|   | 
Details
   web
Records
Author Van de Put, M.; Thewissen, M.; Magnus, W.; Sorée, B.; Sellier, J.M.
Title Spectral force approach to solve the time-dependent Wigner-Liouville equation Type P1 Proceeding
Year 2014 Publication 2014 International Workshop On Computational Electronics (iwce) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4799-5433-9 ISBN Additional Links (up) UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:122221 Serial 3071
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
Title Analytic solution of Ando's surface roughness model with finite domain distribution functions Type P1 Proceeding
Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Ando's surface roughness model is applied to metallic nanowires and extended beyond small roughness size and infinite barrier limit approximations for the wavefunction overlaps, such as the Prange-Nee approximation. Accurate and fast simulations can still be performed without invoking these overlap approximations by averaging over roughness profiles using finite domain distribution functions to obtain an analytic solution for the scattering rates. The simulations indicate that overlap approximations, while predicting a resistivity that agrees more or less with our novel approach, poorly estimate the underlying scattering rates. All methods show that a momentum gap between left- and right-moving electrons at the Fermi level, surpassing a critical momentum gap, gives rise to a substantial decrease in resistivity.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-0-692-51523-5 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134996 Serial 4140
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.; Fischetti, M.V.
Title Modeling of inter-ribbon tunneling in graphene Type P1 Proceeding
Year 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (similar to nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-0-692-51523-5 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134997 Serial 4206
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
Title Modeling and tackling resistivity scaling in metal nanowires Type P1 Proceeding
Year 2015 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 09-11, 2015, Washington, DC Abbreviated Journal
Volume Issue Pages 222-225
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract A self-consistent analytical solution of the multi-subband Boltzmann transport equation with collision term describing grain boundary and surface roughness scattering is presented to study the resistivity scaling in metal nanowires. The different scattering mechanisms and the influence of their statistical parameters are analyzed. Instead of a simple power law relating the height or width of a nanowire to its resistivity, the picture appears to be more complicated due to quantum-mechanical scattering and quantization effects, especially for surface roughness scattering.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4673-7860-4 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135046 Serial 4205
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G.
Title Non-uniform strain in lattice-mismatched heterostructure tunnel field-effect transistors Type P1 Proceeding
Year 2016 Publication Solid-State Device Research (ESSDERC), European Conference T2 – 46th European Solid-State Device Research Conference (ESSDERC) / 42nd, European Solid-State Circuits Conference (ESSCIRC), SEP 12-15, 2016, Lausanne, SWITZERLAND Abbreviated Journal
Volume Issue Pages 412-415
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Because of its localized impact on the band structure, non-uniform strain at the heterojunction between lattice-mismatched materials has the potential to significantly enlarge the design space for tunnel-field effect transistors (TFET). However, the impact of a complex strain profile on TFET performance is difficult to predict. We have therefore developed a 2D quantum mechanical transport formalism capable of simulating the effects of a general non-uniform strain. We demonstrate the formalism for the GaAsxSb(1-x)/InyGa(1-y) As system and show that a performance improvement over a lattice-matched reference is indeed possible, allowing for relaxed requirements on the source doping. We also point out that the added design parameter of mismatch is not free, but limited by the desired effective bandgap at the tunnel junction.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-5090-2969-3 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138233 Serial 4358
Permanent link to this record
 

 
Author Verhulst, A.S.; Verreck, D.; Smets, Q.; Kao, K.-H.; Van de Put, M.; Rooyackers, R.; Sorée, B.; Vandooren, A.; De Meyer, K.; Groeseneken, G.; Heyns, M.M.; Mocuta, A.; Collaert, N.; Thean, A.V.-Y.
Title Perspective of tunnel-FET for future low-power technology nodes Type P1 Proceeding
Year 2014 Publication 2014 Ieee International Electron Devices Meeting (iedm) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4799-8000-0 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144789 Serial 4679
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G.
Title Self-consistent 30-band simulation approach for (non-)uniformly strained confined heterostructure tunnel field-effect transistors Type P1 Proceeding
Year 2017 Publication Simulation of Semiconductor Processes and, Devices (SISPAD)AND DEVICES (SISPAD 2017) Abbreviated Journal
Volume Issue Pages 29-32
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract Heterostructures of III-V materials under a mechanical strain are being actively researched to enhance the performance of the tunnel field-effect transistor (TFET). In scaled III-V device structures, however, the interplay between the effects of strain and quantum confinement on the semiconductor band structure and hence the performance is highly non-trivial. We have therefore developed a computationally efficient quantum mechanical simulator Pharos, which enables self-consistent full-zone k.p-based simulations of III-V TFETs under a general non-uniform strain. We present the self-consistent procedure and demonstrate it on confined staggered bandgap GaAs0.5Sb0.5/In0.53Ga0.47As TFETs. We find a large performance degradation due to size-induced quantum confinement compared to non-confined devices. We show that some performance can be regained either by applying a uniform biaxial tensile strain or through the non-uniform strain profile at a lattice-mismatched heterostructure.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-4-86348-610-2 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149949 Serial 4978
Permanent link to this record
 

 
Author Balaban, S.N.; Pokatilov, E.P.; Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; van Rossum, M.; Sorée, B.
Title Quantum transport in a cylindrical sub-0.1 μm silicon-based MOSFET Type A1 Journal article
Year 2002 Publication Solid-State Electronics Abbreviated Journal Solid State Electron
Volume 46 Issue Pages 435-444
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000174445000020 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 16 Open Access
Notes Approved Most recent IF: 1.58; 2002 IF: 0.913
Call Number UA @ lucian @ c:irua:40880 Serial 2791
Permanent link to this record
 

 
Author Verhulst, A.; Sorée, B.; Leonelli, D.; Vandenberghe, W.G.; Groeseneken, G.
Title Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor Type A1 Journal article
Year 2010 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 107 Issue 2 Pages 024518,1-024518,8
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract Tunnel field-effect transistors (TFETs) are potential successors of metal-oxide-semiconductor FETs because scaling the supply voltage below 1 V is possible due to the absence of a subthreshold-swing limit of 60 mV/decade. The modeling of the TFET performance, however, is still preliminary. We have developed models allowing a direct comparison between the single-gate, double-gate, and gate-all-around configuration at high drain voltage, when the drain-voltage dependence is negligible, and we provide improved insight in the TFET physics. The dependence of the tunnel current on device parameters is analyzed, in particular, the scaling with gate-dielectric thickness, channel thickness, and dielectric constants of gate dielectric and channel material. We show that scaling the gate-dielectric thickness improves the TFET performance more than scaling the channel thickness and that improvements are often overestimated. There is qualitative agreement between our model and our experimental data.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000274180600122 Publication Date 2010-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 150 Open Access
Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:89507 Serial 2146
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.; Clemente, F.; Sorée, B.; van der Veen, M.H.; Vosch, T.; Stesmans, A.; Sels, B.; de Gendt, S.
Title Tuning the Fermi level of SiO2-supported single-layer graphene by thermal annealing Type A1 Journal article
Year 2010 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 114 Issue 5 Pages 6894-6900
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract The effects of thermal annealing in inert Ar gas atmosphere of SiO2-supported, exfoliated single-layer graphene are investigated in this work. A systematic, reproducible change in the electronic properties of graphene is observed after annealing. The most prominent Raman features in graphene, the G and 2D peaks, change in accord to what is expected in the case of hole doping. The results of electrical characterization performed on annealed, back-gated field-effect graphene devices show that the neutrality point voltage VNP increases monotonically with the annealing temperature, confirming the occurrence of excess hole accumulation. No degradation of the structural properties of graphene is observed after annealing at temperatures as high as 400 °C. Thermal annealing of single-layer graphene in controlled Ar atmosphere can therefore be considered a technique to reproducibly modify the electronic structure of graphene by tuning its Fermi level.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000276562500002 Publication Date 2010-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 54 Open Access
Notes Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:89508 Serial 3757
Permanent link to this record
 

 
Author O'Regan, T.P.; Hurley, P.K.; Sorée, B.; Fischetti, M.V.
Title Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor structures : charge quantization and nonparabolic corrections Type A1 Journal article
Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 21 Pages 213514,1-213514,3
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract The capacitance-voltage (C-V) characteristic is calculated for p-type In<sub>0.53</sub>Ga<sub>0.47</sub>As metal-oxide-semiconductor (MOS) structures based on a self-consistent PoissonSchrödinger solution. For strong inversion, charge quantization leads to occupation of the satellite valleys which appears as a sharp increase in the capacitance toward the oxide capacitance. The results indicate that the charge quantization, even in the absence of interface defects (D<sub>it</sub>), is a contributing factor to the experimental observation of an almost symmetric C-V response for In<sub>0.53</sub>Ga<sub>0.47</sub>As MOS structures. In addition, nonparabolic corrections are shown to enhance the depopulation of the Γ valley, shifting the capacitance increase to lower inversion charge densities.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278183200090 Publication Date 2010-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 26 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:89509 Serial 2143
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Szepieniec, M.; Vandenbreghe, W.; Verhulst, A.; Pourtois, G.; Groeseneken, G.; de Gendt, S.; Heyns, M.
Title Novel device concepts for nanotechnology : the nanowire pinch-off FET and graphene tunnelFET Type A2 Journal article
Year 2010 Publication ECS transactions Abbreviated Journal
Volume 28 Issue Pages 15-26
Keywords A2 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We explain the basic operation of a nanowire pinch-off FET and graphene nanoribbon tunnelFET. For the nanowire pinch-off FET we construct an analytical model to obtain the threshold voltage as a function of radius and doping density. We use the gradual channel approximation to calculate the current-voltage characteristics of this device and we show that the nanowire pinch-off FET has a subthreshold slope of 60 mV/dec and good ION and ION/IOFF ratios. For the graphene nanoribbon tunnelFET we show that an improved analytical model yields more realistic results for the transmission probability and hence the tunneling current. The first simulation results for the graphene nanoribbon tunnelFET show promising subthreshold slopes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1938-5862 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:89510 Serial 2375
Permanent link to this record
 

 
Author Sels, D.; Sorée, B.; Groeseneken, G.
Title 2-D rotational invariant multi sub band Schrödinger-Poisson solver to model nanowire transistors Type A1 Journal article
Year 2010 Publication Abbreviated Journal
Volume Issue Pages 85-88
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Pisa University Press Place of Publication Pisa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title 14th International Workshop on Computational Electronics
Series Volume Series Issue Edition
ISSN 978-1-4244-9381-4 ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:91699 Serial 6
Permanent link to this record
 

 
Author Sorée, B.; Pham, A.-T.; Sels, D.; Magnus, W.
Title The junctionless nanowire transistor Type H3 Book chapter
Year 2011 Publication Abbreviated Journal
Volume Issue Pages ?
Keywords H3 Book chapter; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Pan Stanford Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9789814364027 Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:93074 Serial 1754
Permanent link to this record
 

 
Author Magnus, W.; Carrillo-Nunez, H.; Sorée, B.
Title Transport in nanostructures Type H3 Book chapter
Year 2011 Publication Abbreviated Journal
Volume Issue Pages
Keywords H3 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Pan Stanford Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9789814364027 Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:93075 Serial 3724
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Leonelli, D.; Groeseneken, G.; De Meyer, K.
Title Optimization of gate-on-source-only tunnel FETs with counter-doped pockets Type A1 Journal article
Year 2012 Publication IEEE transactions on electron devices Abbreviated Journal Ieee T Electron Dev
Volume 59 Issue 8 Pages 2070-2077
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate a promising tunnel FET configuration having a gate on the source only, which is simultaneously exhibiting a steeper subthreshold slope and a higher ON-current than the lateral tunneling configuration with a gate on the channel. Our analysis is performed based on a recently developed 2-D quantum-mechanical simulator calculating band-to-band tunneling and including quantum confinement (QC). It is shown that the two disadvantages of the structure, namely, the sensitivity to gate alignment and the physical oxide thickness, are mitigated by placing a counter-doped parallel pocket underneath the gate-source overlap. The pocket also significantly reduces the field-induced QC. The findings are illustrated with all-Si and all-Ge gate-on-source-only tunnel field-effect transistor simulations.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000306920200011 Publication Date 2012-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383;1557-9646; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.605 Times cited 72 Open Access
Notes ; Manuscript received February 17, 2012; revised May 7, 2012; accepted May 11, 2012. Date of publication June 26, 2012; date of current version July 19, 2012. This work was supported by the Interuniversity Microelectronics Center's Industrial Affiliation Program. The work of W. G. Vandenberghe was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) through a Ph.D. stipend. The review of this paper was arranged by Editor H. S. Momose. ; Approved Most recent IF: 2.605; 2012 IF: 2.062
Call Number UA @ lucian @ c:irua:100820 Serial 2487
Permanent link to this record
 

 
Author Lujan, G.S.; Magnus, W.; Sorée, B.; Ragnarsson, L.A.; Trojman, L.; Kubicek, S.; De Gendt, S.; Heyns, A.; De Meyer, K.
Title Barrier permeation effects on the inversion layer subband structure and its applications to the electron mobility Type A1 Journal article
Year 2005 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 80 Issue Pages 82-85
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The electron wave functions in the inversion layer are analyzed in the case where the dielectric barriers are not infinite. This forces the electron concentration closer to the interface silicon/oxide and reduces the subband energy. This treatment of the inversion layer is extended to the calculation of the electron mobility degradation due to remote Coulomb scattering on a high-k dielectric stacked transistor. The subband energy reduction leads to a decrease of the scattering charge needed to explain the experimental results. This model can also fit better the experimental data when compared with the case where no barrier permeation is considered.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000231517000021 Publication Date 2005-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 1 Open Access
Notes Approved Most recent IF: 1.806; 2005 IF: 1.347
Call Number UA @ lucian @ c:irua:102729 Serial 222
Permanent link to this record
 

 
Author Pathangi, H.; Cherman, V.; Khaled, A.; Sorée, B.; Groeseneken, G.; Witvrouw, A.
Title Towards CMOS-compatible single-walled carbon nanotube resonators Type A1 Journal article
Year 2013 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 107 Issue Pages 219-222
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report a totally CMOS-compatible fabrication technique to assemble horizontally suspended single-walled carbon nanotube (SWCNT) resonators. Individual SWCNTs are assembled in parallel at multiple sites by a technique called dielectrophoresis. The mechanical resonance frequencies of the suspended SWCNTs are in the range of 2035 MHz as determined from the piezoresistive response of the resonators during electrostatic actuation. The resistance of the suspended SWCNT either remains unchanged or increases or decreases significantly as a function of the actuation frequency. This can be explained by the effect the nanotube chirality has on the piezoresistive gauge factor.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000319855800040 Publication Date 2012-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 1.806; 2013 IF: 1.338
Call Number UA @ lucian @ c:irua:109260 Serial 3685
Permanent link to this record
 

 
Author Vandenberghe, W.G.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Groeseneken, G.; Smets, Q.; Heyns, M.; Fischetti, M.V.
Title Figure of merit for and identification of sub-60 mV/decade devices Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 102 Issue 1 Pages 013510-13514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A figure of merit I60 is proposed for sub-60 mV/decade devices as the highest current where the input characteristics exhibit a transition from sub- to super-60 mV/decade behavior. For sub-60 mV/decade devices to be competitive with metal-oxide-semiconductor field-effect devices, I60 has to be in the 1-10 μA/μm range. The best experimental tunnel field-effect transistors (TFETs) in the literature only have an I60 of 6×10-3 μA/μm but using theoretical simulations, we show that an I60 of up to 10 μA/μm should be attainable. It is proven that the Schottky barrier FET (SBFET) has a 60 mV/decade subthreshold swing limit while combining a SBFET and a TFET does improve performance.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000313646500132 Publication Date 2013-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 64 Open Access
Notes ; William G. Vandenberghe gratefully acknowledges the support of a Ph.D. stipend from IWT-Vlaanderen. The authors thank Danielle Leonelli, Lars-Ake Ragnarsson, and Krishna Bhuwalka for useful discussions. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:109262 Serial 1192
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Vandenberghe, W.G.; Sorée, B.; Peeters, F.M.
Title Phonon-assisted Zener tunneling in a cylindrical nanowire transistor Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 113 Issue 18 Pages 184507-184508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The tunneling current has been computed for a cylindrical nanowire tunneling field-effect transistor (TFET) with an all-round gate that covers the source region. Being the underlying mechanism, band-to-band tunneling, mediated by electron-phonon interaction, is pronouncedly affected by carrier confinement in the radial direction and, therefore, involves the self-consistent solution of the Schrodinger and Poisson equations. The latter has been accomplished by exploiting a non-linear variational principle within the framework of the modified local density approximation taking into account the nonparabolicity of both the valence band and conduction band in relatively thick wires. Moreover, while the effective-mass approximation might still provide a reasonable description of the conduction band in relatively thick wires, we have found that the nonparabolicity of the valence band needs to be included. As a major conclusion, it is observed that confinement effects in nanowire tunneling field-effect transistors have a stronger impact on the onset voltage of the tunneling current in comparison with planar TFETs. On the other hand, the value of the onset voltage is found to be overestimated when the valence band nonparabolicity is ignored. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000319294100093 Publication Date 2013-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:109651 Serial 2599
Permanent link to this record
 

 
Author Carrillo-Nunez, H.; Magnus, W.; Vandenberghe, W.G.; Sorée, B.; Peeters, F.M.
Title Phonon-assisted Zener tunneling in a p-n diode silicon nanowire Type A1 Journal article
Year 2013 Publication Solid state electronics Abbreviated Journal Solid State Electron
Volume 79 Issue Pages 196-200
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Zener tunneling current flowing through a biased, abrupt p-n junction embedded in a cylindrical silicon nanowire is calculated. As the band gap becomes indirect for sufficiently thick wires, Zener tunneling and its related transitions between the valence and conduction bands are mediated by short-wavelength phonons interacting with mobile electrons. Therefore, not only the high electric field governing the electrons in the space-charge region but also the transverse acoustic (TA) and transverse optical (TO) phonons have to be incorporated in the expression for the tunneling current. The latter is also affected by carrier confinement in the radial direction and therefore we have solved the Schrodinger and Poisson equations self-consistently within the effective mass approximation for both conduction and valence band electrons. We predict that the tunneling current exhibits a pronounced dependence on the wire radius, particularly in the high-bias regime. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000313611000037 Publication Date 2012-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1101; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.58 Times cited 2 Open Access
Notes ; This work is supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. One of the authors (W. Vandenberghe) gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). ; Approved Most recent IF: 1.58; 2013 IF: 1.514
Call Number UA @ lucian @ c:irua:110104 Serial 2600
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K.
Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 4 Pages 044505-44508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331210800113 Publication Date 2014-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 26 Open Access
Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:115800 Serial 3505
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.; Sorée, B.; Verhulst, A.S.; Magnus, W.; Vandenberghe, W.G.; Collaert, N.; Thean, A.; Groeseneken, G.
Title Quantum mechanical solver for confined heterostructure tunnel field-effect transistors Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 5 Pages 053706-53708
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331645900040 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:115825 Serial 2780
Permanent link to this record
 

 
Author Smets, Q.; Verreck, D.; Verhulst, A.S.; Rooyackers, R.; Merckling, C.; Van De Put, M.; Simoen, E.; Vandervorst, W.; Collaert, N.; Thean, V.Y.; Sorée, B.; Groeseneken, G.; Heyns, M.M.;
Title InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 18 Pages 184503-184509
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In0.53Ga0.47As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In0.53Ga0.47As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000336919400048 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 34 Open Access
Notes ; Quentin Smets and Devin Verreck gratefully acknowledge the support of a Ph. D. stipend from IWT-Vlaanderen. This work was supported by imec's industrial affiliation program. The authors thank Kim Baumans, Johan Feyaerts, Johan De Cooman, Alireza Alian, and Jos Moonens for their support in process development; Bastien Douhard and Joris Delmotte for SIMS characterization; Alain Moussa for AFM characterization; Joris Van Laer and Tom Daenen for their support in electrical characterization; Kuo-Hsing Kao, Mehbuba Tanzid, and Ali Pourghaderi for their support in modeling. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:118009 Serial 1667
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Tokei, Z.; Magnus, W.
Title Resistivity scaling and electron relaxation times in metallic nanowires Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 116 Issue 6 Pages 063714
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000341179400036 Publication Date 2014-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 17 Open Access
Notes ; ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:119260 Serial 2882
Permanent link to this record
 

 
Author Toledano-Luque, M.; Matagne, P.; Sibaja-Hernandez, A.; Chiarella, T.; Ragnarsson, L.-A.; Sorée, B.; Cho, M.; Mocuta, A.; Thean, A.
Title Superior reliability of junctionless pFinFETs by reduced oxide electric field Type A1 Journal article
Year 2014 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 35 Issue 12 Pages 1179-1181
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superior reliability of junctionless (JL) compared with inversion-mode field-effect transistors (FETs) is experimentally demonstrated on bulk FinFET wafers. The reduced negative bias temperature instability (NBTI) of JL pFETs outperforms the previously reported best NBTI reliability data obtained with Si channel devices and guarantees 10-year lifetime at typical operating voltages and high temperature. This behavior is understood through the reduced oxide electric field and lessened interaction between charge carriers and oxide traps during device operation. These findings encourage the investigation of JL devices with alternative channels as a promising alternative for 7-nm technology nodes meeting reliability targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345575400006 Publication Date 2014-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106;1558-0563; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 13 Open Access
Notes ; This work was supported by the imec's Core Partner Program. The review of this letter was arranged by Editor J. Schmitz. ; Approved Most recent IF: 3.048; 2014 IF: 2.754
Call Number UA @ lucian @ c:irua:122192 Serial 3378
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G.
Title Improved source design for p-type tunnel field-effect transistors : towards truly complementary logic Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 24 Pages 243506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Complementary logic based on tunnel field-effect transistors (TFETs) would drastically reduce power consumption thanks to the TFET's potential to obtain a sub-60 mV/dec subthreshold swing (SS). However, p-type TFETs typically do not meet the performance of n-TFETs for direct bandgap III-V configurations. The p-TFET SS stays well above 60 mV/dec, due to the low density of states in the conduction band. We therefore propose a source configuration in which a highly doped region is maintained only near the tunnel junction. In the remaining part of the source, the hot carriers in the exponential tail of the Fermi-Dirac distribution are blocked by reducing the doping degeneracy, either with a source section with a lower doping concentration or with a heterostructure. We apply this concept to n-p-i-p configurations consisting of In0.53Ga0.47As and an InP-InAs heterostructure. 15-band quantum mechanical simulations predict that the configurations with our source design can obtain sub-60 mV/dec SS, with an on-current comparable to the conventional source design. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000346643600076 Publication Date 2014-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 10 Open Access
Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:122798 Serial 1568
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.
Title An envelope function formalism for lattice-matched heterostructures Type A1 Journal article
Year 2015 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 470-471 Issue 470-471 Pages 69-75
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The envelope function method traditionally employs a single basis set which, in practice, relates to a single material because the k.p matrix elements are generally only known in a particular basis. In this work, we defined a basis function transformation to alleviate this restriction. The transformation is completely described by the known inter-band momentum matrix elements. The resulting envelope function equation can solve the electronic structure in lattice matched heterostructures without resorting to boundary conditions at the interface between materials, while all unit-cell averaged observables can be calculated as with the standard envelope function formalism. In the case of two coupled bands, this heterostructure formalism is equivalent to the standard formalism while taking position dependent matrix elements. (C) 2015 Elsevier B.V. All rights reserved
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000355149600011 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 1.386; 2015 IF: 1.319
Call Number c:irua:126397 Serial 95
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.; Sorée, B.; Magnus, W.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G.
Title Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 134502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In0.53Ga0.47As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000362668400025 Publication Date 2015-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 9 Open Access
Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number UA @ lucian @ c:irua:128765 Serial 4183
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Magnus, W.
Title Modeling surface roughness scattering in metallic nanowires Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 124307
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000362565800032 Publication Date 2015-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 11 Open Access
Notes ; ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number UA @ lucian @ c:irua:129425 Serial 4207
Permanent link to this record