toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, X.; Bouhon, A.; Li, L.; Peeters, F.M.; Sanyal, B. url  doi
openurl 
  Title PAI-graphene : a new topological semimetallic two-dimensional carbon allotrope with highly tunable anisotropic Dirac cones Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 170 Issue Pages 477-486  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using evolutionary algorithm for crystal structure prediction, we present a new stable two-dimensional (2D) carbon allotrope composed of polymerized as-indacenes (PAI) in a zigzag pattern, namely PAI-graphene whose energy is lower than most of the reported 2D allotropes of graphene. Crucially, the crystal structure realizes a nonsymmorphic layer group that enforces a nontrivial global topology of the band structure with two Dirac cones lying perfectly at the Fermi level. The absence of electron/hole pockets makes PAI-graphene a pristine crystalline topological semimetal having anisotropic Fermi velocities with a high value of 7.0 x 10(5) m/s. We show that while the semimetallic property of the allotrope is robust against the application of strain, the positions of the Dirac cone and the Fermi velocities can be modified significantly with strain. Moreover, by combining strain along both the x- and y-directions, two band inversions take place at G leading to the annihilation of the Dirac nodes demonstrating the possibility of strain-controlled conversion of a topological semimetal into a semiconductor. Finally we formulate the bulk-boundary correspondence of the topological nodal phase in the form of a generalized Zak-phase argument finding a perfect agreement with the topological edge states computed for different edge-terminations. (C) 2020 The Author(s). Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579779800047 Publication Date 2020-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 27 Open Access  
  Notes ; We thank S. Nahas, for helpful discussions. This work is supported by the project grant (2016e05366) and Swedish Research Links program grant (2017e05447) from the Swedish Research Council, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), the FLAG-ERA project TRANS 2D TMD. Linyang Li acknowledges financial support from the Natural Science Foundation of Hebei Province (Grant No. A2020202031). X.C. thanks China scholarship council for financial support (No. 201606220031). X.C. and B.S. acknowledge SNIC-UPPMAX, SNIC-HPC2N, and SNIC-NSC centers under the Swedish National Infrastructure for Computing (SNIC) resources for the allocation of time in high-performance supercomputers. Moreover, supercomputing resources from PRACE DECI-15 project DYNAMAT are gratefully acknowledged. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:173513 Serial 6577  
Permanent link to this record
 

 
Author Kleshch, V.I.; Porshyn, V.; Orekhov, A.S.; Orekhov, A.S.; Lützenkirchen-Hecht, D.; Obraztsov, A.N. pdf  url
doi  openurl
  Title Carbon single-electron point source controlled by Coulomb blockade Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 154-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Coulomb blockade effect is commonly used in solid state electronics for the control of electron flow

at the single-particle level. Potentially, it allows the creation of single-electron point sources demanded

for prospective electron microscopy instruments and other vacuum electronics devices. Here we realize

this potential via creation of a stable point electron source composed of a carbon nanowire electrically

coupled to a diamond nanotip by a tunnel junction. Using energy spectroscopy analysis, we characterize

the electrons liberated from the nanometer scale carbon heterostructures in time and energy domains.

Our experimental results demonstrate perfect agreement with theory prediction of Coulomb oscillations

of the Fermi level in the nanowire and allow to determine the mechanisms of their suppression.

Persistence of the oscillations at room temperature, high intensity field emission with currents up to

1 mA, and other characteristics of our emitters are very promising for practical realization of coherent

single-electron guns.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500018 Publication Date 2020-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes The work was supported by Russian Science Foundation (Project No. 19-72-10067). Approved Most recent IF: 6.337  
  Call Number EMAT @ emat @c:irua:175013 Serial 6670  
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 551-559  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The flexoelectric and electronic properties of zig-zag graphene nanoribbons are explored under mechanical bending using state of the art first principles calculations. A linear dependence of the bending induced out of plane polarization on the applied strain gradient is found. The inferior flexoelectric properties of graphene nanoribbons can be improved by more than two orders of magnitude by hydrogen and fluorine functionalization (CH and CF nanoribbons). A large out of plane flexoelectric effect is predicted for CF nanoribbons. The origin of this enhancement lies in the electro-negativity difference between carbon and fluorine atoms, which breaks the out of plane charge symmetry even for a small strain gradient. The flexoelectric effect can be further improved by co-functionalization with hydrogen and fluorine (CHF Janus-type nanoribbon), where a spontaneous out of plane dipole moment is formed even for flat nanoribbons. We also find that bending can control the charge localization of valence band maxima and therefore enables the tuning of the hole effective masses and band gaps. These results present an important advance towards the understanding of flexoelectric and electronic properties of hydrogen and fluorine functionalized graphene nanoribbons, which can have important implications for flexible electronic applications. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500058 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 11 Open Access OpenAccess  
  Notes ; The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Flemish Science Foundation (FWO-VI). T. P. is supported by a postdoctoral research fellowship from BOF-UAntwerpen. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:175014 Serial 6700  
Permanent link to this record
 

