toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Howard, I.A.; Zutterman, F.; Deroover, G.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title Approaches to calculation of exciton interaction energies for a molecular dimer Type A1 Journal article
  Year 2004 Publication Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B  
  Volume 108 Issue Pages 19155-19162  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000225695100015 Publication Date 2004-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.177; 2004 IF: 3.834  
  Call Number UA @ lucian @ c:irua:50259 Serial 147  
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Frantti, J.; Lebedev, O.I.; Churagulov, B.R.; Van Tendeloo, G.; Yoshimura, M. pdf  doi
openurl 
  Title Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 9 Pages 4030-4038  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000235944500033 Publication Date 2006-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 234 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:56988 Serial 1540  
Permanent link to this record
 

 
Author Liu, S.; Cool, P.; Collart, O.; van der Voort, P.; Vansant, E.F.; Lebedev, O.I.; Van Tendeloo, G.; Jiang, M. pdf  doi
openurl 
  Title The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent Type A1 Journal article
  Year 2003 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 107 Issue Pages 10405-10411  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000185401900013 Publication Date 2003-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 134 Open Access  
  Notes Approved Most recent IF: 3.177; 2003 IF: 3.679  
  Call Number UA @ lucian @ c:irua:46264 Serial 1643  
Permanent link to this record
 

 
Author Stevens, W.J.J.; Lebeau, K.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. doi  openurl
  Title Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 18 Pages 9183-9187  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000237451300042 Publication Date 2006-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 109 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:58264 Serial 1738  
Permanent link to this record
 

 
Author Linssen, T.; Cool, P.; Baroudi, M.; Cassiers, K.; Vansant, E.F.; Lebedev, O.; van Landuyt, J. doi  openurl
  Title Leached natural saponite as the silicate source in the synthesis of aluminosilicate hexagonal mesoporous materials Type A1 Journal article
  Year 2002 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 106 Issue Pages 4470-4476  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000175356900019 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.177; 2002 IF: 3.611  
  Call Number UA @ lucian @ c:irua:46279 Serial 1811  
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Meskin, P.E.; Churagulov, B.R.; Bouchard, M.; Colbeau-Justin, C.; Lebedev, O.I.; Van Tendeloo, G.; Yoshimura, M. pdf  doi
openurl 
  Title Structural, textural, and electronic properties of a nanosized mesoporous ZnxTi1-xO2-x solid solution prepared by a supercritical drying route Type A1 Journal article
  Year 2005 Publication Journal of physical chemistry B Abbreviated Journal J Phys Chem B  
  Volume 109 Issue 43 Pages 20303-20309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232959800037 Publication Date 2005-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.177; 2005 IF: 4.033  
  Call Number UA @ lucian @ c:irua:54886 Serial 3264  
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M. T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J. T.-W.; Verbeeck, J.; Boyen, H.-G. url  doi
openurl 
  Title A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families Type A1 Journal article
  Year 2016 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 28 Issue 28 Pages 10701-10709  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and expedient gas quenching method is developed for the solution deposition of hybrid perovskite thin films. The method offers a reliable standard practice for the fabrication of a non-exhaustive variety of perovskites exhibiting excellent film morphology and commensurate high performance in both regular and inverted structured solar cell architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392728200014 Publication Date 2016-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1521-4095 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 95 Open Access  
  Notes This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by Imec and FWO. M.T.K. acknowledges funding from the EPSRC project EP/M024881/1 “Organic-inorganic Perovskite Hybrid Tandem Solar Cells”. S.B. is a VINNMER Fellow and Marie Skłodowska-Curie Fellow. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors thank Johnny Baccus and Jan Mertens for technical support.; ECASJO_; Approved Most recent IF: 19.791; 2016 IF: NA  
  Call Number EMAT @ emat @ c:irua:138597 Serial 4318  
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V. doi  openurl
  Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
  Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 38 Pages 6554-6559  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343763200004 Publication Date 2014-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1521-4095 ISBN Additional Links  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Approved Most recent IF: 19.791; 2014 IF: NA  
  Call Number EMAT @ emat @ Serial 4541  
Permanent link to this record
 

 
Author Sentosun, K.; Lobato, I.; Bladt, E.; Zhang, Y.; Palenstijn, W.J.; Batenburg, K.J.; Van Dyck, D.; Bals, S. pdf  url
doi  openurl
  Title Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography Type A1 Journal article
  Year 2017 Publication Particle and particle systems characterization Abbreviated Journal Part. Part. Syst. Charact.  
  Volume 34 Issue 34 Pages 1700287  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Electron tomography is a well-known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418416100005 Publication Date 2017-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1521-4117 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes K.S. and S.B. acknowledge support from the Fund for Scientific ResearchFlanders (FWO) (G019014N and G021814N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). The authors would like to thank Prof. Luis Liz-Marzán for provision of the samples. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:147857UA @ admin @ c:irua:147857 Serial 4798  
Permanent link to this record
 

 
Author Hoang, D.-Q.; Pobedinskas, P.; Nicley, S.S.; Turner, S.; Janssens, S.D.; Van Bael, M.K.; D'Haen, J.; Haenen, K. url  doi
openurl 
  Title Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls Type A1 Journal article
  Year 2016 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 16 Issue 7 Pages 3699-3708  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hexagonal boron nitride nanowall thin films were deposited on Si(100) substrates using a Ar(51%)/N-2(44%)/H-2(5%) gas mixture by unbalanced radio frequency sputtering. The effects of various target-to-substrate distances, substrate temperatures, and substrate tilting angles were investigated. When the substrate is close to the target, hydrogen etching plays a significant role in the film growth, while the effect is negligible for films deposited at a farther distance. The relative quantity of defects was measured by a non-destructive infrared spectroscopy technique that characterized the hydrogen incorporation at dangling nitrogen bonds at defect sites in the deposited films. Despite the films deposited at different substrate tilting angles, the nanowalls of those films were found to consistently grow vertical to the substrate surface, independent of the tilting angle. This implies that chemical processes, rather than physical ones, govern the growth of the nanowalls. The results also reveal that the degree of nanowall crystallization is tunable by varying the growth parameters. Finally, evidence of hydrogen desorption during vacuum annealing is given based on measurements of infrared stretching (E-1u) and bending (A(2u)) modes of the optical phonons, and the H-N vibration mode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379456700020 Publication Date 2016-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 8 Open Access  
  Notes Approved Most recent IF: 4.055  
  Call Number UA @ lucian @ c:irua:144690 Serial 4652  
Permanent link to this record
 

 
Author Drijkoningen, S.; Pobedinskas, P.; Korneychuk, S.; Momot, A.; Balasubramaniam, Y.; Van Bael, M.K.; Turner, S.; Verbeeck, J.; Nesladekt, M.; Haenen, K. doi  openurl
  Title On the Origin of Diamond Plates Deposited at Low Temperature Type A1 Journal article
  Year 2017 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 17 Issue 8 Pages 4306-4314  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crucial requirement for diamond growth at low temperatures, enabling a wide range of new applications, is a high plasma density at a low gas pressure, which leads to a low thermal load onto sensitive substrate materials. While these conditions are not within reach for resonance cavity plasma systems, linear antenna microwave delivery systems allow the deposition of high quality diamond films at temperatures around 400 degrees C and at pressures below 1 mbar. In this work the codeposition of high quality plates and octahedral diamond grains in nanocrystalline films is reported. In contrast to previous reports claiming the need for high temperatures (T >= 850 degrees C), low temperatures (320 degrees C <= T <= 410 degrees C) were sufficient to deposit diamond plate structures. Cross-sectional high resolution transmission electron microscopy studies show that these plates are faulty cubic diamond terminated by large {111} surface facets with very little sp(2) bonded carbon in the grain boundaries. Raman and electron energy loss spectroscopy studies confirm a high diamond quality, above 93% sp(3) carbon content. Three potential mechanisms, that can account for the initial development of the observed plates rich with stacking faults, and are based on the presence of impurities, are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000407089600031 Publication Date 2017-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 23 Open Access Not_Open_Access  
  Notes ; The Research Foundation – Flanders (FWO) is gratefully acknowledged for financial support in the form of the Postdoctoral Fellowships of P.P. and S.T., contract G.0044.13N “Charge ordering” (S.K., J.V.), the Methusalem “Nano” network, and the Hercules-linear antenna and Raman equipment. ; Approved Most recent IF: 4.055  
  Call Number UA @ lucian @ c:irua:145735UA @ admin @ c:irua:145735 Serial 4746  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Maccato, C.; Altantzis, T.; Kaunisto, K.; Gasparotto, A. url  doi
openurl 
  Title Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips Type A1 Journal article
  Year 2018 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume Issue Pages acs.cgd.8b00198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High purity porous ZnO nanopyramids with controllable properties are grown on their tips on

Si(100) substrates by means of a catalyst-free vapor phase deposition route in a wet oxygen

reaction environment. The system degree of preferential [001] orientation, as well as

nanopyramid size, geometrical shape and density distribution, can be finely tuned by varying the

growth temperature between 300 and 400°C, whereas higher temperatures lead to more compact

systems with a three-dimensional (3D) morphology. A growth mechanism of the obtained ZnO

nanostructures based on a self-catalytic vapor-solid (VS) mode is proposed, in order to explain

the evolution of nanostructure morphologies as a function of the adopted process conditions. The

results obtained by a thorough chemico-physical characterization enable to get an improved

control over the properties of ZnO nanopyramids grown by this technique. Taken together, they

are of noticeable importance not only for fundamental research on ZnO nanomaterials with

controlled nano-organization, but also to tailor ZnO functionalities in view of various potential

applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000429508200073 Publication Date 2018-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 6 Open Access OpenAccess  
  Notes This work has been supported by Padova University ex-60% 2015–2017, P-DiSC #03BIRD2016-UNIPD projects and ACTION post-doc fellowship. T. A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Rosa Calabrese (Department of Chemical Sciences, Padova University, Italy) and to Dr. T.-P. Ruoko (Department of Chemistry and Bioengineering, Tampere University of Technology, Finland) for skilful technical support. Approved Most recent IF: 4.055  
  Call Number EMAT @ emat @c:irua:149514 Serial 4904  
Permanent link to this record
 

 
Author Barreca, D.; Gasparotto, A.; Maccato, C.; Tondello, E.; Lebedev, O.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title CVD of copper oxides from a \beta-diketonate diamine precursor: tailoring the nano-organization Type A1 Journal article
  Year 2009 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 9 Issue 5 Pages 2470-2480  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A copper(II) hexafluoroacetylacetonate (1,1,1,5,5,5-hexafluoro-2,4-pentanedionate, hfa) adduct with N,N,N¡ä,N¡ä-tetramethylethylenediamine (TMEDA) [Cu(hfa)2¡¤TMEDA] is used for the first time as precursor for the chemical vapor deposition (CVD) of copper oxide nanosystems. The syntheses are carried out under both O2 and O2+H2O reaction atmospheres on Si(100) substrates, at temperatures ranging between 250 and 550 ¡ãC. Subsequently, the interrelations between the preparative conditions and the system composition, nanostructure, and morphology are elucidated by means of complementary analytical techniques [Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron and X-ray excited auger electron spectroscopies (XPS and XE-AES), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM)]. The obtained data revealed a gradual transformation from Cu2O, to Cu2O + CuO, to CuO nanosystems upon increasing the deposition temperature from 250 to 550 ¡ãC under both growth atmospheres. Such a phenomenon was accompanied by a progressive morphological evolution from continuous films to 1D hyperbranched nanostructures. Water vapor introduction in the deposition environment enabled to lower the deposition temperature and resulted in a higher aggregate interconnection, attributed to a higher density of nucleation centers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000265892200066 Publication Date 2009-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 60 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.055; 2009 IF: 4.162  
  Call Number UA @ lucian @ c:irua:77053 Serial 597  
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Guitián, F.; Yoshimura, M. pdf  doi
openurl 
  Title An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis Type A1 Journal article
  Year 2009 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 9 Issue 1 Pages 466-474  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A facile urea-assisted hydrothermal synthesis and systematic characterization of hydroxyapatite (HA) with calcium nitrate tetrahydrate and diammonium hydrogen phosphate as precursors are reported. The advantage of the proposed technique over previously reported synthetic approaches is the simple but precise control of the HA crystals morphology, which is achieved by employing an intensive, stepwise, and slow thermal decomposition of urea as well as varying initial concentrations of starting reagents. Whereas the plate-, hexagonal prism- and needle-like HA particles preferentially growth along the c-axis, the smaller and fine-plate-like HA crystals demonstrate crystal growth along the (102) and (211) directions, uncommon for HA. Furthermore, it was established that the hydrothermally derived powdered products are phase-pure HA containing CO32− anions in the crystal lattice, that is, AB-type carbonated hydroxyapatite. Transmission electron microscopy (TEM) and electron diffraction (ED) of selected samples reveal that the as-prepared HA crystals are single-crystalline and exhibit a nearly defect-free microstructure. The hardness and elastic modulus of the hexagonal prism-like HA crystals have been investigated on a nanoscale using the nanoindentation technique; the observed trends are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000262332700073 Publication Date 2008-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 183 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.055; 2009 IF: 4.162  
  Call Number UA @ lucian @ c:irua:75740 Serial 853  
Permanent link to this record
 

 
Author Bekermann, D.; Gasparotto, A.; Barreca, D.; Bovo, L.; Devi, A.; Fischer, R.A.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Van Tendeloo, G. pdf  doi
openurl 
  Title Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process Type A1 Journal article
  Year 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 10 Issue 4 Pages 2011-2018  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strongly c-axis oriented ZnO nanorod arrays were grown on Si(100) by plasma enhanced-chemical vapor deposition (PE-CVD) starting from two volatile bis(ketoiminato) zinc(II) compounds Zn[(R′)NC(CH3)═C(H)C(CH3)═O]2, with R′ = -(CH2)xOCH3 (x = 2, 3). A systematic investigation of process parameters enabled us to obtain the selective formation of ZnO nanorods with tailored features, and provided an important insight into their growth mechanism. The morphology, structure, and composition of the synthesized ZnO nanosystems were thoroughly analyzed by field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), glancing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Photoluminescence (PL) measurements were carried out to gain information on the optical properties. Specifically, one-dimensional (1D) ZnO architectures could be grown on Si(100) substrates at temperatures as low as 200−300 °C and radio frequency (RF)-power values of 20 W, provided that a sufficiently high mass supply to the growth surface was maintained. To the best of our knowledge, the present work reports the mildest preparation conditions ever appeared in the literature for the PE-CVD of ZnO nanorods, a key result in view of potential large-scale technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276234500080 Publication Date 2010-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 75 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.055; 2010 IF: 4.390  
  Call Number UA @ lucian @ c:irua:82311 Serial 1472  
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Lebedev, O.; Verbeeck, J.; Biermans, E.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Insight into the growth of multiple branched MnOOH nanorods Type A1 Journal article
  Year 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 10 Issue 7 Pages 2969-2976  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multiple branched manganese oxide hydroxide (MnOOH) nanorods prepared by a hydrothermal process were extensively studied by transmission electron microscopy (TEM). A model of the branch formation is proposed together with a study of the interface structure. The sword-like tip plays a crucial role for the nanorods to form different shapes. Importantly, the branching occurs at an angle of around either 57 degrees or 123 degrees. Specifically, a (111) twin plane can only be formed at the interface with a 123 degrees angle. The interfaces formed with a 57 degrees angle usually contain edge dislocations. Electron energy loss spectroscopy (EELS) demonstrates that the whole crystal has a uniform chemical composition. Interestingly, an epitaxial growth of Mn3O4 at the radial surface was also observed under electron beam irradiation; this is because of the rough purification of the products. The proposed mechanism is expected to shed light on the branched/dendrite nanostructure growth and to provide opportunities for further novel nanomaterial structure growth and design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279422700027 Publication Date 2010-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 41 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 4.055; 2010 IF: 4.390  
  Call Number UA @ lucian @ c:irua:83886UA @ admin @ c:irua:83886 Serial 1672  
Permanent link to this record
 

 
Author Han, Z.; Ni, J.; Smits, P.; Underhill, C.; Xie, B.; Chen, Y.; Liu, N.; Tylzanowski, P.; Parmelee, D.; Feng, P.; Ding, I.; Gao, F.; Gentz, R.; Huylebroeck, D.; Merregaert, J.; Zhang, L. doi  openurl
  Title Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells Type A1 Journal article
  Year 2001 Publication The FASEB journal Abbreviated Journal  
  Volume 15 Issue Pages 988-994  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bethesda, Md Editor  
  Language Wos 000167959300013 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6860; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 94 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:33805 Serial 1161  
Permanent link to this record
 

 
Author Hutter, E.M.; Bladt, E.; Goris, B.; Pietra, F.; van der Bok, J.C.; Boneschanscher, M.P.; de Donega, C.M.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title Conformal and atomic characterization of ultrathin CdSe platelets with a helical shape Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 11 Pages 6257-6262  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Currently, ultrathin colloidal CdSe semiconductor nanoplatelets (NPLs) with a uniform thickness that is controllable up to the atomic scale can be prepared. The optical properties of these 2D semiconductor systems are the subject of extensive research. Here, we reveal their natural morphology and atomic arrangement. Using cryo-TEM (cryo-transmission electron microscopy), we show that the shape of rectangular NPLs in solution resembles a helix. Fast incorporation of these NPLs in silica preserves and immobilizes their helical shape, which allowed us to perform an in-depth study by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Electron tomography measurements confirm and detail the helical shape of these systems. Additionally, high-resolution HAADF-STEM shows the thickness of the NPLs on the atomic scale and furthermore that these are consistently folded along a ?110? direction. The presence of a silica shell on both the top and bottom surfaces shows that Cd atoms must be accessible for silica precursor (and ligand) molecules on both sides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000345723800036 Publication Date 2014-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 43 Open Access OpenAccess  
  Notes Dariusz Mitoraj, Hans Meeldijk, Relinde van Dijk-Moes, and Stephan Zevenhuizen are acknowledged for technical support and help with some experiments. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 291667. The authors acknowledge financial support from FOM and NOW [FOM program Functional NanoParticle Solids (FNPS)]. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS). E.B. and B.G. gratefully acknowledge financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:122209 Serial 490  
Permanent link to this record
 

 
Author Albrecht, W.; Deng, T.-S.; Goris, B.; van Huis, M.A.; Bals, S.; van Blaaderen, A. pdf  url
doi  openurl
  Title Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 16 Issue 16 Pages 1818-1825  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet.  
  Address Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University , Princetonplein 5, 3584 CC Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000371946300045 Publication Date 2016-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 55 Open Access OpenAccess  
  Notes We thank Dr. Nicolas Gauquelin for his assistance during the EELS measurements and Thomas Atlantzis for the high-resolution images of the gold clusters. We furthermore thank Ernest van der Wee for the simulation of the confocal point spread functions. The authors acknowledge financial support from the European Research Council under the European Unions Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement #291667 HierarSACol and the Foundation of Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). The authors furthermore acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). This work was supported by the Flemish Fund for Scientific Research (FWO Vlaanderen) through a postdoctoral research grant to B.G.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712  
  Call Number c:irua:131924 c:irua:131924 Serial 4016  
Permanent link to this record
 

 
Author Babynina, A.; Fedoruk, M.; Kuhler, P.; Meledin, A.; Doblinger, M.; Lohmueller, T. url  doi
openurl 
  Title Bending Gold Nanorods with Light Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 16 Issue 16 Pages 6485-6490  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bend, one-by one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385469800072 Publication Date 2016-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 24 Open Access  
  Notes PMID:27598653 We would also like to thank Prof. Jochen Feldmann and Bernhard Bohn for fruitful discussions. Approved Most recent IF: 12.712  
  Call Number c:irua:135172 Serial 4122  
Permanent link to this record
 

 
Author Paolella, A.; Turner, S.; Bertoni, G.; Hovington, P.; Flacau, R.; Boyer, C.; Feng, Z.; Colombo, M.; Marras, S.; Prato, M.; Manna, L.; Guerfi, A.; Demopoulos, G.P.; Armand, M.; Zaghib, K.; url  doi
openurl 
  Title Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+ Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 16 Issue 16 Pages 2692-2697  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000374274600084 Publication Date 2016-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 30 Open Access  
  Notes Approved Most recent IF: 12.712  
  Call Number UA @ lucian @ c:irua:133600 Serial 4134  
Permanent link to this record
 

 
Author Al-Jamal, K.T.; Bai, J.; Wang, J.T.W.; Protti, A.; Southern, P.; Bogart, L.; Heidari, H.; Li, X.; Cakebread, A.; Asker, D.; Al-Jamal, W.T.; Shah, A.; Bals, S.; Sosabowski, J.; Pankhurst, Q.A.; url  doi
openurl 
  Title Magnetic drug targeting : preclinical in vivo studies, mathematical modeling, and extrapolation to humans Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 16 Issue 16 Pages 5652-5660  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A sound theoretical rationale for the design of a magnetic nanocarrier capable of magnetic capture in vivo after intravenous administration could help elucidate the parameters necessary for in vivo magnetic tumor targeting. In this work, we utilized our long-circulating polymeric magnetic nano carriers, encapsulating increasing amounts of superparamagnetic iron oxide nanoparticles (SPIONs) in a biocompatible oil carrier, to study the effects of SPION loading and of applied magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the nanocapsules (NCs) in accordance with the Nacev-Shapiro construct, and this was then used to extrapolate to the expected behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy, and improve mice survival compared to passive targeting at drug doses of ca. 5-8 mg, of DTX/kg. This is,, to our knowledge, the first study that truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000383412100050 Publication Date 2016-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 128 Open Access OpenAccess  
  Notes ; J.B. acknowledges funding from the King's-China Scholarship Council (CSC). Funding from the Biotechnology and Biological Sciences Research Council (BB/ J008656/1), Worldwide Cancer Research (12-1054), and EU FP7-ITN Marie-Curie Network programme RADDEL (290023) is acknowledged. Q.P. is grateful to A. Nacev (Weinberg Medical Physics, Rockville, MD) and to B. Shapiro (University of Maryland, College Park, MD) for their useful advice during the preparation of this manuscript. ; Approved Most recent IF: 12.712  
  Call Number UA @ lucian @ c:irua:137136 Serial 4391  
Permanent link to this record
 

 
Author Cooper, D.; de la Peña, F.; Béché, A.; Rouvière, J.-L.; Servanton, G.; Pantel, R.; Morin, P. doi  openurl
  Title Field mapping with nanometer-scale resolution for the next generation of electronic devices Type A1 Journal article
  Year 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 11 Issue 11 Pages 4585-4590  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to improve the performance of todays nanoscaled semiconductor devices, characterization techniques that can provide information about the position and activity of dopant atoms and the strain fields are essential. Here we demonstrate that by using a modern transmission electron microscope it is possible to apply multiple techniques to advanced materials systems in order to provide information about the structure, fields, and composition with nanometer-scale resolution. Off-axis electron holography has been used to map the active dopant potentials in state-of-the-art semiconductor devices with 1 nm resolution. These dopant maps have been compared to electron energy loss spectroscopy maps that show the positions of the dopant atoms. The strain fields in the devices have been measured by both dark field electron holography and nanobeam electron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000296674700014 Publication Date 2011-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access  
  Notes Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:136369 Serial 4499  
Permanent link to this record
 

 
Author Kumar, A.; Kundu, S.; Samantaray, D.; Kundu, P.; Zanaga, D.; Bals, S.; Ravishankar, N. url  doi
openurl 
  Title Designing diameter-modulated heterostructure nanowires of PbTe/Te by controlled dewetting Type A1 Journal article
  Year 2017 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 17 Issue 17 Pages 7226-7233  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Heterostructures consisting of semiconductors with controlled morphology and interfaces find applications in many fields. A range of axial, radial, and diameter-modulated nanostructures have been synthesized primarily using vapor phase methods. Here, we present a simple wet chemical routine to synthesize heterostructures of PbTe/Te using Te nanowires as templates. A morphology evolution study for the formation of these heterostructures has been performed. On the basis of these control experiments, a pathway for the formation of these nanostructures is proposed. Reduction of a Pb precursor to Pb on Te nanowire templates followed by interdiffusion of Pb/Te leads to the formation of a thin shell of PbTe on the Te wires. Controlled dewetting of the thin shell leads to the formation of cube-shaped PbTe that is periodically arranged on the Te wires. Using control experiments, we show that different reactions parameters like rate of addition of the reducing agent, concentration of Pb precursor and thickness of initial Te nanowire play a critical role in controlling the spacing between the PbTe cubes on the Te wires. Using simple surface energy arguments, we propose a mechanism for the formation of the hybrid. The principles presented are general and can be exploited for the synthesis of other nanoscale heterostructures.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000418393300009 Publication Date 2017-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 11 Open Access OpenAccess  
  Notes ; N.R acknowledges financial support from SERB, DST, Government of India. The authors acknowledge the electron microscopy facilities at the Advanced Facility for Microscopy and Microanalysis, IISc. S.B., P.K., and D.Z. acknowledge ERC Starting Grant 335078 COLOURATOMS for financial support. ; ecas_Sara Approved Most recent IF: 12.712  
  Call Number UA @ lucian @ c:irua:148557UA @ admin @ c:irua:148557 Serial 4870  
Permanent link to this record
 

 
Author Song, H.-D.; Wu, Y.-F.; Yang, X.; Ren, Z.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Liu, D.; Wu, H.-C.; Yan, B.; Wu, X.; Duan, C.-G.; Han, G.; Liao, Z.-M.; Yu, D. pdf  doi
openurl 
  Title Asymmetric Modulation on Exchange Field in a Graphene/BiFeO3Heterostructure by External Magnetic Field Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 4 Pages 2435-2441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin–orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430155900034 Publication Date 2018-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 9 Open Access Not_Open_Access  
  Notes This work was supported by National Key Research and Development Program of China (No. 2016YFA0300802) and NSFC (Nos. 11774004 and 11604004). Ministry of Science and Technology of the People's Republic of China, 2016YFA0300802 ; National Natural Science Foundation of China, 11604004 11774004 ; Approved Most recent IF: 12.712  
  Call Number EMAT @ lucian @c:irua:150794 Serial 4923  
Permanent link to this record
 

 
Author Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Tendeloo, G.; Van Aert, S.; Bals, S. url  doi
openurl 
  Title Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment Type A1 Journal article
  Year 2019 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 19 Issue 19 Pages 477-481  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation−reduction cycles. In a H2 environment, a more faceted surface morphology of the particles was observed with {100} and {111} planes being dominant. On the other hand, in O2 the percentage of {100} and {111} facets decreased and a significant increase of higher order facets was found, resulting in a more rounded morphology. This methodology opens up new opportunities toward in situ characterization of catalytic nanoparticles because for the first time it enables one to directly measure 3D morphology variations at the atomic scale in a specific gaseous reaction environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455561300061 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 82 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 335078 COLOURATOM to S.B. and Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M., and Q.X. and MUMMERING 765604 to S.B. and Q.X.). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, and G.0267.18N), postdoctoral grants to T.A. and A.D.B, and an FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship to Y.Z. (12U4917N). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (Grant MAT2017-86659-R). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research. ecas_sara Realnano 815128; sygma Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156390 Serial 5150  
Permanent link to this record
 

 
Author Lak, A.; Cassani, M.; Mai, B.T.; Winckelmans, N.; Cabrera, D.; Sadrollahi, E.; Marras, S.; Remmer, H.; Fiorito, S.; Cremades-Jimeno, L.; Litterst, F.J.; Ludwig, F.; Manna, L.; Teran, F.J.; Bals, S.; Pellegrino, T. pdf  url
doi  openurl
  Title Fe2+Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 18 Pages 6856-6866  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+ deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO sub-domains as well as structural defects. This phase transformation causes a tenfold increase in the magnetic losses of the nanocubes, which remains exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of the particles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under cellular and intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance under cellular and intracellular conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451102100028 Publication Date 2018-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access OpenAccess  
  Notes This work is partially funded by the European Research Council (starting grant ICARO, Contract No. 678109 and COLOURATOM-335078), Spanish Ministry of Economy and Competitiveness (MAT2016-81955-REDT, SEV-2016-0686, MAT2017-85617-R) Comunidad de Madrid (NANOFRONTMAG-CM, S2013/MIT-2850), the European COST Action TD1402 (RADIOMAG), and Ramon y Cajal subprogram (RYC-2011-09617). Financial support from the Deutsche Forschungsgemeinschaft, DFG Priority Program 1681 (LU800/4-3). S.B. and N.W. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project funding G038116N. A.L. acknowledges the Alexander von Humboldt Foundation for the Postdoctoral Research Fellow funding. Mr Emilio J. Artés from the Advanced Instrumentation Unit (iMdea Nanociencia) is acknowledged for his technical assistance. L. M acknowledges the predoctoral fellowship funded from Comunidad de Madrid (PEJD-2017-PRE/IND-4189). Authors thank Tiziano Catelani and Doriana Debellis for the preparation of TEM cell samples (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_Sara Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @c:irua:155439UA @ admin @ c:irua:155439 Serial 5072  
Permanent link to this record
 

 
Author Karakulina, O.M.; Demortière, A.; Dachraoui, W.; Abakumov, A.M.; Hadermann, J. url  doi
openurl 
  Title In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 10 Pages 6286-6291  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that changes in the unit cell structure of lithium battery cathode materials during electrochemical cycling in liquid electrolyte can be determined for particles of just a few hundred nanometers in size using in situ transmission electron microscopy (TEM). The atomic coordinates, site occupancies (including lithium occupancy), and cell parameters of the materials can all be reliably quantified. This was achieved using electron diffraction tomography (EDT) in a sealed electrochemical cell with conventional liquid electrolyte (LP30) and LiFePO4 crystals, which have a well-documented charged structure to use as reference. In situ EDT in a liquid environment cell provides a viable alternative to in situ X-ray and neutron diffraction experiments due to the more local character of TEM, allowing for single crystal diffraction data to be obtained from multiphased powder samples and from submicrometer- to nanometer-sized particles. EDT is the first in situ TEM technique to provide information at the unit cell level in the liquid environment of a commercial TEM electrochemical cell. Its application to a wide range of electrochemical experiments in liquid environment cells and diverse types of crystalline materials can be envisaged.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447355400024 Publication Date 2018-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access Not_Open_Access: Available from 08.09.2019  
  Notes O.M. Karakulina, A.M. Abakumov and J. Hadermann acknowledge support from FWO under grant G040116N. A. Demortière wants to thank the French network on the electrochemical energy storage (RS2E), the Store-Ex Labex, for the financial support. Finally, the Fonds Européen de Développement Régional (FEDER), CNRS, Région Hauts-de-France, and Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for funding. Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @c:irua:154750 Serial 5063  
Permanent link to this record
 

 
Author Spaeth, P.; Adhikari, S.; Le, L.; Jollans, T.; Pud, S.; Albrecht, W.; Bauer, T.; Caldarola, M.; Kuipers, L.; Orrit, M. url  doi
openurl 
  Title Circular Dichroism Measurement of Single Metal Nanoparticles Using Photothermal Imaging Type A1 Journal article
  Year 2019 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 19 Issue 12 Pages 8934-8940  
  Keywords A1 Journal article; Photothermal microscopy, chirality, circular dichroism, dissymmetry factor, linear dichroism, gold nanostructures; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Circular dichroism (CD) spectroscopy is a powerful optical technique for the study of chiral materials and molecules. It gives access to an enantioselective signal based on the differential absorption of right and left circularly polarized light, usually obtained through polarization analysis of the light transmitted through a sample of interest. CD is routinely used to determine the secondary structure of proteins and their conformational state. However, CD signals are weak, limiting the use of this powerful technique to ensembles of many molecules. Here, we experimentally realize the concept of photothermal circular dichroism, a technique that combines the enantioselective signal from circular dichroism with the high sensitivity of photothermal microscopy, achieving a superior signal-to-noise ratio to detect chiral nano-objects. As a proof of principle, we studied the chiral response of single plasmonic nanostructures with CD in the visible range, demonstrating a signal-to-noise ratio better than 40 with only 30 ms integration time for these nanostructures. The high signal-to-noise ratio allows us to quantify the CD signal for individual nanoparticles. We show that we can distinguish relative absorption differences for right circularly and left circularly polarized light as small as gmin = 4 × 10–3 for a 30 ms integration time with our current experimental settings. The enhanced sensitivity of our technique extends CD studies to individual nano-objects and opens CD spectroscopy to numbers of molecules much lower than those in conventional experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502687500074 Publication Date 2019-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited Open Access  
  Notes This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience (NanoFront) program, and Open Technology Program (OTP, Project No. 16008). M.C. acknowledges the financial support of the Kavli Institute of Nanoscience Delft through the KIND fellowships program. T.B. and L.K. acknowledge the financial support of the European Research Council (ERC) through Project 340438-CONSTANS. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). The authors acknowledge Dr. Benjamin P. Isaacoff for his help in the initial steps of this project. P.S. thanks Martin Baaske for helpful discussions. M.C. thanks Dr. Felipe Bernal Arango for help with the 3D image rendering. Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @c:irua:165087c:irua:165233 Serial 5439  
Permanent link to this record
 

 
Author Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Double moiré with a twist : supermoiré in encapsulated graphene Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue 2 Pages 979  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A periodic spatial modulation, as created by a moire pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moire patterns, resulting in a so-called supermoire (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514255400021 Publication Date 2020-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 33 Open Access OpenAccess  
  Notes ; This work was funded by FLAGERA project TRANS2DTMD and the Flemish Science Foundation (FWO-Vl) through a postdoc fellowship for S.P.M. The authors acknowledge useful discussions with W. Zihao and K. Novoselov. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:168685 Serial 6490  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: