toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Kocabas, T.; Ozden, A.; Demiroglu, I.; Cakir, D.; Sevik, C. doi  openurl
  Title Determination of Dynamically Stable Electrenes toward Ultrafast Charging Battery Applications Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 9 Issue 15 Pages 4267-4274  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Electrenes, an atomically thin form of layered electrides, are very recent members of the 2D materials family. In this work, we employed first principle calculations to determine stable, exfoliatable, and application-promising 2D electrene materials among possible M2X compounds, where M is a group II-A metal and X is a nonmetal element (C, N, P, As, and Sb). The promise of stable electrene compounds for battery applications is assessed via their exfoliation energy, adsorption properties, and migration energy barriers toward relevant Li, Na, K, and Ca atoms. Our calculations revealed five new stable electrene candidates in addition to previously known Ca2N and Sr2N. Among these seven dynamically stable electrenes, Ba2As, Ba2P, Ba2Sb, Ca2N, Sr2N, and Sr2P are found to be very promising for either K or Na ion batteries due to their extremely low migration energy barriers (5-16 meV), which roughly demonstrates 105 times higher mobility than graphene and two to four times higher mobility than other promising 2D materials such as MXene (Mo2C).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440956500020 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193765 Serial 7779  
Permanent link to this record
 

 
Author (down) Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. doi  openurl
  Title Gaussian approximation potentials for accurate thermal properties of two-dimensional materials Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 19 Pages 8772-8780  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000976615200001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196722 Serial 8873  
Permanent link to this record
 

 
Author (down) Kocabas, T.; Cakir, D.; Sevik, C. doi  openurl
  Title First-principles discovery of stable two-dimensional materials with high-level piezoelectric response Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 11 Pages 115705  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The rational design of two-dimensional (2D) piezoelectric materials has recently garnered great interest due to their increasing use in technological applications, including sensor technology, actuating devices, energy harvesting, and medical applications. Several materials possessing high piezoelectric response have been reported so far, but a high-throughput first-principles approach to estimate the piezoelectric potential of layered materials has not been performed yet. In this study, we systematically investigated the piezoelectric (e(11), d(11)) and elastic (C-11 and C-12) properties of 128 thermodynamically stable 2D semiconductor materials by employing first-principle methods. Our high-throughput approach demonstrates that the materials containing Group-V elements produce significantly high piezoelectric strain constants, d(11) > 40 pm V-1, and 49 of the materials considered have the e(11) coefficient higher than MoS2 insomuch as BrSSb has one of the largest d(11) with a value of 373.0 pm V-1. Moreover, we established a simple empirical model in order to estimate the d(11) coefficients by utilizing the relative ionic motion in the unit cell and the polarizability of the individual elements in the compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000605852800001 Publication Date 2020-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:193761 Serial 7971  
Permanent link to this record
 

 
Author (down) Kocabas, T.; Cakir, D.; Gulseren, O.; Ay, F.; Perkgoz, N.K.; Sevik, C. doi  openurl
  Title A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal  
  Volume 10 Issue 16 Pages 7803-7812  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The investigation of thermal transport properties of novel two-dimensional materials is crucially important in order to assess their potential to be used in future technological applications, such as thermoelectric power generation. In this respect, the lattice thermal transport properties of the monolayer structures of group VA elements (P, As, Sb, Bi, PAs, PSb, PBi, AsSb, AsBi, SbBi, P3As1, P3Sb1, P1As3, and As3Sb1) with a black phosphorus like puckered structure were systematically investigated by first-principles calculations and an iterative solution of the phonon Boltzmann transport equation. Phosphorene was found to have the highest lattice thermal conductivity, , due to its low average atomic mass and strong interatomic bonding character. As a matter of course, anisotropic was obtained for all the considered materials, owing to anisotropy in frequency values and phonon group velocities calculated for these structures. However, the determined linear correlation between the anisotropy in the values of P, As, and Sb is significant. The results corresponding to the studied compound structures clearly point out that thermal (electronic) conductivity of pristine monolayers might be suppressed (improved) by alloying them with the same group elements. For instance, the room temperature of PBi along the armchair direction was predicted to be as low as 1.5 W m(-1) K-1, whereas that of P was predicted to be 21 W m(-1) K-1. In spite of the apparent differences in structural and vibrational properties, we peculiarly revealed an intriguing correlation between the values of all the considered materials as = c(1) + c(2)/m(2), in particular along the zigzag direction. Furthermore, our calculations on compound structures clearly showed that the thermoelectric potential of these materials can be improved by suppressing their thermal properties. The presence of ultra-low values and high electrical conductivity (especially along the armchair direction) makes this class of monolayers promising candidates for thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431030000054 Publication Date 2018-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193785 Serial 7388  
Permanent link to this record
 

 
Author (down) Klimin, S.N.; Tempere, J.; Verhelst, N.; Milošević, M.V. url  doi
openurl 
  Title Finite-temperature vortices in a rotating Fermi gas Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue 94 Pages 023620  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Vortices and vortex arrays have been used as a hallmark of superfluidity in rotated, ultracold Fermi gases. These superfluids can be described in terms of an effective field theory for a macroscopic wave function representing the field of condensed pairs, analogous to the Ginzburg-Landau theory for superconductors. Here we establish how rotation modifies this effective field theory, by rederiving it starting from the action of Fermi gas in the rotating frame of reference. The rotation leads to the appearance of an effective vector potential, and the coupling strength of this vector potential to the macroscopic wave function depends on the interaction strength between the fermions, due to a renormalization of the pair effective mass in the effective field theory. The mass renormalization derived here is in agreement with results of functional renormalization-group theory. In the extreme Bose-Einstein condensate regime, the pair effective mass tends to twice the fermion mass, in agreement with the physical picture of a weakly interacting Bose gas of molecular pairs. Then we use our macroscopic-wave-function description to study vortices and the critical rotation frequencies to form them. Equilibrium vortex state diagrams are derived and they are in good agreement with available results of the Bogoliubov-de Gennes theory and with experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y. Editor  
  Language Wos 000381473100001 Publication Date 2016-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9934 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 6 Open Access  
  Notes ; We are grateful to G. C. Strinati and H. Warringa for valuable discussions. This research was supported by the Flemish Research Foundation Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N, by the Scientific Research Network of the Flemish Research Foundation, Grant No. WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.925  
  Call Number UA @ lucian @ c:irua:135686 Serial 4304  
Permanent link to this record
 

 
Author (down) Klimin, S.N.; Tempère, J.; Misko, V.R.; Wouters, M. doi  openurl
  Title Finite-temperature Wigner solid and other phases of ripplonic polarons on a helium film Type A1 Journal article
  Year 2016 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 89 Issue 89 Pages 172  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract Electrons on liquid helium can form different phases depending on density, and temperature. Also the electron-ripplon coupling strength influences the phase diagram, through the formation of so-called “ripplonic polarons”, that change how electrons are localized, and that shifts the transition between the Wigner solid and the liquid phase. We use an all-coupling, finite-temperature variational method to study the formation of a ripplopolaron Wigner solid on a liquid helium film for different regimes of the electron-ripplon coupling strength. In addition to the three known phases of the ripplopolaron system (electron Wigner solid, polaron Wigner solid, and electron fluid), we define and identify a fourth distinct phase, the ripplopolaron liquid. We analyse the transitions between these four phases and calculate the corresponding phase diagrams. This reveals a reentrant melting of the electron solid as a function of temperature. The calculated regions of existence of the Wigner solid are in agreement with recent experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000391225200001 Publication Date 2016-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 1 Open Access  
  Notes ; We thank A.S. Mishchenko and D.G. Rees for valuable discussions. This research has been supported by the Flemish Research Foundation (FWO-Vl), Project Nos. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, by the Scientific Research Network of the Research Foundation-Flanders, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 1.461  
  Call Number UA @ lucian @ c:irua:140351 Serial 4454  
Permanent link to this record
 

 
Author (down) Klimin, S.N.; Tempere, J.; Milošević, M.V. url  doi
openurl 
  Title Diversified vortex phase diagram for a rotating trapped two-band Fermi gas in the BCS-BEC crossover Type A1 Journal article
  Year 2018 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 20 Issue 20 Pages 025010  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract We report the equilibrium vortex phase diagram of a rotating two-band Fermi gas confined to a cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature effective field theory (Klimin et al 2016 Phys. Rev. A 94 023620). A non-monotonic resonant dependence of the free energy as a function of the temperature and the rotation frequency is revealed for a two-band superfluid. We particularly focus on novel features that appear as a result of interband interactions and can be experimentally resolved. The resonant dependence of the free energy is directly manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex states are found. The study embraces the BCS-BEC crossover regime and the entire temperature range below the critical temperature T-c. Significantly different behavior of vortex matter as a function of the interband coupling is revealed in the BCS and BEC regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000426002900001 Publication Date 2018-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 6 Open Access  
  Notes ; We thank C A R Sa de Melo and N Verhelst for valuable discussions. This work has been supported by the Research Foundation-Flanders (FWO-Vl), project nrs. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, G.0666.16N, by the Scientific Research Network of the Flemish Research Foundation, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 3.786  
  Call Number UA @ lucian @ c:irua:149909UA @ admin @ c:irua:149909 Serial 4930  
Permanent link to this record
 

 
Author (down) Kiymaz, D.; Yagmurcukardes, M.; Tomak, A.; Sahin, H.; Senger, R.T.; Peeters, F.M.; Zareie, H.M.; Zafer, C. doi  openurl
  Title Controlled growth mechanism of poly (3-hexylthiophene) nanowires Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 455604  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Synthesis of 1D-polymer nanowires by a self-assembly method using marginal solvents is an attractive technique. While the formation mechanism is poorly understood, this method is essential in order to control the growth of nanowires. Here we visualized the time-dependent assembly of poly (3-hexyl-thiophene-2,5-diyl) (P3HT) nanowires by atomic force microscopy and scanning tunneling microscopy. The assembly of P3HT nanowires was carried out at room temperature by mixing cyclohexanone (CHN), as a poor solvent, with polymer solution in 1,2-dichlorobenzene (DCB). Both pi-pi stacking and planarization, obtained at the mix volume ratio of P3HT (in DCB):CHN (10:7), were considered during the investigation. We find that the length of nanowires was determined by the ordering of polymers in the polymer repetition direction. Additionally, our density functional theory calculations revealed that the presence of DCB and CHN molecules that stabilize the structural distortions due to tail group of polymers was essential for the core-wire formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000386132600003 Publication Date 2016-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. HS is supported by a FWO Pegasus-Long Marie Curie Fellowship. HS and RTS acknowledge support from TUBITAK through Project No. 114F397. Also, DA is supported by the Scientific Research Project Fund of Ege University (Project Nr: 12GEE011). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:138159 Serial 4350  
Permanent link to this record
 

 
Author (down) Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages 235425-235425,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286769100008 Publication Date 2010-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86911 Serial 1010  
Permanent link to this record
 

 
Author (down) Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure of InAs/GaSb core-shell nanowires Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 16 Pages 165439-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and optical properties of InAs/GaSb core-shell nanowires are investigated within the effective mass k . p approach. These systems have a broken band gap, which results in spatially separated confinement of electrons and holes. We investigated these structures for different sizes of the InAs and GaSb core and shell radius. We found that for certain configurations, the conduction band states penetrate into the valence band states resulting in a negative band gap (E-g < 0), which leads to a conduction band ground state that lies below the valence band ground state at the Gamma point. For certain core-shell wires, only one conduction band state penetrates into the valence band and in this case, a minigap Delta opens up away from the Gamma point and as a consequence the electronic properties of the nanowire now depend on both E-g and Delta values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000310131400005 Publication Date 2012-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:102164 Serial 1014  
Permanent link to this record
 

 
Author (down) Kishore, V.V.R.; Čukarić, N.; Partoens, B.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Hole subbands in freestanding nanowires : six-band versus eight-band k.p modelling Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 13 Pages 135302-135302,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs, InAs and InSb nanowires is studied using the six-band and the eight-band k.p models. The effect of the different Luttinger-like parameters (in the eight-band model) on the hole band structure is investigated. Although GaAs nanostructures are often treated within a six-band model because of the large bandgap, it is shown that an eight-band model is necessary for a correct description of its hole spectrum. The camel-back structure usually found in the six-band model is not always present in the eight-band model. This camel-back structure depends on the interaction between light and heavy holes, especially the ones with opposite spin. The latter effect is less pronounced in an eight-band model, but could be very sensitive to the Kane inter-band energy (E-P) value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000302120100007 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), Belgian Science Policy (IAP) and the Ministry of Education and Science of Serbia. ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:97763 Serial 1479  
Permanent link to this record
 

 
Author (down) Kishore, V.V.R. openurl 
  Title Electronic structure of core-shell nanowires Type Doctoral thesis
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:105035 Serial 1013  
Permanent link to this record
 

 
Author (down) Khotkevych, V.V.; Milošević, M.V.; Bending, S.J. doi  openurl
  Title A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK Type A1 Journal article
  Year 2008 Publication The review of scientific instruments Abbreviated Journal Rev Sci Instrum  
  Volume 79 Issue 12 Pages 123708  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial 3He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6×6×7 mm3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields 10 mG/Hz1/2. The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000262224800032 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6748; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.515 Times cited 14 Open Access  
  Notes Approved Most recent IF: 1.515; 2008 IF: 1.738  
  Call Number UA @ lucian @ c:irua:75725 Serial 2942  
Permanent link to this record
 

 
Author (down) Khoeini, F.; Shakouri; Peeters, F.M. url  doi
openurl 
  Title Peculiar half-metallic state in zigzag nanoribbons of MoS2 : spin filtering Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 125412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Layered structures of molybdenum disulfide (MoS2) belong to a new class of two-dimensional (2D) semiconductor materials in which monolayers exhibit a direct band gap in their electronic spectrum. This band gap has recently been shown to vanish due to the presence of metallic edge modes when MoS2 monolayers are terminated by zigzag edges on both sides. Here, we demonstrate that a zigzag nanoribbon of MoS2, when exposed to an external exchange field in combination with a transverse electric field, has the potential to exhibit a peculiar half-metallic nature and thereby allows electrons of only one spin direction to move. The peculiarity of such spin-selective conductors originates from a spin switch near the gap-closing region, so the allowed spin orientation can be controlled by means of an external gate voltage. It is shown that the induced half-metallic phase is resistant to random fluctuations of the exchange field as well as the presence of edge vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383238800009 Publication Date 2016-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137130 Serial 4360  
Permanent link to this record
 

 
Author (down) Khazaei, M.; Wang, V.; Sevik, C.; Ranjbar, A.; Arai, M.; Yunoki, S. doi  openurl
  Title Electronic structures of iMAX phases and their two-dimensional derivatives: A family of piezoelectric materials Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal  
  Volume 2 Issue 7 Pages 074002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a group of MAX phases, (Mo2/3Y1/3)(2)AlC, (Mo2/3Sc1/3)(2)AlC, (W2/3Sc1/3)(2)AlC,(W2/3Y1/3)(2)AlC, and (V-2/3 Zr-1/3)(2)AlC, with in-plane ordered double transition metals, named iMAX phases, have been synthesized. Experimentally, some of these MAX phases can be chemically exfoliated into two-dimensional (2D) single- or multilayered transition metal carbides, so-called MXenes. Accordingly, the 2D nanostructures derived from iMAX phases are named iMXenes. Here we investigate the structural stabilities and electronic structures of the experimentally discovered iMAX phases and their possible iMXene derivatives. We show that the iMAX phases and their pristine, F, or OH-terminated iMXenes are metallic. However, upon 0 termination, (Mo2/3Y1/3)(2)C, (Mo2/3Sc1/3)(2)C, (W2/3Y1/3)(2)C, and (W2/3Sc1/3)(2)C iMXenes turn into semiconductors. Owing to the absence of centrosymmetry, the semiconducting iMXenes may find applications in piezoelectricity. Our calculations reveal that the semiconducting iMXenes possess giant piezoelectric coefficients as large as 45 x 10(-)(10) C/m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438354500001 Publication Date 2018-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193791 Serial 7876  
Permanent link to this record
 

 
Author (down) Khaydarov, R.T.; Beisinbaeva, H.B.; Sabitov, N.M.; Terentev, V.B.; Berdiyorov, G.R. doi  openurl
  Title Effect of neutron irradiation on the characteristics of laser-produced plasma Type A1 Journal article
  Year 2010 Publication Nuclear fusion Abbreviated Journal Nucl Fusion  
  Volume 50 Issue 2 Pages 025024,1-025024,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the mass-spectrometric method we studied the formation of multi-charged plasma ions during the interaction of laser radiation with solid targets irradiated by neutron beams. We found that structural defects, caused by the neutron irradiation, influence not only the efficiency of the process of material evaporation and emission of plasma, but also the ionization and recombination processes taking place at the initial stage of plasma formation and expansion. We also show the effect of the dose of neutron irradiation on the threshold of plasma formation from the surface of the target.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vienna Editor  
  Language Wos 000275322200029 Publication Date 2010-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-5515;1741-4326; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 3 Open Access  
  Notes ; This work was supported by MINVIZ Uzbekistan and by IAEA (No 13738). G. R. B acknowledges support from FWO-Vlaanderen. ; Approved Most recent IF: 3.307; 2010 IF: 3.303  
  Call Number UA @ lucian @ c:irua:81769 Serial 825  
Permanent link to this record
 

 
Author (down) Khaydarov, R.T.; Beisinbaeva, H.B.; Sabitov, M.M.; Kalal, M.; Berdiyorov, G.R. doi  openurl
  Title Conditions defining the mechanisms of the formation of light gas ions in multicomponent laser-produced plasmas Type A1 Journal article
  Year 2010 Publication Nuclear fusion Abbreviated Journal Nucl Fusion  
  Volume 50 Issue 10 Pages 105007,1-105007,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the mass-spectrometric method we study the charge, energy and spatial characteristics of ions in multicomponent plasma, generated under the action of Nd : YAG laser radiation on the surface of solid targets. We focus on the effect of the entry form of light gas atoms on the parameters of ions in such laser-produced plasmas. We found that the presence of light gas atoms considerably affects the parameters (e.g. the intensity and the charge multiplicity) of the heavier ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vienna Editor  
  Language Wos 000281859300008 Publication Date 2010-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-5515;1741-4326; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 3.307; 2010 IF: 3.303  
  Call Number UA @ lucian @ c:irua:84876 Serial 476  
Permanent link to this record
 

 
Author (down) Khaydarov, R.T.; Beisinbaeva, H.B.; Sabitov, M.M.; Kalal, M.; Berdiyorov, G.R. pdf  doi
openurl 
  Title Effect of light gas atom inclusions on the characteristics of laser-produced plasma ions Type A1 Journal article
  Year 2011 Publication Nuclear fusion Abbreviated Journal Nucl Fusion  
  Volume 51 Issue 10 Pages 103041,1-103041,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the mass-spectrometric method we studied the effect of light gas inclusions on the formation process of multi-component laser-induced plasma ions. Masscharge characteristics, as well as energy and spatial distribution of the plasma ions are analysed. We found that both the energy and maximal charge of heavy component ions decrease due to the presence of gas atoms in the solid target surface layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vienna Editor  
  Language Wos 000296603800043 Publication Date 2011-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-5515;1741-4326; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 3.307; 2011 IF: 4.090  
  Call Number UA @ lucian @ c:irua:93761 Serial 821  
Permanent link to this record
 

 
Author (down) Khalilov, U.; Yusupov, M.; Eshonqulov, Gb.; Neyts, Ec.; Berdiyorov, Gr. pdf  url
doi  openurl
  Title Atomic level mechanisms of graphene healing by methane-based plasma radicals Type A1 Journal Article
  Year 2023 Publication FlatChem Abbreviated Journal FlatChem  
  Volume 39 Issue Pages 100506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000990342500001 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2627 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access OpenAccess  
  Notes U.K., M.Y. and G.B.E. acknowledge the support of the Agency for Innovative Development of the Republic of Uzbekistan (Grant numbers F-FA-2021-512 and FZ-2020092435). The computational resources and services used in this work were partially provided by the HPC core facility CalcUA of the Universiteit Antwerpen and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:197442 Serial 8813  
Permanent link to this record
 

 
Author (down) Khalil-Allafi, J.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys Type P3 Proceeding
  Year 2009 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 487 Issue Pages 363-366  
  Keywords P3 Proceeding; Condensed Matter Theory (CMT)  
  Abstract In the present research work the binary NiTi alloys with various compositions in the range of 50.351 at.% Ni were used. Samples have been annealed at 850 °C for 15 min and then quenched in water. In order to characterize transformation temperatures and enthalpy changes of the forward and the reverse martensitic transformation, Differential Scanning Calorimetric (DSC) experiments were performed. The enthalpy and entropy changes as a function of Ni atomic content have been thermodynamically investigated. Results show that enthalpy and entropy changes of martensitic transformation decrease when Ni atomic content increases. The variation of enthalpy and entropy of martensitic transformation with Ni content in binary NiTi alloys were explained by thermodynamic parameters and electron concentration of alloy (e/a) respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000272521900073 Publication Date 2009-07-31  
  Series Editor Series Title Abbreviated Series Title Proceedings of the 22nd International Conference on the Physics of Semiconductors  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 30 Open Access  
  Notes Approved Most recent IF: 3.133; 2009 IF: 2.135  
  Call Number UA @ lucian @ c:irua:122040 Serial 804  
Permanent link to this record
 

 
Author (down) Kerner, C.; Hackens, B.; Golubović, D.S.; Poli, S.; Faniel, S.; Magnus, W.; Schoenmaker, W.; Bayot, V.; Maes, H. doi  openurl
  Title Control and readout of current-induced magnetic flux quantization in a superconducting transformer Type A1 Journal article
  Year 2009 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 22 Issue 2 Pages 025001,1-025001,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate a simple and robust method for inducing and detecting changes of magnetic flux quantization in the absence of an externally applied magnetic field. In our device, an isolated ring is interconnected with two access loops via permalloy cores, forming a superconducting transformer. By applying and tuning a direct current at the first access loop, the number of flux quanta trapped in the isolated ring is modified without the aid of an external field. The flux state of the isolated ring is simply detected by recording the evolution of the critical current of the second access loop.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000262786000003 Publication Date 2008-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.878; 2009 IF: 2.694  
  Call Number UA @ lucian @ c:irua:76001 Serial 497  
Permanent link to this record
 

 
Author (down) Kenawy, A.; Magnus, W.; Sorée, B. doi  openurl
  Title Flux quantization and Aharonov-Bohm effect in superconducting rings Type A1 Journal article
  Year 2018 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 31 Issue 5 Pages 1351-1357  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superconductivity is a macroscopic coherent state exhibiting various quantum phenomena such as magnetic flux quantization. When a superconducting ring is placed in a magnetic field, a current flows to expel the field from the ring and to ensure that the enclosed flux is an integer multiple of h/(2|e|). Although the quantization of magnetic flux in ring structures is extensively studied in literature, the applied magnetic field is typically assumed to be homogeneous, implicitly implying an interplay between field expulsion and flux quantization. Here, we propose to decouple these two effects by employing an Aharonov-Bohm-like structure where the superconducting ring is threaded by a magnetic core (to which the applied field is confined). Although the magnetic field vanishes inside the ring, the formation of vortices takes place, corresponding to a change in the flux state of the ring. The time evolution of the density of superconducting electrons is studied using the time-dependent Ginzburg-Landau equations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000429354100010 Publication Date 2017-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.18 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:150742UA @ admin @ c:irua:150742 Serial 4969  
Permanent link to this record
 

 
Author (down) Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. pdf  doi
openurl 
  Title Electronically tunable quantum phase slips in voltage-biased superconducting rings as a base for phase-slip flux qubits Type A1 Journal article
  Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech  
  Volume 33 Issue 12 Pages 125002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum phase slips represent a coherent mechanism to couple flux states of a superconducting loop. Since their first direct observation, there have been substantial developments in building charge-insensitive quantum phase-slip circuits. At the heart of these devices is a weak link, often a nanowire, interrupting a superconducting loop. Owing to the very small cross-sectional area of such a nanowire, quantum phase slip rates in the gigahertz range can be achieved. Instead, here we present the use of a bias voltage across a superconducting loop to electrostatically induce a weak link, thereby amplifying the rate of quantum phase slips without physically interrupting the loop. Our simulations reveal that the bias voltage modulates the free energy barrier between subsequent flux states in a very controllable fashion, providing a route towards a phase-slip flux qubit with a broadly tunable transition frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577207000001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 3.6; 2020 IF: 2.878  
  Call Number UA @ admin @ c:irua:172643 Serial 6503  
Permanent link to this record
 

 
Author (down) Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. doi  openurl
  Title Voltage-controlled superconducting magnetic memory Type A1 Journal article
  Year 2019 Publication AIP advances T2 – 64th Annual Conference on Magnetism and Magnetic Materials (MMM), NOV 04-08, 2019, Las Vegas, NV Abbreviated Journal  
  Volume 9 Issue 12 Pages 125223  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Over the past few decades, superconducting circuits have been used to realize various novel electronic devices such as quantum bits, SQUIDs, parametric amplifiers, etc. One domain, however, where superconducting circuits fall short is information storage. Superconducting memories are based on the quantization of magnetic flux in superconducting loops. Standard implementations store information as magnetic flux quanta in a superconducting loop interrupted by two Josephson junctions (i.e., a SQUID). However, due to the large inductance required, the size of the SQUID loop cannot be scaled below several micrometers, resulting in low-density memory chips. Here, we propose a scalable memory consisting of a voltage-biased superconducting ring threaded by a half-quantum flux bias. By numerically solving the time-dependent Ginzburg-Landau equations, we show that applying a time-dependent bias voltage in the microwave range constitutes a writing mechanism to change the number of stored flux quanta within the ring. Since the proposed device does not require a large loop inductance, it can be scaled down, enabling a high-density memory technology. (C) 2019 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515525300002 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:167551 Serial 8740  
Permanent link to this record
 

 
Author (down) Katti, G.; Stucchi, M.; Velenis, D.; Sorée, B.; de Meyer, K.; Dehaene, W. doi  openurl
  Title Temperature-dependent modeling and characterization of through-silicon via capacitance Type A1 Journal article
  Year 2011 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 32 Issue 4 Pages 563-565  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A semianalytical model of the through-silicon via (TSV) capacitance for elevated operating temperatures is derived and verified with electrical measurements. The effect of temperature on the increase in TSV capacitance over different technology parameters is explored, and it is shown that higher oxide thickness reduces the impact of temperature rise on TSV capacitance, while with low doped substrates, which are instrumental for reducing the TSV capacitance, the sensitivity of TSV capacitance to temperature is large and cannot be ignored.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288664800045 Publication Date 2011-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106;1558-0563; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 27 Open Access  
  Notes ; ; Approved Most recent IF: 3.048; 2011 IF: 2.849  
  Call Number UA @ lucian @ c:irua:89402 Serial 3498  
Permanent link to this record
 

 
Author (down) Kato, H.; Peeters, F.M.; Ulloa, S.E. doi  openurl
  Title The remote plasmon polaron Type A1 Journal article
  Year 1999 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 45 Issue Pages 235-241  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000078026400015 Publication Date 2003-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.957; 1999 IF: 2.214  
  Call Number UA @ lucian @ c:irua:24173 Serial 2870  
Permanent link to this record
 

 
Author (down) Kato, H.; Peeters, F.M.; Ulloa, S.E. openurl 
  Title The remote Wigner polaron in a two-dimensional electron system Type A1 Journal article
  Year 1997 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 40 Issue Pages 551-556  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos A1997YK05500013 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.957; 1997 IF: 2.350  
  Call Number UA @ lucian @ c:irua:19266 Serial 2872  
Permanent link to this record
 

 
Author (down) Kato, H.; Peeters, F.M. openurl 
  Title Correlation between a remote electron and a two-dimensional electron gas in resonant tunneling devices Type P3 Proceeding
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages 843-844  
  Keywords P3 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:37298 Serial 521  
Permanent link to this record
 

 
Author (down) Kato, H.; Peeters, F.M. doi  openurl
  Title Remote Wigner polaron in a magnetic field Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 59 Issue Pages 14342-14348  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000080780700027 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:24155 Serial 2871  
Permanent link to this record
 

 
Author (down) Kastalsky, A.; Peeters, F.M.; Chan, W.K.; Florez, L.T.; Harbison, J.P. openurl 
  Title Nonlinear transport phenomena in a triangular quantum well Type A1 Journal article
  Year 1991 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 59 Issue Pages 1708-1710  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1991GH40900019 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:945 Serial 2360  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: