toggle visibility
Search within Results:
Display Options:
Number of records found: 1459

Select All    Deselect All
 | 
Citations
 | 
   print
Atomic Collapse in Graphene”. Moldovan D, Peeters FM, Nanomaterials For Security , 3 (2016). http://doi.org/10.1007/978-94-017-7593-9_1
toggle visibility
Spin-dependent magnetotransport through a ring due to spin-orbit interaction”. Molnár B, Peeters FM, Vasilopoulos P, Physical review : B : condensed matter and materials physics 69, 155335 (2004). http://doi.org/10.1103/PhysRevB.69.155335
toggle visibility
Magnetoconductance through a chain of rings with or without periodically modulated spin-orbit interaction strength and magnetic field”. Molnár B, Vasilopoulos P, Peeters FM, Physical review : B : condensed matter and materials physics 72, 075330 (2005). http://doi.org/10.1103/PhysRevB.72.075330
toggle visibility
Spin-dependent transmission through a chain of rings : influence of a periodically modulated spin-orbit interaction strength or ring radius”. Molnar B, Vasilopoulos P, Peeters FM, Applied physics letters 85, 612 (2004). http://doi.org/10.1063/1.1775283
toggle visibility
Square-wave conductance through a chain of rings due to spin-orbit interaction”. Molnar B, Vasilopoulos P, Peeters FM, AIP conference proceedings 772, 1335 (2005)
toggle visibility
Nonlinear-cold-quantum magnetotransport in a nondegenerate two-dimensional electron gas”. Monarkha YP, Peeters FM, Europhysics letters 34, 611 (1996). http://doi.org/10.1209/epl/i1996-00504-y
toggle visibility
Edge excitations of a 2D electron solid in a magnetic field”. Monarkha YP, Peeters FM, Sokolov SS, Journal of physics : condensed matter 9, 1537 (1997)
toggle visibility
Nonlinear quantum magnetotransport in a strongly correlated two-dimensional electron liquid”. Monarkha YP, Shirahama K, Kono K, Peeters FM, Physical review : B : condensed matter and materials physics 58, 3762 (1998). http://doi.org/10.1103/PhysRevB.58.3762
toggle visibility
The pinning effect in a parabolic quantum dot”. Mukhopadhyay S, Peeters FM, Journal of physics : condensed matter 14, 8005 (2002). http://doi.org/10.1088/0953-8984/14/34/319
toggle visibility
Ground state and normal-mode spectra of a two-dimensional system of dipole particles confined in a parabolic trap”. Munarin FF, Ferreira WP, Farias GA, Peeters FM, Physical review : E : statistical, nonlinear, and soft matter physics 78, 031405 (2008). http://doi.org/10.1103/PhysRevE.78.031405
toggle visibility
Molecular states of two vertically coupled systems of classical charged particles confined by a Coulomb potential”. Munarin FF, Ferreira WP, Farias GA, Peeters FM, Physical review : B : condensed matter and materials physics 76, 035336 (2007). http://doi.org/10.1103/PhysRevB.76.035336
toggle visibility
Hysteresis and reentrant melting of a self-organized system of classical particles confined in a parabolic trap”. Munarin FF, Nelissen K, Ferreira WP, Farias GA, Peeters FM, Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics 77, 031608 (2008). http://doi.org/10.1103/PhysRevE.77.031608
toggle visibility
Superconducting current and proximity effect in ABA and ABC multilayer graphene Josephson junctions”. Muñoz WA, Covaci L, Peeters FM, Physical review : B : condensed matter and materials physics 88, 214502 (2013). http://doi.org/10.1103/PhysRevB.88.214502
toggle visibility
Disordered graphene Josephson junctions”. Muñoz WA, Covaci L, Peeters FM, Physical review : B : condensed matter and materials physics 91, 054506 (2015). http://doi.org/10.1103/PhysRevB.91.054506
toggle visibility
Tight-binding description of intrinsic superconducting correlations in multilayer graphene”. Muñoz WA, Covaci L, Peeters FM, Physical review : B : condensed matter and materials physics 87, 134509 (2013). http://doi.org/10.1103/PhysRevB.87.134509
toggle visibility
Tight-binding study of bilayer graphene Josephson junctions”. Muñoz WA, Covaci L, Peeters FM, Physical review : B : condensed matter and materials physics 86, 184505 (2012). http://doi.org/10.1103/PhysRevB.86.184505
toggle visibility
Tight-binding model for borophene and borophane”. Nakhaee M, Ketabi SA, Peeters FM, Physical review B 97, 125424 (2018). http://doi.org/10.1103/PHYSREVB.97.125424
toggle visibility
Dirac nodal line in bilayer borophene : tight-binding model and low-energy effective Hamiltonian”. Nakhaee M, Ketabi SA, Peeters FM, Physical review B 98, 115413 (2018). http://doi.org/10.1103/PHYSREVB.98.115413
toggle visibility
Tight-binding studio : a technical software package to find the parameters of tight-binding Hamiltonian”. Nakhaee M, Ketabi SA, Peeters FM, Computer Physics Communications 254, 107379 (2020). http://doi.org/10.1016/J.CPC.2020.107379
toggle visibility
Machine learning approach to constructing tight binding models for solids with application to BiTeCl”. Nakhaee M, Ketabi SA, Peeters FM, Journal Of Applied Physics 128, 215107 (2020). http://doi.org/10.1063/5.0023980
toggle visibility
Single-layer structures of a100- and b010-Gallenene : a tight-binding approach”. Nakhaee M, Yagmurcukardes M, Ketabi SA, Peeters FM, Physical chemistry, chemical physics 21, 15798 (2019). http://doi.org/10.1039/C9CP02515D
toggle visibility
Electric-field-induced shift of the Mott metal-insulator transition in thin films”. Nasr Esfahani D, Covaci L, Peeters FM, Physical review : B : condensed matter and materials physics 85, 085110 (2012). http://doi.org/10.1103/PhysRevB.85.085110
toggle visibility
Surface correlation effects in two-band strongly correlated slabs”. Nasr Esfahani D, Covaci L, Peeters FM, Journal of physics : condensed matter 26, 075601 (2014). http://doi.org/10.1088/0953-8984/26/7/075601
toggle visibility
Strong anisotropic optical properties of 8-Pmmn borophene : a many-body perturbation study”. Nazar ND, Vazifehshenas T, Ebrahimi MR, Peeters FM, Physical Chemistry Chemical Physics 23, 16417 (2021). http://doi.org/10.1039/D1CP01910D
toggle visibility
Boron nitride mono layer : a strain-tunable nanosensor”. Neek-Amal M, Beheshtian J, Sadeghi A, Michel KH, Peeters FM, The journal of physical chemistry: C : nanomaterials and interfaces 117, 13261 (2013). http://doi.org/10.1021/jp402122c
toggle visibility
Spiral graphone and one-sided fluorographene nanoribbons”. Neek-Amal M, Beheshtian J, Shayeganfar F, Singh SK, Los JH, Peeters FM, Physical review : B : condensed matter and materials physics 87, 075448 (2013). http://doi.org/10.1103/PhysRevB.87.075448
toggle visibility
Nanoengineered nonuniform strain in graphene using nanopillars”. Neek-Amal M, Covaci L, Peeters FM, Physical review : B : condensed matter and materials physics 86, 041405 (2012). http://doi.org/10.1103/PhysRevB.86.041405
toggle visibility
Electronic structure of a hexagonal graphene flake subjected to triaxial stress”. Neek-Amal M, Covaci L, Shakouri K, Peeters FM, Physical review : B : condensed matter and materials physics 88, 115428 (2013). http://doi.org/10.1103/PhysRevB.88.115428
toggle visibility
Buckled circular monolayer graphene : a graphene nano-bowl”. Neek-Amal M, Peeters FM, Journal of physics : condensed matter 23, 045002 (2011). http://doi.org/10.1088/0953-8984/23/4/045002
toggle visibility
Defected graphene nanoribbons under axial compression”. Neek-Amal M, Peeters FM, Applied physics letters 97, 153118 (2010). http://doi.org/10.1063/1.3496467
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: