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Spin-dependent magnetotransport through a ring due to spin-orbit interaction
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Electron transport through a one-dimensional ring connected with two external leads, in the presence of
spin-orbit interaction~SOI! of strengtha and a perpendicular magnetic field is studied. Applying Griffith’s
boundary conditions we derive analytic expressions for the reflection and transmission coefficients of the
corresponding one-electron scattering problem. We generalize earlier conductance results by Nittaet al. @Appl.
Phys. Lett.75, 695 ~1999!# and investigate the influence ofa, temperature, and a weak magnetic field on the
conductance. Varyinga and temperature changes the position of the minima and maxima of the magnetic-field
dependent conductance, and it may even convert a maximum into a minimum and vice versa.
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I. INTRODUCTION

Recently, much attention has been paid to the manip
tion of the spin degrees of freedom of conduction charge
low-dimensional semiconductor structures. An importa
feature of the electron transport in multiply connected s
tems is that the conductance shows signatures of quan
interference that depend on the electromagnetic potent
Aharonov-Bohm and Aharonov-Casher effect.1–10A compre-
hensive review of results for metallic rings is given in Re
11. Many devices have been proposed to utilize additio
topological phases acquired by the electrons trave
through quantum circuits.1,12–15Nitta et al. proposed aspin-
interferencedevice1 allowing considerable modulation of th
electric current. This device is a one-dimensional ring c
nected with two external leads, made of a semicondu
structure in which the Rashba spin-orbit interaction~SOI!
~Ref. 16! is the dominant spin-splitting mechanism. The k
idea was that, even in the absence of an external magn
field, the difference in the Aharonov-Casher phase3,6 ac-
quired between carriers, traveling clockwise and coun
clockwise, would produce interference effects in the sp
sensitive electron transport. By tuning the strengtha of the
SOI the phase difference could be changed, hence the
ductance could be modulated. Nittaet al.1 found that the
conductanceG is given approximatively by

G;
e2

h F11cosS 2pa
am*

\2 D G , ~1!

wherea is the radius of the ring andm* the effective mass o
the carriers. It is of interest to verify the validity of thi
strong sinusoidal modulation of the conductance, predic
by Eq. ~1!.

The Rashba field involved in Ref. 1 results from t
asymmetric confinement along the direction~z! perpendicu-
lar to the plane of the ring. A similar study but with this fie
tilted away from thez direction, by an anglef, was made in
Ref. 17. The resulting Rashba field is weaker since the ra
part of the confinement is much weaker18 but this was not
0163-1829/2004/69~15!/155335~11!/$22.50 69 1553
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elaborated in Ref. 17. The transmission coefficient of Ref.
coincides with ours forf50 but it is less general in two
important aspects: it is valid only for zero temperature and
the absence of a magnetic field whereas ours is free f
these limitations.

In this paper we present anexact, analytic treatment of
the influence of the SOI on the electron transport through
spin-interference device of Ref. 1. Applying Griffith’
boundary conditions19,20 at the junction points we solve th
corresponding scattering problem analytically, obtain
correct form of the conductanceG, and show how for large
a it is modulated approximately as predicted by Eq.~1!.
Further, we assess the influence of a weak magnetic field
this conductance, indicate the spin-filtering properties of
ring, and generalize the result to finite temperatures. Th
latter aspects were not studied at all in Ref. 17.

The paper is organized as follows. In Sec. II we solve
one-electron problem for a ring in the presence of SOI
zero magnetic field and apply Griffith’s boundary condition
In Sec. III we evaluate in detail the transmission and refl
tion coefficients and the zero-temperature conductance
Sec. IV we reevaluate the conductance in the presence
weak magnetic field and point out the relevance of the res
to spin filtering. In Sec. V we present the finite-temperatu
conductance and some numerical results. Concluding
marks follow in Sec. VI and details about the spin eige
states and probability currents are given in the Appendix

II. ONE-ELECTRON PROBLEM

A. Hamiltonian

In the presence of SOI the Hamiltonian operator for
one-dimensional ring structure is given by Ref. 21,

Ĥ52\V
]2

]w2
2 i\vso~coswsx1sinwsy!

]

]w

2 i
\vso

2
~coswsy2sinwsx!, ~2!
©2004 The American Physical Society35-1
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B. MOLNÁR, F. M. PEETERS, AND P. VASILOPOULOS PHYSICAL REVIEW B69, 155335 ~2004!
wheresx , sy , andsz are the Pauli matrices. The parame
V denotes\/2m* a2 andvso5a/\a is the frequency asso
ciated to the SOI. The Rashba field we consider here res
from the asymmetric confinement along the direction~z! per-
pendicular to the plane of the ring. The parametera repre-
sents the average electric field along thez direction and is
assumed to be a tunable quantity. For an InGaAs-based
dimensional electron gas,a can be controlled by a gat
voltage with typical values in the range (0.5–2.
310211 eVm.22,23 Writing the Pauli matrices in cylindrica
coordinates,

s r5coswsx1sinwsy , sw5coswsy2sinwsx , ~3!

and using]s r /]w5sw one can recast the Hamiltonian in th
more compact form,

Ĥ5\VS 2 i
]

]w
1

vso

2V
s r D 2

. ~4!

An irrelevant additive constant termvso
2 /4V has been ne-

glected in Eq.~2!. It should be emphasized that this Ham
tonian is a Hermitian operator,21 under proper boundary con
ditions, in contrast to the non-Hermitian one used in Ref
As can be seen above, the SOI enters Eq.~4! as the spin-
dependent vector potential (vso/2V)s r . It is convenient to
introduce the dimensionless Hamiltonian

H5
1

\V
Ĥ5S 2 i

]

]w
1

vso

2V
s r D 2

. ~5!

Then, as outlined in the Appendix, one can solve the eig
value problem in a straightforward manner. The energy sp
trum En

(m) and unnormalized eigenstatesCn
(m) ~the normal-

ization depends on the boundary conditions!, labeled by the
index m51,2, are found to be

En
(m)5~n2FAC

(m)/2p!2, ~6a!

Cn
(m)~w!5einwxn

(m)~w!. ~6b!

Here the mutually orthogonal spinorsx (m)(w) can be ex-
pressed in terms of the eigenvectors (0

1), (1
0) of the Pauli

matrix sz as

xn
(1)~w!5S cos

u

2

eiwsin
u

2

D , ~7a!

xn
(2)~w!5S sin

u

2

2eiwcos
u

2

D , ~7b!

with the angleu given by

u52arctan~V2AV21vso
2 !/vso . ~8!

The spin-dependent termFAC
(m) is the Aharonov-Casher phas
15533
r

lts

o-

.

n-
c-

FAC
(m)52p@11~21!m~vso

2 1V2!1/2/V#. ~9!

Until now we have not specified the boundary conditions a
solved only the time-independent Schro¨dinger equation.
However, it can be seen from Eqs.~6a! and ~6b! that what-
ever the boundary conditions, in the presence of SOI
solution of the Schro¨dinger equation differs from the unnor
malized, free-energy eigenstates only in the phase fa
exp(iFAC

(m)/2p). In words Eq.~6b! means that the unnorma
ized spinorCn

(m) picks up the Aharonov-Casher phaseFAC
(m)

upon encircling the ring once.

B. Device geometry and boundary conditions

The ring connected to two leads is shown in Fig. 1 w
the local coordinate systems attached to the different reg
of the device. If the ring is not connected to any leads
natural boundary condition is that the wave function has
be single valued when the argumentw is increased by an
integral multiple of 2p; this entails that the quantum numb
n @see Eq.~6b!# must be integer. Connecting the ring to e
ternal leads alters this condition. In this case it is appropr
to apply a spin-dependent version of the Griffith’s bounda
conditions19,20 at the intersections as we will specify below
This reduces the electron transport through the sp
interference device to an exactly solvable, one-dimensio
scattering problem. According to these boundary conditio
at each junction:~i! the wave function must be continuou
and ~ii ! the spin probability current density must be co
served.

In the present problem the total wave function in the
coming and the outgoing lead can be expanded in term
spinorsx (m) of Eqs.~7a! and ~7b! as

C I~x!5 (
m51,2

C I
(m)~x!x (m)~p!, xP@2`,0#, ~10a!

C II ~x8!5 (
m51,2

C II
(m)~x8!x (m)~0!, x8P@0,̀ #,

~10b!

respectively.~See Fig. 1 for the local coordinatesx andx8.!
The coefficients are the single spin-wave functionsC I

(m)(x)
andC II

(m)(x8) having the form

FIG. 1. Device geometry and the local coordinates (x, x8, w,
andw8) pertaining to different parts of the ring.
5-2
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C I
(m)~x!5~eikxf m1e2 ikxr m!, ~11a!

C II
(m)~x8!5eikx8tm , ~11b!

respectively, wherek denotes the incident wave number,f 1
5cos(g/2) and f 25sin(g/2). As it can be seen,r m is the
reflection coefficient whiletm is the transmission coefficien
for spin polarizationm (m51,2). In a similar fashion the
wave functions corresponding to the upper and lower arm
the ring can be written as

Cup~w!5 (
m51,2

Cup
(m)~w!x (m)~w!, wP@0,p#, ~12a!

C low~w8!5 (
m51,2

C low
(m) ~w8!x (m)~2w8!, w8P@0,p#,

~12b!

respectively~see Fig. 1 for coordinates!. The corresponding
wave functions read

Cup
(m)~w!5(

j 51

2

aj
mein j

mw, ~13a!

C low
(m) ~w8!5(

j 51

2

bj
me2 in j

mw8. ~13b!

Here the real numbersnj
m ( j 51,2),

nj
m5~21! j ka1FAC

(m)/2p, ~14!

are the solutions of the equationk2a25Enm
m ensuring the

conservation of energy. The coefficientsr m , tm , aj
m , andbj

m

are not independent: they are connected to each othe
Griffith’s boundary conditions. First applying the continui
conditions for the wave functionsC II

(m)(0)5Cup
(m)(0)

5C low
(m) (0) andC I

(m)(0)5Cup
(m)(p)5C low

(m) (p), one finds

(
j 51

2

aj
m5(

j 51

2

bj
m5tm , ~15a!

(
j 51

2

aj
mein j

mp5(
j 51

2

bj
me2 in j

mp5r m1 f m . ~15b!

Now let us turn to the second boundary condition. If o
assumes that there are no spin-flip processes at the junct
one requires that the spin probability currentsJm for each
spin directionm should be conserved, i.e.:Jup

m 1Jlow
m 1JI (II )

m

50. As shown in the Appendix, the dimensionless spin c
rents in the ring arms are found to be

Jup
m ~w!52Re$~Cup

(m)x (m)!†~2 i ]/]w1vsos r /2V!

3Cup
(m)x (m)%, ~16a!

Jlow
m ~w8!52Re$~C low

(m) x (m)!†~2 i ]/]w82vsos r8/2V!

3C low
(m) x (m)%, ~16b!
15533
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where s r8(w8)5s r(w52w8)5cosw8sx2sinw8sy because
of the orientation of the coordinate system in the lower a
is opposite to that in the upper arm. The currents in the le
are given by

JI
m~x!52aRe$~C I

(m)x (m)!†~2 i ]/]x!C I
(m)x (m)%,

~17a!

JII
m~x8!52aRe$~C II

(m)x (m)!†~2 i ]/]x8!C II
(m)x (m)%.

~17b!

Here it should be emphasized that the spinorsx (m) (m
51,2) are obviously the eigenstates of the opera
2 i ]/]w1(vso/2V)s r , which commutes withĤ given by
Eq. ~4!. Therefore Jm are well-defined conserved spin
current densities in the ring. Using the previous requirem
C I (II )

(m) 5Cup
(m)5C low

(m) at the junctions, the conservation of th
spin-current densities can be simply written as

]Cup
(m)uw50(p)1]C low

(m) uw850(p)1a]C II (I )
(m) ux8(x)5050.

~18!

Evaluating the derivatives, one obtains

(
j 51

2

aj
m

nj
m

ka
2(

j 51

2

bj
m

nj
m

ka
1tm50, ~19a!

(
j 51

2

aj
mein j

mp
nj

m

ka
2(

j 51

2

bj
me2 in j

mp
nj

m

ka
1 f m2r m50.

~19b!

The variablesr m , tm can be eliminated using Eqs.~15a! and
~15b!. Then the set of Eqs.~19a! and~19b! is replaced by the
linear set of algebraic equations for the coefficients$aj

m ,bj
m%:

(
j 51

2

aj
m

nj
m1ka

ka
2(

j 51

2

bj
m

nj
m

ka
50, ~20a!

(
j 51

2

aj
mein j

mp
nj

m2ka

ka
2(

j 51

2

bj
me2 in j

mp
nj

m

ka
522 f m .

~20b!

III. TRANSMISSION AND REFLECTION COEFFICIENTS
AND CONDUCTANCE

The linear Eqs.~15a! and ~15b! together with Eqs.~20a!
and ~20b! for the variablesaj

m andbj
m can be written in the

matrix form,

MmF a1
m

a2
m

b1
m

b2
m

G522F 0

0

0

f m

G , ~21!

with the matrixMm depending only on the wave numberka
andnj

m :
5-3



Mm5

1 1 21 21

ein1
mp ein2

mp 2e2 in1
mp 2e2 in2

mp

n1
m1ka

ka

n2
m1ka

ka
2

n1
m

ka
2

n2
m

ka
m m m m

. ~22!
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3 n1 2ka

ka
ein1

mp
n2 2ka

ka
ein2

mp 2
n1

ka
e2 in1

mp 2
n2

ka
e2 in2

mp
4

no

of

e

e-

p

in
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n
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Now let us calculate the transmission (tm) and reflection
(r m) coefficients which are connected to the incoming spi
according to the following equations:

S t1

t2
D 5TS cos

g

2

sin
g

2

D 5FT1 0

0 T2
GS cos

g

2

sin
g

2

D , ~23a!

S r 1

r 2
D 5RS cos

g

2

sin
g

2

D 5FR1 0

0 R2
GS cos

g

2

sin
g

2

D . ~23b!

Both diagonal matricesT andR can be expressed in terms
the inverse of the 434 matrix Mm in the manner

Tm522@~Mm!1,4
211~Mm!2,4

21#, ~24a!

Rm522@ein1
mp~Mm!1,4

211ein2
mp~Mm!2,4

2111/2#. ~24b!

Calculating the fourth row of the inverse matrix gives

Tm528icos~Qmp!sin~Lmp!/dm , ~25a!

Rm5@cos~2Lmp!21#ka/Lmdm14@cos~2Qmp!

2cos~2Lmp!#Lm /kadm , ~25b!

with the following notations:

dm5@cos~2Lmp!21#ka/Lm14@cos~2Lmp!

2cos~2Qmp!#Lm /ka24isin~2Lmp!, ~26a!

Lm5~n2
m2n1

m!/2, Qm5~n2
m1n1

m!/2. ~26b!

One can verify that for each spin polarizationm (m51,2),

uTmu21uRmu251. ~27!

Here we would like to point out that the expressions forTm
andRm above are quite general. They are still valid for oth
Hamiltonians than the one used, provided the spinorsxn

1
m

and xn
2
m, which travel clockwise and counterclockwise, r

spectively, are along the same direction.
In the present caseLm5ka and Qm5FAC

(m)/2p. Conse-
quently the concrete expression for the transmission am
tudes reads
15533
r

r

li-

Tm5
8icos~FAC

(m)/2!sin~kap!

125cos~2kap!14cosFAC
(m)14isin~2kap!

.

~28!

In the Landauer formalism the conductance is given by

G5
e2

h (
m,l51

2

uTmlu2. ~29!

In the present case the off-diagonal elementsT12 andT21 of
the transmission matrix are zero. Inserting Eq.~28! in Eq.
~29! we obtain theexactconductance at zero temperature
the form

G5~e2/h!g0~k,DAC!@12cos~DAC!#, ~30!

where the dimensionless coefficientg0 is

g0~k,DAC!

5
64sin2~kap!

@125cos~2kap!24cos~DAC!#2116sin2~2kap!
.

~31!

Here DAC5(FAC
(1)2FAC

(2))/25p@(2m* a/\2)2a211#1/2 is
the half of the difference between the phases accumulate
the different spinors. Comparing Eq.~30! with the approxi-
mate formula~1! one can see that the conductance oscilla
with cos(DAC) in a more complex manner. For large values
the Rashba parametera an essential difference is ap phase
shift in the oscillation; however, the period remains the sam
An important feature is the presence of the factor cos(DAC) in
the denominator of Eq.~31!. This makesg0 not a constant
equal to 1, as found in Ref. 1, but a quantity that depends
DAC and the incident energy throughk. The full dependence
of g0 on DAC for different temperatures, includingT50, is
shown in Sec. V.

Figure 2 shows the conductanceG versusDAC at different
wave numbersk. BecauseG is an even and periodic functio
of ka ~with period 1), it is sufficient to consider only the ha
period kaP@0,1/2#. One can see thatk'0 ~or for ka' l
PN) the conductance tends to a discontinuous funct
which is nonzero only atDAC5p12np (n is integer! with
value 2e2/h. This dependence ofG on ka is absent in Eq.
~1!. We note in passing that a transmission coefficient f
mally equivalent to Eq.~30! was derived earlier in Ref. 17
with very few details and starting with a Hamiltonian
5-4
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which the Rashba field is tilted away from thez direction by
an anglef. It coincides with ours forf50. As shown be-
low, however, ours takes into account finite temperatures
a weak magnetic field whereas that of Ref. 17 does not
addition, we give the reflection coefficient in Eq.~25b!.

IV. WEAK MAGNETIC PERTURBATION

Our analytic result can be easily extended to the case
weak magnetic perturbation. Let us suppose that an exte
magnetic fieldBW normal to the plane of the ring is presen
Then the vector potential can be chosen to be tangentia

AW 5~Ba/2!eWw . ~32!

First we take the effect of the magnetic fluxF5arAW dwW
encircled by the ring into consideration. It means that
have to change the momentum operator2 i\“ in the Hamil-
tonian with 2 i\“2eAW ~‘‘minimal coupling’’ substitution!.
This leads to the appearance of the magnetic fluxF/F0 in
the Hamiltonian, whereF05h/e is the unit of flux, if the
Zeeman termg* BW •SW is neglected.5 Then the Aharonov-
Bohm phase picked up by an electron encircling this m
netic flux

FIG. 2. Dependence of the conductanceG on the Aharonov-
Casher phaseDAC for different incident wave numberska at zero
temperature.G is a periodic and even function ofka, henceka was
considered only in the interval@0,1/2#.
15533
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FAB52pF/F05peBa2/\, ~33!

and the dimensionless Hamiltonian in question reads

H5S 2 i
]

]w
2

FAB

2p
1

vso

2V
s r D 2

. ~34!

When the Zeeman term is present, the interaction betw
the electron spin and a relativelyweakmagnetic fieldB can
be treated by perturbation theory. Using the dimensionl
field strengthb5g* eB/4mV the perturbation of the Hamil-
tonian ~34! is

Hp5bsz5~g* m* /m!FABsz , ~35!

wherem is the bare electron mass andg* the effective gy-
romagnetic ratio. The matrix elements ofHp in the basis of
the normalized eigenstatesuCn

m&5Cn
(m)(w)/A2p are ob-

tained as

^Cn
muHpuCn

m&5~21!m11~g* m* /m!FABcosq

5~21!m11Cq , ~36a!

^Cn
1uHpuCn

2&5~g* m* /m!FABsinq. ~36b!

In the first-order approximation one neglects the off-diago
elements; this is reasonable if they are small, i.e.,
(g* m* /m)FAB!k2a2. To first order the eigenspinors ar
not perturbed and their direction is still specified by the an
q given by Eq.~8!. Using the identity

cosq5
12tan2~q/2!

11tan2~q/2!
5p/DAC , ~37!

we obtain the energies, including the first-order correctio

En
m5S n2

FAB

2p
2

FAC
(m)

2p D 2

2~21!m
g* m* p

mDAC
FAB . ~38!

The equation of energy conservationk2a25Enm
m has the so-

lutions

n1
m52Ak2a21~21!mCq1FAB/2p1FAC

(m)/2p,
~39a!

n2
m5Ak2a21~21!mCq1FAB/2p1FAC

(m)/2p. ~39b!

Because the eigenspinors are not modified within this
proximation the transmission matrix elements are giv
again by Eq.~25a! but with the parametersLm and Qm re-
placed, respectively, by

Lm5~n2
m2n1

m!/25Ak2a21~21!mCq, ~40a!

and

Qm5~n2
m1n1

m!/25FAB/2p1FAC
(m)/2p5F/F01FAC

(m)/2p.
~40b!

This leads to the transmission coefficient
5-5
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Tm5
8icos~FAB/21FAC

(m)/2!sin~Cmkap!

Cm
212~Cm

2114!cos~2Cmkap!14cos~FAB1FAC
(m)!14isin~2Cmkap!

, ~41!
-

ic

w
in

a
f

,
e

n as

ef-
where Cm5A11(21)mCq /k2a2. The resulting magneto
conductance reads

G5
e2

h
@ uT1u21uT2u2#. ~42!

At this point one can envisage an application of the dev
as a spin filter. Assuming one can tune the phasesFAB and
FAC

(m) ~via the magnetic field and the Rashba strengtha)
independently, one can make the ring almost transparent
high transmission probability only for electrons with sp
quantum numberm51 ~2! and totally opaque withm52 ~1!.
For instance, if one setsFAB1FAC

(1) and FAB1FAC
(2) to be

(2p11)p and 2qp into Eq. ~41!, whereq and p are inte-
gers, respectively, one obtains

uT1u250,

uT2u25S 11
118C2

32~C2!2
@12cos~2C2kap!# D 21

. ~43!

As can be seen,uT2u2 has maxima equal to 1 and minim
equal to (111/4C2)22 at integer and half-integer values o
f
e.

e
ha

th

e

15533
e

ith

C2ka, respectively. Due to the inequality (g* m* /m)FAB
!k2a2 we haveC2;1; hence the efficiency of the filtering
process is higher than 64%.

V. TEMPERATURE DEPENDENCE OF THE
CONDUCTANCE

A. Explicit expression

The conductance at finite temperatures is given by

G~T!52
e2

h (
m51,2

E
0

`

dE
] f ~E,m,T!

]E
uTm~E!u2, ~44!

where f (E,m,T) is the Fermi function,T is the temperature
andTm(E) is the single spin-transmission coefficient. In th
absence of magnetic field the conductance can be writte

G5~e2/h!gT~kF ,DAC!~12cosDAC!, ~45!

where the explicit form of the temperature depending co
ficient gT(kF ,DAC) is given by
gT~kF ,DAC!5E
0

`

dzz
~32TF /T!cosh22@~z22m̄ !TF/2T#sin2~zkFap!

@125cos~2zkFap!24cos~DAC!#2116sin2~2zkFap!
. ~46!
nt
on
e

)
o
ffi-

at

n-

-

es

ue

rt of
ius
Here m̄ is the ~dimensionless! chemical potential in units o
the Fermi energyEF andTF denotes the Fermi temperatur
At T50 the derivative of the Fermi function becomes ad
function, the integration in Eq.~46! can be carried out, and
one obtains the previous resultg0 @Eq. ~31!#.

In the present of a weak magnetic field (Cm'1) the mag-
netoconductance reads

G5
e2

2h (
m51,2

gT@kF ,FAB1~21!mDAC#

3$12cos@FAB1~21!mDAC#%. ~47!

As can be seen, the total magnetoconductance for weak fi
is the sum of the two single spin magnetoconductances
ing the same functional form (e2/2h)gT(kF ,f)@12cosf#
but due to the presence of the SOI they are shifted by
spin-depending phase6DAC according to Eq.~47!.

B. Numerical results

To stress the difference between our result and the on
Ref. 1 we plot in Figs. 3~a! and 3~b! the coefficientg0 for
lds
v-

e

of

different values ofka as indicated. As shown, the coefficie
g0(DAC) varies in a rather large range, 0–16, depending
the value ofka. The largest deviations from 1 occur at th
end of the periodDAC /p52 and 4. Agreement with Ref. 1
is obtained only for valuesDAC /p in the neighborhood of 3.
This range is the widest~approximately between 2.5 and 3.5
for ka half integer. Forka integer this range collapses int
one single point because with this wave number the coe
cient g0 is discontinuous having the value 1 only
DAC /p53 and otherwise zero.

In Figs. 4~a!–4~d! we investigate the temperature depe
dence of the amplitudegT of the oscillations for different
values of wave numberkFa520, 20.25, and 20.5. The tem
perature is expressed in units of the Fermi temperatureTF .
As seen, forkFa half integer raising the temperature reduc
the value ofgT ; however, for valueskFa closer to an integer
the coefficientgT increases until its peaks reach a val
around 4. This happens for temperatureT'0.05TF ; and as
one can see, by then the dependence on the fractional pa
kFa has already been washed out, too. For a ring of rad
5-6
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a50.25mm and a Fermi wave numberkF520.5/a, with the
effective mass of InAs:m* 50.023, the Fermi energyEF and
the Fermi temperatureTF are 11.13 meV and 129.27 K, re
spectively. With this choice of parametersT50.05TF above
corresponds to 6.46 K. Further increasing the temperat
now by larger steps as shown in Fig. 4~d!, we find thatgT
decreases more slowly. We also notice that the curves in
4~d! for differentkFa and these high temperatures practica
collapse onto a single curve since for small differences
kFa, DkF /kF'0.025, the difference ingT is always less
than 1025 and results from this high-temperature behavior
the integrand in Eq.~46!.

For the sake of completeness, in Figs. 5~a!, 5~b!, and 5~c!
we present the conductanceG5(e2/h)gT@12cos(DAC)# for
the same temperatures and values ofkFa as in Fig. 4. One
can see that by increasing the temperature the ‘‘ca
hump–like’’ pattern forkFa around half integers disappea
andG becomes less sensitive to the fractional part ofkFa. A
more complete dependence of the conductance onka anda
at zero temperature is shown in Fig. 6. As can be inferr
e.g., by moving along lines of constanta or ka, the conduc-
tance depends in a complex manner ona andka. Note that
the dependence of the conductance onka is completely ab-
sent in Eq.~1!.

Figures 7~a! and 7~b! show the oscillations of the magne
toconductance versus magnetic fieldB in units of B0

FIG. 3. Dependence of the zero-temperature coefficentg0 on the
Aharonov-Casher phaseDAC for different wave numberska.
15533
e,

ig.

n

f

el

d,

5F0 /(a2p)521.06 mT for various values of the SO
strengtha and for fixed Fermi wave numberkFa520.5 at
T50.001TF andT50.05TF , respectively. In both figures th
values ofa were chosen such that with the above parame
m* anda they correspond to an Aharonov-Casher phase s
DAC equal to 5p/4, 3p/2, and 2p for a50.497a0 ,
0.741a0, and 1.148a0, respectively, witha0510211 eV m.
One can see that the presence of SOI can alter the perio
the oscillations, which in its absence is equal toB0.11

In order to get better insight into the positions of extrem
in the magnetoconductance we plotted in Figs. 8~a! and 8~b!
those positions as function of the SOI strengtha for fixed
temperatures~a! T50.001TF and ~b! T50.05TF , respec-
tively. Comparing the figure at large temperature with t
one at low temperature, it can be seen that the additio
substructure of two maxima and a minimum, which
present atT50.001TF and connected with the ‘‘came
hump’’ pattern of the magnetoconductance oscillation, h
been contracted into a single maximum. Further, at both t
peratures, near certain values ofa, minima ~maxima! disap-
pear, and instead of them, a new maximum~minimum! ap-
pears, in other words a bifurcation occurs, in the oscillat
of the magnetoconductance atB50, B0/2, and B0. These
intersections of maximum and minimum curves correspo
to saddle points on the surface of the conductanceG depend-
ing on bothB and a. To show more clearly how changin
the strengtha can convert a minimum~maximum! to a

FIG. 4. Dependence of the coefficentgT on the Aharonov-
Casher phaseDAC for different temperaturesT and different values
of the Fermi wave numberkFa.
5-7
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maximum ~minimum!, we plot in Figs. 9~a! and 9~b! the
magnetoconductance in the neighborhood of two sad
points for temperaturesT50.001TF andT50.05TF , respec-
tively. For instance, in Fig. 9~b! one can see that for a rela

FIG. 5. Dependence of the conductanceG on the Aharonov-
Casher phaseDAC at different temperaturesT and Fermi wave num-
berskFa.

FIG. 6. Dependence ofG on the SOI strengtha andka at zero
temperature;a0 is the value 10211 eV m.
15533
le
tively small increase~decrease! in a around 0.40a0 (1.02a0)
a minimum turns into a maximum surrounded with tw
minima atB5B0/2 (B5B0).

VI. CONCLUDING REMARKS

We derived an exact expression for the zero-tempera
conductance of a one-dimensional ring connected to
leads in the presence of SOI. In addition, we generalized
result to finite temperatures andweak magnetic fields for
which the Zeeman term can be treated by perturba
theory. Since we used the Landauer-Bu¨ttiker formalism, the
conductance expressions are valid in the ballistic regime

As specified in the text, the zero-temperature conducta
is not as simple as presented in Ref. 1. Apart from the ph
shift p between the two expressions cf., Eqs.~1! and ~30!,
the quantityg0 is not equal to 1, as deduced from Eq.~1!,
but depends on the strengtha of the SOI, on the incident
energy, and the temperature, cf. Sec. V. We attribute
difference to the non-Hermitian Hamiltonian and also to t
boundary conditions used in Ref. 1. However, the sinuso
dependence ofG on a as predicted in Ref. 1 is recovered b
our exact expression only in the limit of large values ofa.

The results presented here are valid for a strictly o
dimensional ring. They can be extended to rings of fin
width w provided the inequalityw!a holds and an infinite-

FIG. 7. Magnetoconductance for various values ofa, in units of
a0510211 eV m, and at low~a! and high~b! temperatures.
5-8
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wall confinement is assumed along the radial direction.
this case the radial and angular motion are decoupled and
energy levels are shifted by\2l 2/2m* w2, wherel is an inte-
ger. The results presented in our paper correspond then t
lowest l 51 mode.
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APPENDIX

Below we give some details of the derivation of the u
normalized eigenstatesCn

m , Eq. ~6b!, and of the spin prob-
ability currents in Eqs.~16a! and ~16b!.

~i! EigenfunctionsCn
(m)(w): It is sufficient to solve the

eigenvalue problemHC(w)5EC(w),

~2 i ]/]w1vsos r /2V!C~w!5LC~w!, ~A1!

with energy eigenvalueE5L2. Writing C(w) in the form

FIG. 8. Positions of extrema in the magnetoconductance o
lation as a function ofa at low ~a! and high~b! temperature.
15533
n
the

the

o.

-

C~w!5einwx~w!5einwS a

beiwD , ~A2!

we obtain

~2 i ]/]w1vsos r /2V!x~w!5~L2n!x~w!. ~A3!

Usings r5(e1 iw
0

0
e2 iw

) ~in the basis (0
1),(1

0) of the eigenstates
of the Pauli matrixsz) we obtain

S 0 vso/2V

vso/2V 1 D S a

bD 5~L2n!S a

bD . ~A4!

The eigenvalues of the latter equation are 1
1(21)mA1/41vso

2 /4V252FAC
(m)/2p, where m51,2. The

coefficients of the corresponding eigenvectors can be cho
as a15cosu/2, b15sinu/2, a25sinu/2, and b2

52cosu/2, with tanu/25@1/22A1/41vso
2 /4V2#

3(2V/vso)5@V2AV21vso
2 #/vso . The resulting energy

eigenvalues and unnormalized eigenfunctions are given
spectively, by Eqs.~6a! and ~6b!.

~ii ! Spin probability currents: The derivation is given
follows.

~a! We denote a two-component spinor byC5(C2

C1) and

its complex conjugate byC̄. Further, we introduce the bilin

il-
FIG. 9. Minimum-maximum conversions in the oscillations

the magnetoconductance due to changes in the SOI strengtha for
two values of the temperature.
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ear product by (F,C)5F1C11F2C2. Notice thatthis is
not a scalar product of the Hilbert space. One can show tha
the following continuity equation is valid for the spinorC
obeying the Schro¨dinger equationi ]C/]t5HC with H
given by Eq.~5!:

]r

]t
1

]J

]w
50, ~A5!

where the probability density isr5(C̄,C) and the probabil-
ity current density J52Re$(C̄,(2 i ]C/]w
1(vso/2V)s rC)%.

Proof. We start with the Schro¨dinger equationi ]C/]t
5HC written explicitly as

i
]C

]t
52

]2C

]2w
2 i

vso

V
s r

]C

]w
2 i

vso

2V

]s r

]w
C1

vso
2

4V2
C,

~A6!

take its and complex conjugate, and consider the prod
(C̄,HC) and (HC,C),

~C̄,HC!52S C̄,
]2C

]2w
D 2 i

vso

V S C̄,s r

]C

]w D
2 i

vso

2V S C̄,
]s r

]w
C D1

vso
2

4V2
~C̄,C!, ~A7!

~HC,C!52S ]2C̄

]2w
,C D 1 i

vso

V
S s̄ r

]C̄

]w
,C D

1 i
vso

2V
S ]s r̄

]w
C̄,C D 1

vso
2

4V2
~C̄,C!. ~A8!

Using the fact (s rF,C)5(F̄,s rC) the latter product can be
written as

~HC,C!52S ]2C̄

]2w
,C D 1 i

vso

V
S ]C̄

]w
,s rC D

1 i
vso

2V S C̄,
]s r

]w
C D1

vso
2

4V2
~C̄,C!. ~A9!
na

15533
ts

The derivative]r/]t is given by (]C̄/]t,C)1(C̄,]C/]t)
5 i $(HC,C)2(C̄,HC)%. Therefore]r/]t can be written
as

]r

]t
5 i H S C̄,

]2C

]2w
D 2S ]2C̄

]2w
,C D 1 i

vso

V S C̄,s r

]C

]w D
1 i

vso

V
S ]C̄

]w
,s rC D 1 i

vso

V S C̄,
]s r

]w
C D J . ~A10!

The resulting continuity equation takes the form

]r

]t
5 i H ]S C̄,

]C

]w D2S ]C̄

]w
,C D

]w
1 i

vso

V

]~C̄,s rC!

]w
J
~A11!

and the currentJ is given by

J5H S 2 i
]C

]w
1

vso

2V
s rC,C D 1S C̄,2 i

]C

]w
1

vso

2V
s rC D J

~A12!

or

J52ReH S C̄,2 i
]C

]w
1

vso

2V
s rC D J

52ReH C†S 2 i
]C

]w
1

vso

2V
s rC D J . ~A13!

~b! Because the orientation of the coordinate system in
upper arm is opposite to that in the lower arm, the curren
the latter is given byJlow

m (w8)52Jup
m (w52w8). The result-

ing forms of the two currents are given, respectively, by E
~16a! and ~16b!.
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