 
Author Veronesi, S.; Pfusterschmied, G.; Fabbri, F.; Leitgeb, M.; Arif, O.; Esteban, D.A.; Bals, S.; Schmid, U.; Heun, S. url  doi
openurl 
  Title 3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC Type A1 Journal article
  Year 2022 Publication Carbon Abbreviated Journal Carbon  
  Volume 189 Issue Pages 210-218  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760358800008 Publication Date 2021-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 3 Open Access OpenAccess  
  Notes Horizon 2020; European Commission; Horizon 2020 Framework Programme; European Research Council, 128 731 019 ; European Research Council, REALNANO 815 128 ; sygmaSB Approved Most recent IF: 10.9  
  Call Number EMAT @ emat @c:irua:186583 Serial 6952  
Permanent link to this record
 

 
Author Dehdast, M.; Valiollahi, Z.; Neek-Amal, M.; Van Duppen, B.; Peeters, F.M.; Pourfath, M. pdf  doi
openurl 
  Title Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 178 Issue Pages 625-631  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hyperbolic polaritons in ultra thin materials such as few layers of van derWaals heterostructures provide a unique control over light-matter interaction at the nanoscale and with various applications in flat optics. Natural hyperbolic surface plasmons have been observed on thin films of WTe2 in the light wavelength range of 16-23 mu m (similar or equal to 13-18 THz) [Nat. Commun. 11, 1158 (2020)]. Using time-dependent density functional theory, it is found that carbon doped monolayer phosphorene (beta-allotrope of carbon phosphide monolayer) exhibits natural hyperbolic plasmons at frequencies above similar or equal to 5 THz which is not observed in its parent materials, i.e. monolayer of black phosphorous and graphene. Furthermore, we found that by electrostatic doping the plasmonic frequency range can be extended to the mid-infrared. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648729800057 Publication Date 2021-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 6 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:179033 Serial 7039  
Permanent link to this record
 

 
Author Mirzakhani, M.; Myoung, N.; Peeters, F.M.; Park, H.C. pdf  doi
openurl 
  Title Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal  
  Volume 201 Issue Pages 734-744  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene matter in a strong magnetic field, realizing one-dimensional quantum Hall channels, provides a unique platform for studying electron interference. Here, using the Landauer-Buttiker formalism along with the tightbinding model, we investigate the quantum Hall (QH) effects in unipolar and bipolar monolayer-bilayer graphene (MLG-BLG) junctions. We find that a Hall bar made of an armchair MLG-BLG junction in the bipolar regime results in valley-polarized edgechannel interferences and can operate a fully tunable Mach-Zehnder (MZ) interferometer device. Investigation of the bar-width and magnetic-field dependence of the conductance oscillations shows that the MZ interference in such structures can be drastically affected by the type of (zigzag) edge termination of the second layer in the BLG region [composed of vertical dimer or non-dimer atoms]. Our findings reveal that both interfaces exhibit a double set of Aharonov-Bohm interferences, with the one between two oppositely valley-polarized edge channels dominating and causing a large amplitude conductance oscillation ranging from 0 to 2e2/h. We explain and analyze our findings by analytically solving the Dirac-Weyl equation for a gated semi-infinite MLG-BLG junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000868911500004 Publication Date 2022-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.9; 2023 IF: 6.337  
  Call Number UA @ admin @ c:irua:191516 Serial 7302  
Permanent link to this record
 

 
Author Cao, M.; Xiong, D.-B.; Tan, Z.; Ji, G.; Amin-Ahmadi, B.; Guo, Q.; Fan, G.; Guo, C.; Li, Z.; Zhang, D. pdf  url
doi  openurl
  Title Aligning graphene in bulk copper : nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal  
  Volume 117 Issue Pages 65-74  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Methods used to strengthen metals generally also cause a pronounced decrease in ductility and electrical conductivity. In this work a bioinspired strategy is applied to surmount the dilemma. By assembling copper submicron flakes cladded with in-situ grown graphene, graphene/copper matrix composites with a nanolaminated architecture inspired by a natural nacre have been prepared. Owing to a combined effect-from the bioinspired nanolaminated architecture and improved interfacial bonding, a synergy has been achieved between mechanical strength and ductility as well as electrical conductivity in the graphene/copper matrix composites. With a low volume fraction of only 2.5% of graphene, the composite shows a yield strength and elastic modulus similar to 177% and similar to 25% higher than that of unreinforced copper matrix, respectively, while retains ductility and electrical conductivity comparable to that of pure copper. The bioinspired nanolaminated architecture enhances the efficiencies of two-dimensional (2D) graphene in mechanical strengthening and electrical conducting by aligning graphene to maximize performance for required loading and carrier transporting conditions, and toughens the composites by crack deflection. Meanwhile, in-situ growth of graphene is beneficial for improving interfacial bonding and structural quality of graphene. The strategy sheds light on the development of composites with good combined structural and functional properties. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400212100008 Publication Date 2017-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152635 Serial 7435  
Permanent link to this record
 

 
Author Marazzi, E.; Ghojavand, A.; Pirard, J.; Petretto, G.; Charlier, J.-C.; Rignanese, G.-M. pdf  doi
openurl 
  Title Modeling symmetric and defect-free carbon schwarzites into various zeolite templates Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal  
  Volume 215 Issue Pages 118385-118389  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a process has been proposed for generating negatively-curved carbon schwarzites via zeolite-templating (Braun et al., 2018). However, the proposed process leads to atomistic models which are not very symmetric and often rather defective. In the present work, an improved generation approach is developed, by imposing symmetry constraints, which systematically leads to defect-free, hence more stable, schwarzites. The stability of the newly predicted symmetric schwarzites is also compared to that of other carbon nanostructures (in particular carbon nanotubes – CNTs), which could also be accommodated within the same templates. Our results suggest that only a few of these (such as FAU, SBT and SBS) can fit schwarzites more stable than CNTs. Our predictions could help experimentalists in the crucial choice of the template for the challenging synthesis of schwarzites. Furthermore, being highly symmetric and stable phases, the models could also be synthesized by means of other experimental procedures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001078649800001 Publication Date 2023-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200314 Serial 9057  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Analytical study of the energy levels in bilayer graphene quantum dots Type A1 Journal article
  Year 2014 Publication Carbon Abbreviated Journal Carbon  
  Volume 78 Issue Pages 392-400  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the four-band continuum model we derive a general expression for the infinite-mass boundary condition in bilayer graphene. Applying this new boundary condition we analytically calculate the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our results for the energy spectrum show an energy gap between the electron and hole states at small magnetic fields. Furthermore the electron (e) and hole (h) energy levels corresponding to the K and K' valleys exhibit the E-K(e(h)) (m) = E-K'(e(h)) (m) symmetry, where m is the angular momentum quantum number. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000341463900042 Publication Date 2014-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 35 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program Euro-GRAPHENE (project CONGRAN), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). We thank M. Ramezani Masir and M. Grujic for helpful comments and discussions. ; Approved Most recent IF: 6.337; 2014 IF: 6.196  
  Call Number UA @ lucian @ c:irua:119280 Serial 109  
Permanent link to this record
 

 
Author Pierard, N.; Fonseca, A.; Colomer, J.-F.; Bossuot, C.; Benoit, J.-M.; Van Tendeloo, G.; Pirard, J.-P.; Nagy, J.B. pdf  doi
openurl 
  Title Ball milling effect on the structure of single-wall carbon nanotubes Type A1 Journal article
  Year 2004 Publication Carbon Abbreviated Journal Carbon  
  Volume 42 Issue 8/9 Pages 1691-1697  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000221948000035 Publication Date 2004-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 133 Open Access  
  Notes Pai/Iuap P5/01 Approved Most recent IF: 6.337; 2004 IF: 3.331  
  Call Number UA @ lucian @ c:irua:54866 Serial 213  
Permanent link to this record
 

 
Author Corthals, S.; van Noyen, J.; Geboers, J.; Vosch, T.; Liang, D.; Ke, X.; Hofkens, J.; Van Tendeloo, G.; Jacobs, P.; Sels, B. pdf  doi
openurl 
  Title The beneficial effect of CO2 in the low temperature synthesis of high quality carbon nanofibers and thin multiwalled carbon nanotubes from CH_{4} over Ni catalysts Type A1 Journal article
  Year 2012 Publication Carbon Abbreviated Journal Carbon  
  Volume 50 Issue 2 Pages 372-384  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A low temperature chemical vapor deposition method is described for converting CH4 into high-quality carbon nanofibers (CNFs) using a Ni catalyst supported on either spinel or perovskite oxides in the presence of CO2. The addition of CO2 has a significant influence on CNF purity and stability, while the CNF diameter distribution is significantly narrowed. Ultimately, the addition of CO2 changes the CNF structure from fishbone fibers to thin multiwalled carbon nanotubes. A new in situ cooling principle taking into account dry reforming chemistry and thermodynamics is introduced to account for the structural effects of CO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000297397700004 Publication Date 2011-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 26 Open Access  
  Notes Iwt; Iap Approved Most recent IF: 6.337; 2012 IF: 5.868  
  Call Number UA @ lucian @ c:irua:93626 Serial 228  
Permanent link to this record
 

 
Author Lu, Y.-G.; Turner, S.; Ekimov, E.A.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Boron-rich inclusions and boron distribution in HPHT polycrystalline superconducting diamond Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 86 Issue 86 Pages 156-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline boron-doped superconducting diamond, synthesized at high pressure and high temperature (HPHT) via a reaction of a single piece of crystalline boron with monolithic graphite, has been investigated by analytical transmission electron microscopy. The local boron distribution and boron environment have been studied by a combination of (scanning) transmission electron microscopy ((S)TEM) and spatially resolved electron energy-loss spectroscopy (EELS). High resolution TEM imaging and EELS elemental mapping have established, for the first time, the presence of largely crystalline diamond-diamond grain boundaries within the material and have evidenced the presence of substitutional boron dopants within individual diamond grains. Confirmation of the presence of substitutional B dopants has been obtained through comparison of acquired boron K-edge EELS fine structures with known references. This confirmation is important to understand the origin of superconductivity in polycrystalline B-doped diamond. In addition to the substitutional boron doping, boron-rich inclusions and triple-points, both amorphous and crystalline, with chemical compositions close to boron carbide B4C, are evidenced. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000352922700019 Publication Date 2015-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 20 Open Access  
  Notes FWO; 246791 COUNTATOMS; 278510 VORTEX; Hercules ECASJO_; Approved Most recent IF: 6.337; 2015 IF: 6.196  
  Call Number c:irua:125994UA @ admin @ c:irua:125994 Serial 250  
Permanent link to this record
 

 
Author Tikhomirov, A.S.; Sorokina, N.E.; Shornikova, O.N.; Morozov, V.A.; Van Tendeloo, G.; Avdeev, V.V. pdf  doi
openurl 
  Title The chemical vapor infiltration of exfoliated graphite to produce carbon/carbon composites Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 1 Pages 147-153  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chemical vapor infiltration was used for the production of carbon/carbon composites based on exfoliated graphite and pyrolytic carbon Two different exfoliated graphites compacted to densities of 0 05-0 4 g/cm(3) were used as a preform The influence of the synthesis conditions (temperature, pressure, time etc) on the degree of infiltration, the pyrolytic carbon morphology and the C/C composite characteristics was examined using Raman spectroscopy, scanning electron microscopy and low-temperature nitrogen adsorption (C) 2010 Elsevier Ltd All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000284977500021 Publication Date 2010-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 7 Open Access  
  Notes Iap Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:99185 Serial 354  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. pdf  doi
openurl 
  Title Density-functional theory calculations of the electron energy-loss near-edge structure of Li-intercalated graphite Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 10 Pages 2501-2510  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the structural and electronic properties of lithium-intercalated graphite (LIG) for various Li content. Atomic relaxation shows that Li above the center of the carbon hexagon in a AAAA stacked graphite is the only stable Li configuration in stage 1 intercalated graphite. Lithium and Carbon 1s energy-loss near-edge structure (ELNES) calculations are performed on the Li-intercalated graphite using the core-excited density-functional theory formulation. Several features of the Li 1s ELNES are correlated with reported experimental features. The ELNES spectra of Li is found to be electron beam orientation sensitive and this property is used to assign the origin of the various Li 1s ELNES features. Information about core-hole screening by the valence electrons and charge transfer in the LIG systems is obtained from the C 1s ELNES and valence charge density difference calculations, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000268429000025 Publication Date 2009-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 12 Open Access  
  Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:77973 Serial 638  
Permanent link to this record
 

 
Author Neyts, E.; Maeyens, A.; Pourtois, G.; Bogaerts, A. doi  openurl
  Title A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 3 Pages 1013-1017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using self-consistent KohnSham density-functional theory molecular dynamics simulations, we demonstrate the theoretical possibility to synthesize NiC60, the incarfullerene Ni@C60 and the heterofullerene C59Ni in an ion implantation setup. The corresponding formation mechanisms of all three complexes are elucidated as a function of the ion implantation energy and impact location, suggesting possible routes for selectively synthesizing these complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000286683500032 Publication Date 2010-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 13 Open Access  
  Notes Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:85139 Serial 639  
Permanent link to this record
 

 
Author He, Z.; Ke, X.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections Type A1 Journal article
  Year 2012 Publication Carbon Abbreviated Journal Carbon  
  Volume 50 Issue 7 Pages 2524-2529  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon nanotubes (CNTs) with a polygonal cross-section have been paid increasing attention since their three-dimensional structure is related to specific physical properties, which are found to be different in comparison to CNTs with a circular cross-section. Here, we report the existence of novel multi-walled CNTs yielding walls with a rounded-hexagonal configuration. This structure was directly confirmed for the first time by both cross-sectional transmission electron microscopy and electron tomography. The morphology of the Fe catalytic particle also exhibits hexagonal characteristics, and is proposed as the origin of the formation of the rounded-hexagonal walls of the CNT. This observation is of great importance with respect to the design of polygonal (such as pentagonal or hexagonal) cross-sectional CNTs. By controlling the morphology of the catalytic nanoparticles it will be possible to grow CNTs with desired electronic and mechanical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000303038400015 Publication Date 2012-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 6.337; 2012 IF: 5.868  
  Call Number UA @ lucian @ c:irua:96956 Serial 711  
Permanent link to this record
 

 
Author Afanasov, I.M.; Shornikova, O.N.; Avdeev, V.V.; Lebedev, O.I.; Van Tendeloo, G.; Matveev, A.T. pdf  doi
openurl 
  Title Expanded graphite as a support for Ni/carbon composites Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 2 Pages 513-518  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Expanded graphite decorated with nickel oxide particles (EGNiO) has been synthesized through electrochemical oxidation of natural graphite in an aqueous nickel nitrate solution followed by a heat treatment. EGNiO was used to prepare nickel/carbon composites using two techniques: (a) hydrogen reduction of nickel oxide particles loaded on the expanded graphite surface and (b) pyrolysis of coal tar pitch-impregnated EGNiO blocks. The EGNiO as well as the nickel/carbon composites have been characterized by X-ray diffraction, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy and selected area electron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000262558300018 Publication Date 2008-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 45 Open Access  
  Notes Iap-Vi Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:76033 Serial 1132  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title Formation of endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes by simulated ion implantation Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 4 Pages 1028-1033  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction of thermal and hyperthermal Ni ions with gas-phase C60 fullerene was investigated at two temperatures with classical molecular dynamics simulations using a recently developed interatomic many-body potential. The interaction between Ni and C60 is characterized in terms of the NiC60 binding sites, complex formation, and the collision and temperature induced deformation of the C60 cage structure. The simulations show how ion implantation theoretically allows the synthesis of both endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000264252900012 Publication Date 2008-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 15 Open Access  
  Notes Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:76434 Serial 1260  
Permanent link to this record
 

 
Author Afanasov, I.M.; Shornikova, O.N.; Kirilenko, D.A.; Vlasov, I.I.; Zhang, L.; Verbeeck, J.; Avdeev, V.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Graphite structural transformations during intercalation by HNO3 and exfoliation Type L1 Letter to the editor
  Year 2010 Publication Carbon Abbreviated Journal Carbon  
  Volume 48 Issue 6 Pages 1862-1865  
  Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract Expandable graphite of two types was synthesized by (1) hydrolysis of graphite nitrate of II stage and (2) anodic polarization of graphite in 60% HNO3. Exfoliated graphite samples were produced by thermal shock of expandable graphite samples in air at 900 °C. A comparative study of microstructural distinctions of both expandable and exfoliated graphite samples was carried out using X-ray diffraction, Raman spectroscopy, electron energy loss spectroscopy and high resolution transmission electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000276132800021 Publication Date 2010-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 43 Open Access  
  Notes Approved Most recent IF: 6.337; 2010 IF: 4.896  
  Call Number UA @ lucian @ c:irua:82315UA @ admin @ c:irua:82315 Serial 1379  
Permanent link to this record
 

 
Author Zhang, X.F.; Zhang, X.B.; Van Tendeloo, G.; Meijer, G. doi  openurl
  Title “Harmless” carbon tubes around “dangerous” asbestos fibres Type A1 Journal article
  Year 1994 Publication Carbon Abbreviated Journal Carbon  
  Volume 32 Issue Pages 363-366  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1994NC96800026 Publication Date 2003-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.196 Times cited 2 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 135/271 Q2 # PHYSICS, APPLIED 70/145 Q2 # PHYSICS, CONDENSED MATTER 40/67 Q3 #  
  Call Number UA @ lucian @ c:irua:10029 Serial 1411  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title Ion irradiation for improved graphene network formation in carbon nanotube growth Type A1 Journal article
  Year 2014 Publication Carbon Abbreviated Journal Carbon  
  Volume 77 Issue Pages 790-795  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ion irradiation of carbon nanotubes very often leads to defect formation. However, we have recently shown that Ar ion irradiation in a limited energy window of 1025 eV may enhance the initial cap nucleation process, when the carbon network is in contact with the metal nanocatalyst. Here, we employ reactive molecular dynamics simulations to demonstrate that ion irradiation in a higher energy window of 1035 eV may also heal network defects after the nucleation stage through a non-metal-mediated mechanism, when the carbon network is no longer in contact with the metal nanocatalyst. The results demonstrate the possibility of beneficially utilizing ions in e.g. plasma-enhanced chemical vapour deposition of carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000340689400083 Publication Date 2014-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 7 Open Access  
  Notes Approved Most recent IF: 6.337; 2014 IF: 6.196  
  Call Number UA @ lucian @ c:irua:118062 Serial 1745  
Permanent link to this record
 

 
Author Verberck, B.; Cambedouzou, J.; Vliegenthart, G.A.; Gompper, G.; Launois, P. doi  openurl
  Title A Monte Carlo study of C70 molecular motion in C70@SWCNT peapods Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 6 Pages 2007-2021  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present Monte Carlo simulations of chains of C70 molecules encapsulated in a single-walled carbon nanotube (SWCNT). For various tube radii R (6.5 Å less-than-or-equals, slant R less-than-or-equals, slant 7.5 Å), we analyze rotational and translational motion of the C70 molecules, as a function of temperature. Apart from reproducing the experimentally well-established lying and standing molecular orientations for small and large tube radii, respectively, we observe, depending on the tube diameter, a variety of molecular motions, orientational flipping of lying molecules, and the migration of molecules resulting in a continual rearrangement of the C70 molecules in clusters of varying lengths. With increasing temperature, the evolution of the pair correlation functions reveals a transition from linear harmonic chain behavior to a hard-sphere liquid, making C70@SWCNT peapods tunable physical realizations of two well-known one-dimensional model systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000288689900025 Publication Date 2011-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 10 Open Access  
  Notes ; Helpful discussions with K.H. Michel, P.-A. Albouy and C. Bousige are greatly acknowledged. This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:89660 Serial 2201  
Permanent link to this record
 

 
Author Xu, P.; Qi, D.; Schoelz, J.K.; Thompson, J.; Thibado, P.M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Neek-Amal, M.; Peeters, F.M.; doi  openurl
  Title Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC Type A1 Journal article
  Year 2014 Publication Carbon Abbreviated Journal Carbon  
  Volume 80 Issue Pages 75-81  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Epitaxial graphene is grown on a non-polar n(+) 6H-SiC m-plane substrate and studied using atomic scale scanning tunneling microscopy. Multilayer graphene is found throughout the surface and exhibits rotational disorder. Moire patterns of different spatial periodicities are found, and we found that as the wavelength increases, so does the amplitude of the modulations. This relationship reveals information about the interplay between the energy required to bend graphene and the interaction energy, i.e. van der Waals energy, with the graphene layer below. Our experiments are supported by theoretical calculations which predict that the membrane topographical amplitude scales with the Moire pattern wavelength, L as L-1 + alpha L-2. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000344132400009 Publication Date 2014-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 14 Open Access  
  Notes ; P.X. and P.M.T. gratefully acknowledge the financial support of ONR under grant N00014-10-1-0181 and NSF under grant DMR-0855358. L.O.N. acknowledges the support of American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research. This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, and the EUROgraphene project CONGRAN. M.N.-A was supported by the EU-Marie Curie IIF postdoc Fellowship 299855. ; Approved Most recent IF: 6.337; 2014 IF: 6.196  
  Call Number UA @ lucian @ c:irua:121194 Serial 2221  
Permanent link to this record
 

 
Author Felten, A.; Bittencourt, C.; Colomer, J.-F.; Van Tendeloo, G.; Pireaux, J.-J. doi  openurl
  Title Nucleation of metal clusters on plasma treated multi wall carbon nanotubes Type A1 Journal article
  Year 2007 Publication Carbon Abbreviated Journal Carbon  
  Volume 45 Issue 1 Pages 110-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000243583300017 Publication Date 2006-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 40 Open Access  
  Notes Approved Most recent IF: 6.337; 2007 IF: 4.260  
  Call Number UA @ lucian @ c:irua:63033 Serial 2389  
Permanent link to this record
 

 
Author Felten, A.; Ghijsen, J.; Pireaux, J.-J.; Whelan, C.M.; Liang, D.; Van Tendeloo, G.; Bittencourt, C. doi  openurl
  Title Photoemission study of CF4 rf-plasma treated multi-wall carbon nanotubes Type A1 Journal article
  Year 2008 Publication Carbon Abbreviated Journal Carbon  
  Volume 46 Issue 10 Pages 1271-1275  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF4 rf-plasma. X-ray photoelectron spectroscopy analysis shows that the treatment effectively grafts fluorine atoms onto the MWCNTs. The fluorine atomic concentration and the nature of the CF bond (semi-ionic or covalent) can be tuned by varying the exposure time. Ultraviolet photoelectron spectroscopy analysis confirms that the valence electronic states are altered by the grafting of fluorine atoms. Characterization with high-resolution transmission electron microscopy reveals that while the plasma treatment does not induce significant etching impact on the CNT-surface, it does increase the number of active sites for gold cluster formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000258987500001 Publication Date 2008-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 21 Open Access  
  Notes Approved Most recent IF: 6.337; 2008 IF: 4.373  
  Call Number UA @ lucian @ c:irua:76481 Serial 2612  
Permanent link to this record
 

 
Author Shariat, M.; Hosseini, S.I.; Shokri, B.; Neyts, E.C. doi  openurl
  Title Plasma enhanced growth of single walled carbon nanotubes at low temperature : a reactive molecular dynamics simulation Type A1 Journal article
  Year 2013 Publication Carbon Abbreviated Journal Carbon  
  Volume 65 Issue Pages 269-276  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature growth of carbon nanotubes (CNTs) has been claimed to provide a route towards chiral-selective growth, enabling a host of applications. In this contribution, we employ reactive molecular dynamics simulations to demonstrate how plasma-based deposition allows such low-temperature growth. We first show how ion bombardment during the growth affects the carbon dissolution and precipitation process. We then continue to demonstrate how a narrow ion energy window allows CNT growth at 500 K. Finally, we also show how CNTs in contrast cannot be grown in thermal CVD at this low temperature, but only at high temperature, in agreement with experimental data. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000326773200031 Publication Date 2013-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 21 Open Access  
  Notes Approved Most recent IF: 6.337; 2013 IF: 6.160  
  Call Number UA @ lucian @ c:irua:112697 Serial 2635  
Permanent link to this record
 

 
Author Afanasov, I.M.; Morozov, V.A.; Kepman, A.V.; Ionov, S.G.; Seleznev, A.N.; Van Tendeloo, G.; Audeev, V.V. pdf  doi
openurl 
  Title Preparation, electrical and thermal properties of new exfoliated graphite-based composites Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 1 Pages 263-270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Exfoliated graphite samples (EG) with different bulk densities were prepared by the exfoliation of expandable graphite under a thermal shock regime. As a conductive filler, EG has been incorporated successfully into the coal tar pitch matrix by mechanical mixing. The conducting behavior of the composite was interpreted based on the percolation theory. The percolation threshold of the EG/pitch conducting composites at room temperature was as low as 1.5 wt% and did not depend on the bulk density of the EG used. By means of thermogravimetry the improvement of thermal stability of the composites in comparison with pure pitches was detected. The phenomenon was ascribed to heat shielding effect of the EG particles evidenced by matrix-assisted laser desorption/ionization mass spectrometry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000262143500032 Publication Date 2008-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 42 Open Access  
  Notes Iap-Vi Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:75767 Serial 2701  
Permanent link to this record
 

 
Author Suarez-Martinez, I.; Bittencourt, C.; Ke, X.; Felten, A.; Pireaux, J.J.; Ghijsen, J.; Drube, W.; Van Tendeloo, G.; Ewels, C.P. pdf  doi
openurl 
  Title Probing the interaction between gold nanoparticles and oxygen functionalized carbon nanotubes Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 6 Pages 1549-1554  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The interaction between evaporated gold and pristine or oxygen plasma treated multi-walled carbon nanotubes (MWCNTs) is investigated. Experimental and theoretical results indicate that gold nucleation occurs at defect sites, whether initially present or introduced by oxygen plasma treatment. Uniform gold cluster dispersion is observed on plasma treated carbon nanotubes (CNTs) and associated with the presence of uniformly dispersed oxidized vacancy centres on the CNT surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000265518700018 Publication Date 2009-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 38 Open Access  
  Notes Pai Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:77267 Serial 2717  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bernaerts, D.; Amelinckx, S. doi  openurl
  Title Reduced dimensionality in different forms of carbon Type A1 Journal article
  Year 1998 Publication Carbon Abbreviated Journal Carbon  
  Volume 36 Issue 5/6 Pages 487-493  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000074824600003 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 4 Open Access  
  Notes Approved Most recent IF: 6.337; 1998 IF: 1.293  
  Call Number UA @ lucian @ c:irua:25662 Serial 2851  
Permanent link to this record
 

 
Author Cabana, L.; Ke, X.; Kepić, D.; Oro-Solé, J.; Tobías-Rossell, E.; Van Tendeloo, G.; Tobias, G. pdf  url
doi  openurl
  Title The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 93 Issue 93 Pages 1059-1067  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Purification and shortening of carbon nanotubes have attracted a great deal of attention to increase the biocompatibility and performance of the material in several applications. Steam treatment has been employed to afford both purification and shortening of multi-walled carbon nanotubes (MWCNTs). Steam removes the amorphous carbon and the graphitic particles that sheath catalytic nanoparticles, facilitating their removal by a subsequent acidic wash. The amount of metal impurities can be reduced in this manner below 0.01 wt.%. The length distribution of MWCNTs after different steam treatment times (from 1 h to 15 h) was assessed by box plot analysis of the electron microscopy data. Samples with a median length of 0.57 μm have been prepared with the reported methodology while preserving the integrity of the tubular wall structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000360292100108 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 17 Open Access  
  Notes 312483 Esteem2; 290023 Raddel; esteem2_ta Approved Most recent IF: 6.337; 2015 IF: 6.196  
  Call Number c:irua:127691 c:irua:127691 Serial 2921  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: