrite oxidation rates in three-day aerobic batch flask incubations. Moving to long-term tests with sequencing batch reactors (SBR) and MBR (>250 days), good nitrification performance was obtained at increasing COD/Ninfluent ratios (0, 0.5, 1, 2 and 3). Thirdly, combining nitrification, recurrent anoxia and presence of organic carbon resulted in a nitrogen removal efficiency of 92–100%, with a COD/Nremoved of 4.8 ± 0.6 and a nitrogen removal rate of 50 ± 14 mg N g−1 VSS d−1. Overall, this is the first proof of principle thermophilic nitrifiers can cope with redox fluctuations (aerobic/anoxic) and the aerobic or anoxic presence of organic carbon, can functionally co-exist with heterotrophs and that single-sludge nitrification/denitrification can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000534377000121 Publication Date 2020-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.8 Times cited Open Access  
  Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding Tom G.L. Vandekerckhove, (ii) Wouter Peleman and Zoe Pesonen for practical support during their master thesis, (iii) Jolien De Paepe for assisting in the reactor operation, and (iv) Jo De Vrieze and Tim Lacoere for their help with qPCR and 16S rRNA gene amplicon sequencing. ; Approved Most recent IF: 8.8; 2020 IF: 4.208  
  Call Number UA @ admin @ c:irua:167324 Serial 6581  
Permanent link to this record
 

 
Author Sakarika, M.; Spanoghe, J.; Sui, Y.; Wambacq, E.; Grunert, O.; Haesaert, G.; Spiller, M.; Vlaeminck, S.E. url  doi
openurl 
  Title Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment Type A1 Journal article
  Year 2020 Publication Microbial biotechnology Abbreviated Journal  
  Volume 13 Issue 5 Pages 1336-1365  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulphur bacteria (PNSB) are phototrophic microorganisms, which increasingly gain attention in plant production due to their ability to produce and accumulate high-value compounds that are beneficial for plant growth. Remarkable features of PNSB include the accumulation of polyphosphate, the production of pigments and vitamins and the production of plant growth-promoting substances (PGPSs). Scattered case studies on the application of PNSB for plant cultivation have been reported for decades, yet a comprehensive overview is lacking. This review highlights the potential of using PNSB in plant production, with emphasis on three key performance indicators (KPIs): fertilization, resistance to stress (biotic and abiotic) and environmental benefits. PNSB have the potential to enhance plant growth performance, increase the yield and quality of edible plant biomass, boost the resistance to environmental stresses, bioremediate heavy metals and mitigate greenhouse gas emissions. Here, the mechanisms responsible for these attributes are discussed. A distinction is made between the use of living and dead PNSB cells, where critical interpretation of existing literature revealed the better performance of living cells. Finally, this review presents research gaps that remain yet to be elucidated and proposes a roadmap for future research and implementation paving the way for a more sustainable crop production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482388700001 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 10 Open Access  
  Notes ; The authors would like to acknowledge: (i) the MIP i-Cleantech Flanders (Milieu-innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD) for financial support; (ii) the China Scholarship Council for financially supporting Y. Sui (File No. 201507650015); (iii) the DOCPRO4 project 'PurpleTech', funded by the BOF (Bijzonder onderzoeksfonds); Special research fund from the University of Antwerp for financially supporting J. Spanoghe, and (iv) E. Koutsoukou for constructing components of Figs 5 and 6. ; Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:162876 Serial 6587  
Permanent link to this record
 

 
Author Capson-Tojo, G.; Batstone, D.J.; Grassino, M.; Vlaeminck, S.E.; Puyol, D.; Verstraete, W.; Kleerebezem, R.; Oehmen, A.; Ghimire, A.; Pikaar, I.; Lema, J.M.; Hülsen, T.; Grassino, M.; Hulsen, T. pdf  doi
openurl 
  Title Purple phototrophic bacteria for resource recovery : challenges and opportunities Type A1 Journal article
  Year 2020 Publication Biotechnology Advances Abbreviated Journal Biotechnol Adv  
  Volume 43 Issue Pages 107567-27  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a “removal and disposal” approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved−1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3–2.2 and 0.1–0.3 $·kgdry biomass−1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5–2.0 $·kg−1) appears as a promising valorisation route.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000572355300007 Publication Date 2020-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-9750 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16 Times cited 6 Open Access  
  Notes ; Tim Hulsen acknowledges The Queensland Government, GHD, Ridley, Aquatec Maxcon and Ingham for financial support as part of an Advanced Queensland Industry Fellowship (061-2018). This project is supported by Meat and Livestock Australia through funding from the Australian Government Department of Agriculture, Water and the Environment (Australia; RnD4Profit-16-03-002) as part of its Rural R&D for Profit program and the partners. Gabriel Capson-Tojo is grateful to the Xunta de Galicia (Spain) for his postdoctoral fellowship (ED481B-2018/017). The authors acknowledge Eucalyp, Freepick, Good Ware, Nhor Phai, photo3idea_studio, smalllikea and Smashicons for the icons used (taken from www.flaticon.com). ; Approved Most recent IF: 16; 2020 IF: 10.597  
  Call Number UA @ admin @ c:irua:169736 Serial 6588  
Permanent link to this record
 

 
Author Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N₂O emission for mainstream partial nitritation/anammox Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 9 Pages 5822-5831  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system’s nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530651900057 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access  
  Notes ; This study was supported by the European Commission Horizon 2020 Program through Marie Curie Individual Fellowship (N2OPNA-708592). W. V.B. and S. L. were supported by grants from the Flanders Innovation and Entrepreneurship Agency [IWT-SBO ProCure project (IWT/50052) by IWT-SBO ProCure and internal Uantwerpen funding]. The authors are grateful to the research collaboration. The authors declare no conflict of interest. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:168829 Serial 6596  
Permanent link to this record
 

 
Author Cerruti, M.; Stevens, B.; Ebrahimi, S.; Alloul, A.; Vlaeminck, S.E.; Weissbrodt, D.G. url  doi
openurl 
  Title Enrichment and aggregation of purple non-sulfur bacteria in a mixed-culture sequencing-batch photobioreactor for biological nutrient removal from wastewater Type A1 Journal article
  Year 2020 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 8 Issue Pages 557234  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mixed-culture biotechnologies are widely used to capture nutrients from wastewater. Purple non-sulfur bacteria (PNSB), a guild of anoxygenic photomixotrophic organisms, rise interest for their ability to directly assimilate nutrients in the biomass. One challenge targets the aggregation and accumulation of PNSB biomass to separate it from the treated water. Our aim was to enrich and produce a concentrated, fast-settling PNSB biomass with high nutrient removal capacity in a 1.5-L, stirred-tank, anaerobic sequencing-batch photobioreactor (SBR). PNSB were rapidly enriched after inoculation with activated sludge at 0.1 gVSS L–1 in a first batch of 24 h under continuous irradiance of infrared (IR) light (>700 nm) at 375 W m–2, with Rhodobacter reaching 54% of amplicon sequencing read counts. SBR operations with decreasing hydraulic retention times (48 to 16 h, i.e., 1–3 cycles d–1) and increasing volumetric organic loading rates (0.2–1.3 kg COD d–1 m–3) stimulated biomass aggregation, settling, and accumulation in the system, reaching as high as 3.8 g VSS L–1. The sludge retention time (SRT) increased freely from 2.5 to 11 days. Acetate, ammonium, and orthophosphate were removed up to 96% at a rate of 1.1 kg COD d–1 m–3, 77% at 113 g N d–1 m–3, and 73% at 15 g P d–1 m–3, respectively, with COD:N:P assimilation ratio of 100:6.7:0.9 m/m/m. SBR regime shifts sequentially selected for Rhodobacter (90%) under shorter SRT and non-limiting concentration of acetate during reaction phases, for Rhodopseudomonas (70%) under longer SRT and acetate limitation during reaction, and Blastochloris (10%) under higher biomass concentrations, underlying competition for substrate and photons in the PNSB guild. With SBR operations we produced a fast-settling biomass, highly (>90%) enriched in PNSB. A high nutrient removal was achieved by biomass assimilation, reaching the European nutrient discharge limits. We opened further insights on the microbial ecology of PNSB-based processes for water resource recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603626100001 Publication Date 2021-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:174085 Serial 7921  
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I. url  doi
openurl 
  Title The general case of cutting of Generalized Möbius-Listing surfaces and bodies Type A1 Journal article
  Year 2020 Publication 4Open Abbreviated Journal  
  Volume 3 Issue Pages 7-48  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The original motivation to study Generalized Möbius-Listing GML surfaces and bodies was the observation that the solution of boundary value problems greatly depends on the domains. Since around 2010 GML’s were merged with (continuous) Gielis Transformations, which provide a unifying description of geometrical shapes, as a generalization of the Pythagorean Theorem. The resulting geometrical objects can be used for modeling a wide range of natural shapes and phenomena. The cutting of GML bodies and surfaces, with the Möbius strip as one special case, is related to the field of knots and links, and classifications were obtained for GML with cross sectional symmetry of 2, 3, 4, 5 and 6. The general case of cutting GML bodies and surfaces, in particular the number of ways of cutting, could be solved by reducing the 3D problem to planar geometry. This also unveiled a range of connections with topology, combinatorics, elasticity theory and theoretical physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2557-0250 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174471 Serial 7992  
Permanent link to this record
 

 
Author Huang, W.; Li, Y.; Niklas, K.J.; Gielis, J.; Ding, Y.; Cao, L.; Shi, P. url  doi
openurl 
  Title A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo Type A1 Journal article
  Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 12 Issue 12 Pages 2073  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many cross-sectional shapes of plants have been found to approximate a superellipse rather than an ellipse. Square bamboos, belonging to the genus Chimonobambusa (Poaceae), are a group of plants with round-edged square-like culm cross sections. The initial application of superellipses to model these culm cross sections has focused on Chimonobambusa quadrangularis (Franceschi) Makino. However, there is a need for large scale empirical data to confirm this hypothesis. In this study, approximately 750 cross sections from 30 culms of C. utilis were scanned to obtain cross-sectional boundary coordinates. A superellipse exhibits a centrosymmetry, but in nature the cross sections of culms usually deviate from a standard circle, ellipse, or superellipse because of the influences of the environment and terrain, resulting in different bending and torsion forces during growth. Thus, more natural cross-sectional shapes appear to have the form of a deformed superellipse. The superellipse equation with a deformation parameter (SEDP) was used to fit boundary data. We find that the cross-sectional shapes (including outer and inner rings) of C. utilis can be well described by SEDP. The adjusted root-mean-square error of SEDP is smaller than that of the superellipse equation without a deformation parameter. A major finding is that the cross-sectional shapes can be divided into two types of superellipse curves: hyperellipses and hypoellipses, even for cross sections from the same culm. There are two proportional relationships between ring area and the product of ring length and width for both the outer and inner rings. The proportionality coefficients are significantly different, as a consequence of the two different superellipse types (i.e., hyperellipses and hypoellipses). The difference in the proportionality coefficients between hyperellipses and hypoellipses for outer rings is greater than that for inner rings. This work informs our understanding and quantifying of the longitudinal deformation of plant stems for future studies to assess the influences of the environment on stem development. This work is also informative for understanding the deviation of natural shapes from a strict rotational symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602546300001 Publication Date 2020-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2020 IF: 1.457  
  Call Number UA @ admin @ c:irua:174472 Serial 8622  
Permanent link to this record
 

 
Author Do, N.H.; Pham, H.H.; Le, T.M.; Lauwaert, J.; Diels, L.; Verberckmoes, A.; Do, N.H.N.; Tran, V.T.; Le, P.K. url  doi
openurl 
  Title The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw Type A1 Journal article
  Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 10 Issue 1 Pages 21263  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Difficulties in the production of lignin from rice straw because of high silica content in the recovered lignin reduce its recovery yield and applications as bio-fuel and aromatic chemicals. Therefore, the objective of this study is to develop a novel method to reduce the silica content in lignin from rice straw more effectively and selectively. The method is established by monitoring the precipitation behavior as well as the chemical structure of precipitate by single-stage acidification at different pH values of black liquor collected from the alkaline treatment of rice straw. The result illustrates the significant influence of pH on the physical and chemical properties of the precipitate and the supernatant. The simple two-step acidification of the black liquor at pilot-scale by sulfuric acid 20w/v% is applied to recover lignin at pH 9 and pH 3 and gives a percentage of silica removal as high as 94.38%. Following the developed process, the high-quality lignin could be produced from abundant rice straw at the industrial-scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608856300027 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved Most recent IF: 4.6; 2020 IF: 4.259  
  Call Number UA @ admin @ c:irua:176054 Serial 8655  
Permanent link to this record
 

 
Author Ma, Z.; Perreault, P.; Pelegrin, D.C.; Boffito, D.C.; Patience, G.S. pdf  doi
openurl 
  Title Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2FeCralloy catalysts Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 380 Issue Pages 122470-11  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Converting waste associated natural gas from oil fields is uneconomic with current gas-to-liquid technology. Micro Gas-to-Liquids technology ( GtL) combines process intensification and numbering up economics to reduce capital costs to convert flared and vented natural gas to value-added synthetic fuel: Milli-second contact times in the catalytic partial oxidation of methane (CPOX) integrated with a tandem Fischer-Tropsch (FT) step meets the economic constraints together with remote process control. FeCralloy knitted fibres with high thermal conductivity and low pressure drop, resist thermal and mechanical stresses in the high pressure CPOX step. The FeCralloy catalysts are free of pre-reduction treatments. We deposited Pt and/or CeO2 over the fibre surface via solution combustion synthesis. Methane conversion was higher at ambient pressure compared to 2 MPa while the Pt/CeO2 FeCralloy was relatively inert from 0.1 MPa to 2 MPa. However, both catalysts demonstrated high activity in quasi-chemical looping partial oxidation of methane: during the reduction step while feeding methane, an on-line mass spectrometer only detected H2 while in the oxidation step it detected predominantly CO. Kinetic modeling of the oxidation-reduction cycles suggests that the reaction follows a direct mechanism to produce CO and H2 rather than an indirect mechanism that first produces CO2 and H2O followed by reforming.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record  
  Impact Factor 15.1 Times cited Open Access  
  Notes Approved Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number UA @ admin @ c:irua:162119 Serial 8665  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Eimer, D.A.; Idris, Z. url  doi
openurl 
  Title Viscosity measurement and correlation of unloaded and CO₂-loaded aqueous solutions of N-methyldiethanolamine + 2-amino-2-methyl-1-propanol Type A1 Journal article
  Year 2020 Publication Journal Of Chemical And Engineering Data Abbreviated Journal J Chem Eng Data  
  Volume 65 Issue 6 Pages 3072-3078  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work contributes to new and complementary experimental viscosity data for blended amine mixtures of aqueous N-methyldiethanolamine + 2-amino-2-methyl-1-propanol (MDEA + AMP) solutions with and without CO2 at different temperatures and mass fractions. For the unloaded MDEA + AMP solutions, measurements were conducted with total amine mass fractions ranging from 0.30 to 0.60. In the case of CO2-loaded aqueous MDEA + AMP solutions, experiments were performed at CO2 loadings ranging from 0.11 to 0.80. Proposed correlations were used to represent viscosity at the unloaded and CO2-loaded solutions within experimental uncertainty.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541740100016 Publication Date 2020-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9568; 1520-5134 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.6 Times cited Open Access  
  Notes Approved Most recent IF: 2.6; 2020 IF: 2.323  
  Call Number UA @ admin @ c:irua:180363 Serial 8737  
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Van Winckel, T.; Halet, D.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Borregán-Ochando, E.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Bottle or tap? Toward an integrated approach to water type consumption Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 173 Issue Pages 115578-10  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract While in many countries, people have access to cheap and safe potable tap water, the global consumption of bottled water is rising. Flanders, Belgium, where this study is located, has an exceptionally high consumption of bottled water per capita. However, in the interest of resource efficiency and global environmental challenges, the consumption of tap water is preferable. To our knowledge, an integrated analysis of the main reasons why people consume tap and bottled water is absent in Flanders, Belgium. Using Flemish survey data (N = 2309), we first compared tap and bottled water consumers through bivariate correlation analysis. Subsequently, path modelling techniques were used to further investigate these correlations. Our results show that bottled water consumption in Flanders is widespread despite environmental and financial considerations. For a large part, this is caused by negative perceptions about tap water. Many consumers consider it unhealthy, unsafe and prefer the taste of bottled water. Furthermore, we found that the broader social context often inhibits the consumption of tap water. On the one hand, improper infrastructures (e.g. lead piping) can limit access to potable tap water. On the other hand, social norms exist that promote bottled water. Lastly, results suggest that the consumption of bottled water is most common among men, older people and less educated groups. We conclude that future research and policy measures will benefit from an approach that integrates all behavioural aspects associated with water type consumption. This will enable both governments and tap water companies to devise more effective policies to manage and support tap water supply networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523569000012 Publication Date 2020-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 2 Open Access  
  Notes ; This was supported by a grant from Water-link. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:165873 Serial 6464  
Permanent link to this record
 

 
Author Spiller, M.; Muys, M.; Papini, G.; Sakarika, M.; Buyle, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Environmental impact of microbial protein from potato wastewater as feed ingredient : comparative consequential life cycle assessment of three production systems and soybean meal Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 171 Issue Pages 115406  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Livestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.e. dried microbial biomass. To date, only few life cycle assessments (LCAs) for MP have been carried out, none of which has used a consequential modelling approach nor has been investigating the production of MP on food and beverage wastewater. Therefore, the objective of this study is to evaluate the environmental impact of MP production on a food and beverage effluent as a substitute for soybean meal using a consequential modelling approach. Three different types of MP production were analysed, namely consortia containing Aerobic Heterotrophic Bacteria (AHB), Microalgae and AHB (MaB), and Purple Non-Sulfur Bacteria (PNSB). The production of MP was modelled for high-strength potato wastewater (COD = 10 kg/m3) at a flow rate of 1,000 m3/day. LCA results were compared against soybean meal production for the endpoint impact categories human health, ecosystems, and resources. Soybean meal showed up to 52% higher impact on human health and up to 87% higher impact on ecosystems than MP. However, energy-related aspects resulted in an 8–88% higher resource exploitation for MP. A comparison between the MP production systems showed that MaB performed best when considering ecosystems (between 13 and 14% better) and resource (between 71 and 80% better) impact categories, while AHB and PNSB had lower values for the impact category human health (8–12%). The sensitivity analysis suggests that the conclusions drawn are robust as in the majority of 1,000 Monte Carlo runs the initial results are confirmed. In conclusion, it is suggested that MP is an alternative protein source of comparatively low environmental impact that should play a role in the future protein transition, in particular when further process improvements can be implemented and more renewable or waste energy sources will be used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514748900032 Publication Date 2019-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 10 Open Access  
  Notes ; The authors would like to thank (i) the MIP i-Cleantech Flanders (Milieu innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD; 150360) for financial support, (ii) the Research Foundation Flanders (FWO-Vlaanderen) for supporting Gustavo Papini with a doctoral fellowship (strategic basic research; 1S38917N), (iii) Research Foundation Flanders (FWO-Vlaanderen) for supporting Matthias Buyle with a post-doctoral fellowship (Postdoctoral Fellow junior; 1207520N), and (iv) Bo Weidema, Abbas Alloul, Yixing Sui and Tim Van Winckel for their insightful discussions. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:164944 Serial 6509  
Permanent link to this record
 

 
Author Rocha Segundo, I.; Landi Jr., S.; Margaritis, A.; Pipintakos, G.; Freitas, E.; Vuye, C.; Blom, J.; Tytgat, T.; Denys, S.; Carneiro, J. url  doi
openurl 
  Title Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO₂ Type A1 Journal article
  Year 2020 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 10 Issue 11 Pages 2152  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000593731700001 Publication Date 2020-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access  
  Notes Approved Most recent IF: 5.3; 2020 IF: 3.553  
  Call Number UA @ admin @ c:irua:172621 Serial 6580  
Permanent link to this record
 

 
Author Sui, Y.; Jiang, Y.; Moretti, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Harvesting time and biomass composition affect the economics of microalgae production Type A1 Journal article
  Year 2020 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume 259 Issue Pages 120782-10  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)  
  Abstract Cost simulations provide a strong tool to render the production of microalgae economically viable. This study evaluated the unexplored effect of harvesting time and the corresponding microalgal biomass composition on the overall production cost, under both continuous light and light/dark regime using techno-economic analysis (TEA). At the same time, the TEA gives evidence that a novel product “proteinaceous salt” from Dunaliella microalgae production is a promising high-value product for commercialization with profitability. The optimum production scenario is to employ natural light/dark regime and harvest microalgal biomass around late exponential phase, obtaining the minimum production cost of 11 €/kg and a profitable minimum selling price (MSP) of 14.4 €/kg for the “proteinaceous salt”. For further optimization of the production, increasing microalgal biomass concentration is the most effective way to reduce the total production cost and increase the profits of microalgae products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530695500009 Publication Date 2020-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited 5 Open Access  
  Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Cleantech Flanders (Milieu-innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD). ; Approved Most recent IF: 11.1; 2020 IF: 5.715  
  Call Number UA @ admin @ c:irua:166802 Serial 6531  
Permanent link to this record
 

 
Author Fret, J.; Roef, L.; Diels, L.; Tavernier, S.; Vyverman, W.; Michiels, M. pdf  doi
openurl 
  Title Combining medium recirculation with alternating the microalga production strain : a laboratory and pilot scale cultivation test Type A1 Journal article
  Year 2020 Publication Algal Research-Biomass Biofuels And Bioproducts Abbreviated Journal Algal Res  
  Volume 46 Issue Pages 101763  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Reuse of growth medium after biomass harvesting is a cost-saving approach to improve the economic feasibility of algae mass cultivation. Algal exudates, cell debris and varying amounts of residual nutrients, impose challenges to the recycling of spent medium. In this study, the potential of combining reused medium from different algae species for growing monocultures of other algal strains was evaluated by making use of three successive cultivation setups with increasing volume; 400 mL in turbidostat mode, 2.6 L and 220 L in semi-continuous mode. Cultivation on replenished medium derived from Nannochloropsis sp. and Tisochrysis lutea, had no adverse effect on the productivity of either of the strains, regardless of whether they were grown in their own recycled medium or that of the other alga. Microfiltration of the reused medium proved to be sufficient to avoid cross-contamination. Moreover, a substantial average reduction in water footprint (77%) and nutrient cost (68% or 9 (sic).kg(-1) dry biomass) was achieved. Extension and validation of the medium recycling approach to other economically interesting algae species can contribute to improving the economic feasibility of large scale microalgae production systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512364900013 Publication Date 2020-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-9264 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.1 Times cited 4 Open Access  
  Notes ; This work was financially supported by the Agency for Innovation by Science and Technology, Flanders (IWT Baekeland mandatory Jorien Fret, project no. 100678). We thank Kayawe Valentine Mubiana from the Systemic Physiological and Ecotoxicological Research group, University of Antwerp, for the assistance in the analysis of the trace elements. ; Approved Most recent IF: 5.1; 2020 IF: 3.994  
  Call Number UA @ admin @ c:irua:167742 Serial 6471  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Van Doorslaer, S.; Meynen, V.; Gorton, L.; De Wael, K. url  doi
openurl 
  Title Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 92 Issue 92 Pages 3643-3649  
  Keywords (up) A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M–1 cm–2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518234700023 Publication Date 2020-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited 3 Open Access  
  Notes ; The authors thank Scientific Reseatch-Flanders (F-WO) (grant 12T4219N) for funding. ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:166241 Serial 5463  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: