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Ballistic electron transport through a chain of quantum circular rings is studied in the presence of spin-orbit
interaction �SOI� and of a perpendicular magnetic field B. From the analytic expressions for the transmission
and reflection coefficients for a single ring we obtain the conductance through a chain of rings as a function of
the SOI strength �, the field B, and of the wave vector k of the incident electron. Due to destructive spin
interferences caused by the SOI the chain can be totally opaque for certain ranges of k the width of which
depends on the values of � and B. Outside these ranges the conductance oscillates with maximum values
between e2 /h and 2e2 /h. The effect of a periodic modulation of � and/or B on the magnetoconductance is also
investigated. A periodic, square-wave magnetoconductance pattern results within wide stripes in the parameter
space spanned by k, �, and B. Finite temperatures smoothen the square-wave profile of the conductance but do
not alter its periodic character.
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I. INTRODUCTION

In recent years the study of spintronics devices, which
utilize the spin rather than the charge of an electron, has been
intensified mainly because they are expected to operate at
much higher speeds than the conventional ones and have
potential applications in quantum computing. One such de-
vice is a single ring in the presence of the Rashba coupling1

or spin-orbit interaction �SOI� which results from asymmet-
ric confinement in semiconductor nanostructures. It is impor-
tant in materials with a small band gap such as InGaAs. An
important feature of electron transport through a ring is that,
even in the absence of an external magnetic field, the differ-
ence in the Aharonov-Casher phases of carriers traveling
clockwise and counterclockwise produces spin-sensitive in-
terference effects.2,3

In previous work we studied the influence of SOI on elec-
tron transport in the presence of a perpendicular magnetic
field3 B and briefly on transport through a chain of rings in
the absence of the field4 B. Here we study in detail transport
through a chain of identical rings in the presence of SOI of
strength � and of a magnetic field B. In addition, we study
the influence of periodic modulations of � or B on the
magnetoconductance.3,4

In Sec. II we obtain the transfer matrix for a single ring
analytically and calculate the spin-dependent conductance as
a function of the strength �, the magnetic field B, and of the
incident wave number k. Using these results we formulate
the multiring transport in Sec. III. In Sec. IV we present
numerical results and in Sec. V concluding remarks.

II. ONE-RING TRANSPORT

A. Hamiltonian

In the presence of SOI and of a magnetic field B perpen-
dicular to the x-y plane of the ring the appropriate
Hamiltonian5 can be cast in the form3

H = ����− i
�

��
−

�AB

2�
+

�so

2�
	r����2

−
�so

2

4�2� , �1�

where the operator 	r��� is given in terms of the Pauli ma-
trices 	x, 	y, as 	r���=cos �	x+sin �	y. In this Hamil-
tonian the magnetic field B appears through the Aharonov-
Bohm flux �AB=�ea2B /� with a the ring radius. The
Zeemann term is neglected because it is very small for the
ranges of the parameters we use, cf. Sec. IV. Further, �
=� /2m*a2 and �so=� /�a is the frequency associated with
the SOI. The parameter � represents the average electric field
along the z direction. For an InGaAs-based system the
Rashba SOI strength � can be controlled by a gate voltage6

with values in the range �0.5–2.0�
10−11 eV m.
The eigenvalues, in units of ��, and the unnormalized

eigenstates are given, respectively, by

En
��� = �n − ��AB + �AC

����/2��2 − �so
2 /4�2 �2�

and

�n
������ = ein�
������, � = 1,2. �3�

The spin-dependent term �AC
��� is the Aharonov-Casher phase

�AC
��� = − ��1 + �− 1����so

2 + �2�1/2/�� . �4�

In terms of the eigenvectors � 1
0

�, � 0
1

� of the Pauli matrix 	z
the orthogonal spinors 
������ are written as


�1���� =	 cos
�

2

ei� sin
�

2

, 
�2���� =	 sin

�

2

− ei� cos
�

2

 , �5�

with the angle � given by

� = − arctan��so/�� . �6�
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Using the time-dependent Schrödinger equation with the
Hamiltonian �1� one can show that the following continuity
equation is valid for an arbitrary spinor wave function

��� , t�=� �1��,t�
�2��,t� �:

��

�t
+

�J

��
= 0, �7�

where �=�†�=�1
*�1+�2

*�2 is the probability density.
The probability current density J is given by

J = 2 Re��†�− i
�

��
−

�AB

2�
+

�so

2�
	r��� . �8�

An arbitrary wave function can be expanded in terms of
��� , t�=
�=1,2������ , t�
������. Then the corresponding
charge density is the sum of the spin-probability densities
����=����������* ��=1,2�: �=��1�+��2�. As for the electric
charge current, it also can be decomposed as J=J�1�+J�2�

with

J��� = 2 Re�������*�− i
�

��
−

�AB

2�
−

�AC
���

2�
������ , �9�

where J��� is the spin-current density corresponding to spin
polarization �. It can be also shown that the continuity equa-
tion holds for each spin component �, i.e.,

�����

�t
+

�J���

��
= 0. �10�

B. Boundary conditions, transfer matrix

The ring connected to two leads is shown in Fig. 1. The
appropriate boundary conditions are a spin-dependent ver-
sion of Griffith’s boundary conditions.7,8 In fact, at each
junction the wave function must be continuous and the sum
of the spin probability currents J��� coming from the differ-
ent parts of the device must vanish.

Using the coordinate representation the wave functions in
the leads I and II can be expanded as

�x��I� = 

�=1,2

�c1
�e−ikx + c2

�eikx�
������ , �11a�

�x���II� = 

�=1,2

�d1
�e−ikx� + d2

�eikx��
����0� , �11b�

with k denoting the incident wave number. The coefficients
c2

� �d1
�� are the amplitudes of the spin state ��=1,2� for

electrons incident from the left �right� while c1
� �d2

�� are those
of the spin state exiting from the left �right� of the ring.

A similar expansion can be made in the upper �u� and
lower �l� arm of the ring:

����u� = 

�,j=1,2

aj
�einj

��
���� , �12a�

�����l� = 

�,j=1,2

bj
�e−inj

���
��− ��� , �12b�

where

nj
� = �− 1� j�k2a2 + ��so/2��2�1/2 + �AB + �AC. �13�

Equation �13� ensures the conservation of energy En�
� =k2a2

at the junction points.
Applying the boundary conditions one can verify that the

coefficients di
� in lead II are connected to those �ci

�� in lead
I in the following manner:

d1
� = �1/t��c1

� − �r�/t��c2
�, �14a�

d2
� = �r�/t��c1

� − �t� − r�/t��c2
�. �14b�

Here the complex coefficients t� and r� are given by

t� =
8ikq cos��AB/2 + �AC

� /2�sin�qa��
�1 − cos�2qa���k2 + 4q2�cos��AB + �AC

� � − cos�2qa��� + 4ikq sin�2qa��
, �15a�

r� =
�1 − cos�2qa���k2 + 4q2�cos�2qa�� − cos��AB + �AC

� ��
�1 − cos�2qa���k2 + 4q2�cos��AB + �AC

� � − cos�2qa��� + 4ikq sin�2qa��
, �15b�

where q= �k2+ ��so /2a��2�1/2. We would like to point out
that in Ref. 3 we neglected the term ��so

2 /4� in the Hamil-
tonian given by Eq. �1� since for the situation considered

there it was negligible compared to the values of ka used.
Here we must retain it in view of the periodic modulations of
� and the wider range of ka values considered. The formulas

FIG. 1. Schematic of a single ring with the attached leads �re-
gions I and II�.
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for r� and t� in Ref. 3 can be obtained from Eqs. �15� by
replacing in them q by k.

Instead of using the coordinate representation let us intro-
duce the following notations in lead I:

�x�1� = e−ikx, �x�2� = eikx, �16a�

�1s� = 
������, �2s� = 
������ , �16b�

and similarly in lead II

�x��1�� = e−ikx�, �x��2�� = eikx�, �17a�

�1s�� = 
����0�, �2s�� = 
����0� . �17b�

Note that the subscript s refers to the spin degree of freedom.
Since x�=x+2a, where x� is the local coordinate in lead II
and a is the ring radius, we have

�1�� = e−i2ka�1�, �2�� = ei2ka�2� . �18�

Hence the states of an electron in leads I and II are written
as

��I� = 

�,j=1,2

cj
��j� � ��s� , �19a�

��II� = 

�=1,2

�d1
�e−i2ka�1� + d2

�ei2ka�2�� � ��s�� . �19b�

On the other hand it can be also verified that the spin
states �
������s��� in lead II are obtained from those in lead

I �
�0����s�� by the action of a unitary operator Û
=
�,�U�,���s���s�, which acts only on the spin states

��s�� = �− 1��+1Û��s�; �20�

the corresponding matrix elements U�,� are given by

U1,1 = cos �, U1,2 = − sin � , �21a�

U2,1 = sin �, U2,2 = cos � . �21b�

Hence the state ��II� is written as

��II� = 

�=1,2

�d1
�e−i2ka�1� + d2

�ei2ka�2�� � �Û��s�� . �22�

Consequently, the transfer matrix F̂ which describes the spin-
dependent scattering problem and connects the electron
states ��I� and ��II�,

��II� = F̂��I� , �23�

has the form

F̂ = 

�,�,i,j

U�,�Lj,i
� �j��i� � ��s���s� , �24�

with the complex coefficients Lj,i
� given by

L1,1
� = e−i2ka�− 1��+1/t�, �25a�

L1,2
� = − e−i2ka�− 1��+1r�/t�, �25b�

L2,1
� = ei2ka�− 1��+1r�/t�, �25c�

L2,2
� = ei2ka�− 1��+1�t��2 − �r��2/t�. �25d�

If the magnetic field is absent ��AB=0�, one can verify that
Li,j �Li,j

� =Li,j
� does not depend on the spin index and, by

defining the operator L̂=
 j,iLj,i�j��i� acting only on the spa-
tial degree of freedom, the transfer matrix can be written as
the tensor product

F̂ = L̂ � Û . �26�

In words, the spatial degree of freedom can be completely
decoupled from that of the spin and be treated independently.

C. Reflection and transmission matrices

Assuming that there are only outgoing electrons to the
right of the ring �region II� and the state of the incident
electrons from the left is �2� � �
s

in� with arbitrary spin state

�
s
in�, we can introduce the reflection operator �R̂� and trans-

mission �T̂� operators, both of them acting only on the spin
degree of freedom, as follows.

��I� = �2� � �
in� + �1� � �R̂�
s
in�� , �27a�

��II� = �2� � �T̂�
s
in�� . �27b�

Using Eq. �22� we find that the reflection and transition ma-
trix elements satisfy the following equations:

F1,2
�,� + 


�

F1,1
�,�R�,� = 0, �28a�

F2,2
�,� + 


�

F2,1
�,�R�,� = T�,�. �28b�

Consequently,

R�,� = −

�

�− 1��+�F1,1
�̄,�̄F1,2

�,�

F1,1
1,1F1,1

2,2 − F1,1
1,2F1,1

2,1 , �29a�

T�,� = F2,2
�,� + 


�

F2,1
�,�R�,�, �29b�

where we used the notations 1̄=2 and 2̄=1.
Using Eq. �24� and Eqs. �25a� and �25b� one can rewrite

the reflection and transmission operators of Eqs. �29a� and
�29b� in the form

R̂ = 

�

r���s���s� , �30a�

T̂ = Û

�

�− 1��t���s���s� . �30b�

In the absence of the magnetic field we have r�r1=r2 and

t� t1=−t2. Hence the operators R̂ and T̂ can be written as
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R̂ = rÎ, T̂ = tÛ , �31�

where Î=
���s���s� is the identity operator acting on the
spin degree of freedom. In other words, the electron is re-
flected without changing its original spin polarization with
the spin-independent probability amplitude r. On the other
hand, the spins of those electrons which are transmitted with
the spin-independent probability amplitude t are rotated by

the unitary operator Û.

III. MULTIRING TRANSPORT

For a chain of N rings one can use the single-ring results
in a straightforward manner if the rings touch each other.

Associating the ith ring with the transfer operator F̂�i� and
using matrix multiplication, we can write the joint transfer
operator, for the entire chain, as

Ŵ�1, . . . ,N� = �
i=1

N

F̂�i� . �32�

In component language, the joint transfer operator has the
matrix elements

Wj,i
�,��1, . . . ,N� = 


l=1

N−1



�l,kl

Fj,kN−1

�,�N−1�N�FkN−1,kN−2

�N−1,�N−2�N − 1�


 ¯ Fk2,k1

�2,�1�2�Fk1,i
�1,��1� . �33�

The reflection and transmission matrix elements can be cal-
culated as in the single-ring case, cf. Eqs. �28�:

R�,� = −

�

�− 1��+�W1,1
�̄,�̄W1,2

�,�

W1,1
1,1W1,1

2,2 − W1,1
1,2W1,1

2,1 , �34a�

T�,� = W2,2
�,� + 


�

W2,1
�,�R�,�. �34b�

Knowing the transition matrix one can calculate the con-
ductance G� for electrons with spins polarized ��=1,2� by

G� =
e2

h



�=1,2
�T�,��*T�,�. �35�

Note that the subscripts 1 and 2 are associated to the upward
and downward pointing spin polarization defined in Eq. �5�.
Then following Ref. 9 we can define the spin-up, G1, and
spin-down, G2, conductances as follows:

G1 =
e2

h
��T1,1�2 + �T1,2�2� , �36�

G2 =
e2

h
��T2,1�2 + �T2,2�2� . �37�

If the incident electron spins are not polarized the conduc-
tance G reads G=G1+G2, that is

G =
e2

h



�,�=1,2
�T�,��*T�,�. �38�

The conductance at finite temperatures is given by

G�T� = −
e2

h
�

0

�

dE
�f�E,T�

�E
G�E,0� , �39�

where f�E ,T� is the Fermi function, E the electron energy, T
the temperature, and G�E ,0��G the conductance at zero
temperature.

IV. NUMERICAL RESULTS

Below we present numerical results for the magnetocon-
ductance as a function of the SOI strength �, the magnetic
field B, and ka where k is the incident wave vector. We use
the effective mass of InAs, m*=0.023m0 and a ring radius
a=0.25 �m. Further, we measure � in units of �0
=�2 /2m*a=0.6626
10−11 eV m and B in units of B0
=� /a2e=10.53 mT. Note that B0 is the magnetic field value
which corresponds to the Aharonov-Bohm phase �AB=�. If
not otherwise specified, we will set G�G�� ,B ,ka�. As for
the Zeeman term, we neglected it from the outset because it
is too small: for the above parameters and ka=25, we esti-
mate EF=16.6 meV, SOI energy �1 meV, and Zeeman en-
ergy �0.043 meV at B=0.1T while the highest B value in-
volved in the calculations is B=4B0�0.0432 mT.

In Fig. 2�a� we show the transmission amplitudes �T�,��2
vs ka, in the absence of SOI ��=0� and of the magnetic field
�B=0�, through a single ring �dashed curve� and through a

FIG. 2. �a� Transmission amplitudes �T�,��2 vs ka for zero SOI
strength ��=0� and zero magnetic field �B=0�. The dashed curve is
for a single ring and the solid curve for N=9 rings. �b1�–�c2�: As in
�a� for two finite values of B and �=1.18�0.
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chain of N=9 identical rings �solid curve� within one period
of ka. As expected, the number of oscillations is equal to the
number of rings. In panels �b1�–�c2� we show again the
transmission amplitudes for two different values of the mag-
netic field. Upon contrasting the many-ring case with the one
for B=0, we see how well-defined bands and gaps develop
for finite B. Upon further increasing N, a nearly square-wave
magnetoconductance profile results. Further, in panels
�b1�,�b2�,�c1�, and �c2� the value of �=1.18�0 was chosen so
that the corresponding Aharonov-Casher phase �AC

�1� ��
=� /2. Since �AC

�1� +�AC
�2� =−2� we have �AC

�2� =−5� /2. On the
other hand, in panels �b1� and �c1� the magnetic field is B
=0.5B0 and gives �AB=� /2; hence the combined Aharanov-
Bohm-Casher phase �ABC

�1� has the value �ABC
�1� =�AC

�1� +�AB

=� for �=1 and �ABC
�2� =�AC

�2� +�AB=−2� for �=2. This ren-
ders the ring or the chain totally opaque for electrons with
spin polarization �=1 and transparent for �=2, cf. Eq. �15�.
In the right panels �b2� and �c2� the magnetic field is B
=1.5B0. This gives a “constructive” phase �ABC

�1� =2� for �
=1 and a “destructive” one �ABC

�2� =−3� /2 for �=2. As indi-
cated in Fig. 2, in both cases some T�� matrix elements van-
ish for the first ring and thus for the chain; this follows di-
rectly from Eqs. �15a� and �15b�.

In Fig. 3 we show G vs B for several values of �, N=9,
and ka=25.25. The dashed and solid curves represent the
spin-up G1 and spin-down G2 conductances, respectively.
Notice the wide ranges of the field B, for some values of �,
in which the conductance vanishes. This results from the
interference between spins traveling clockwise and counter-

clockwise being destructive as the corresponding Aharonov-
Bohm-Casher phases �ABC

��� are equal to a multiple of �; in
this case we have G1=G2. To further stress this point, in Fig.
4 we show G, in panel �a�, the spin-up G1 and spin-down G2
in panel �b�, and the various transmission amplitudes �T�,��2
in panels �c� and �d�, all vs B for �=0.75�0. Notice that the
gaps in G ,G1, and G2 occur at the same values of B. Also, if
the incident carriers are up �down� polarized, the conduc-
tance is G1 �G2�. As for the apparent symmetry between
certain transmission amplitudes T�� between panels �c� and
�d�, it can be understood with the help of Eqs. �29a�, �15�,
and �15b�; it will be detailed elsewhere.

In Figs. 5�a�–5�d�, we show the grayscale �ka ,B /B0� con-
tour plots of the magnetoconductance G vs B for various
values of �, N=9 rings, and ka=25.25. The values of � are
those of the corresponding Aharonov-Casher phase. The
�B ,�� profile of the chain is shown in �e� and the gray color
meter in �f�. We notice the existence of wide, dark regions in
which G vanishes. The near periodic character of G upon
varying ka can be understood with reference to Eq. �15� in
which we have q= �k2+ ��so /2a��2�1/2. For the value of ka
used we have ka��so /2� and the periodicity of G is evi-
dent. With respect to the B dependence and again with ref-

FIG. 3. Magnetoconductance G vs field B through a chain of
N=9 rings for ka=25.25 and various values of �. The solid and
dashed curves are for the spin-up �G1� and spin-down �G2�
conductances.

FIG. 4. �a� Magnetoconductance G vs field B through a chain of
N=9 rings for �=0.75�0 and ka=25.25. �b� Spin-up G1 and spin-
down G2 conductances vs B. �c� and �d� Transmission amplitudes
�T�,��2 vs B. Their sum gives the magnetoconductance G shown in
�a�.
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erence to Eq. �15�, we see how the �=� pattern is shifted
with respect to that for �=0.

Similar contour plots of the magnetoconductance G, but
now with � on the x axis, are shown in Fig. 6 for various
values of B. The other parameters are the same as in Fig. 5.
Different from Fig. 5, here we see that upon increasing � the
contour plots are less symmetric than those of Fig. 5 since
the inequality ka��so /2� is progressively violated.

We now present contour plots in which � and/or B are
varied periodically from ring to ring. In Fig. 7 we show the
contour plots similar to those of Fig. 5 but with � modulated
as shown in panel �e�. One notices the similarity of the con-
tours in both figures but also some differences, e.g., the �
=0 results are identical; there are wider dark areas in Fig. 7,
and there is no simple shift between the �=0 and the �=�
panels. The results shown in Fig. 7 are similar to those of
Ref. 10 for a single waveguide with a periodically varied �
at B=0.

Other contour plots with periodic modulation of � and B
are shown in Fig. 8. We notice immediately that �i� for �
=0 the periodicity along ka is doubled, �ii� the dark areas are
quite wider than in the previous figures, and �iii� the absence

of any transmission for �=� where the first ring is totally
reflective.

The various gaps, dark areas in Figs. 5–8 in which G
vanishes can be understood with the help of Eqs. �2� and
�15�. In Figs. 5 and 6 this stems directly from the periodicity
of the transmission and reflection coefficients with respect to
the phases �AB and �AC. As for Figs. 7 and 8 upon periodi-
cally varying the strength � and/or the field B, �so and the
energy levels change from ring to ring thus creating the usual
superlattice barriers or wells. Depending then on the incident
electron’s energy one has the usual gaps or bands in the
transmission.

The influence of the temperature on G is shown in Fig. 9.
In all panels the solid and dashed curves show the spin-up
�G1� and spin-down �G2� conductances, respectively, and
ka=25.25. The values �=0.75�0, �=1.18�0, and �
=1.73�0 correspond to a Aharonov-Casher phase equal to �,
� /2, and � /4, respectively. Contrasting the upper panels, for
temperature T=0.19 K, with the lower ones, for temperature
T=1.96 K, we see that the main effect of increasing the tem-
perature is to round off the structure seen at the lower tem-
perature and the resulting disappearance of some fine struc-

FIG. 5. �a�–�d� �ka ,B /B0� contour plots of the magnetoconduc-
tance G through a chain of N=9 rings for various values of �. �e�
�B ,�� profile of the chain. �f� Gray color meter.

FIG. 6. �a�–�d�, �ka ,� /�0� contour plots of the magnetoconduc-
tance G through a chain of N=9 rings for various values of B. �e�
and �f� Same as in Fig. 5.

FIG. 7. �a�–�d�, �f� Same as in Fig. 5 but now for a chain with �
modulated. �e� �B ,�� profile of the chain with uniform B and �
varied periodically from ring to ring.

FIG. 8. �a�–�d�, �f� Same as in Fig. 5 but now with � and B
modulated. �e� �B ,�� profile of the chain with � and B varied pe-
riodically from ring to ring.
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ture. At the same time we see how G1 and G2 are affected by
the changes in � or the Aharonov-Casher phase. We further
notice that for a Aharonov-Casher phase equal to �, the up
�G1� and down �G2� conductances are equal, cf. Eq. �15�.

V. CONCLUDING REMARKS

We studied ballistic magnetotransport through chains of
circular one-dimensional rings in the presence of SOI. The
evaluated magnetoconductance shows clearly a periodic de-
pendence on the incident electron’s energy, through the pa-
rameter ka, the magnetic field B, and the strength � of the
SOI. Depending on the values of these parameters and of the
Aharonov-Casher phase �, a variety of periodic and nearly
square-wave patterns results, cf. Figs. 5 and 6. Interestingly,
as Fig. 4 demonstrates, the gaps in the conductance occur
whether the incident electrons are spin polarized or not. Ac-

cordingly, the results could be relevant to the development of
a spin-transistor for which a spin-dependent and as binary as
possible conductance output is necessary.

In addition, we studied the influence of periodic modula-
tions of � and B on the magnetoconductance through a chain
of rings. As in the B=0 case,4 we have again various periodic
conductance patterns that are similar to those involving uni-
form B and � but with a somewhat stronger square-wave
character, cf. Figs. 7 and 8. In all cases, the periodicity of the
pattern stems from that of the transmission and reflection
coefficients of a single ring and/or that of the externally im-
posed B and/or � profile which entails the same modifica-
tion, from ring to ring, of the energy levels given by Eq. �2�.

As for the temperature dependence of the magnetocon-
ductance, the results are similar to those for a single ring:3

the main effect of raising the temperature is to round off the
patterns seen at zero temperature.

The results presented here are valid for chains of strictly
one-dimensional rings. They can be extended to rings of fi-
nite width w provided the inequality w�a holds and, e.g., a
square-well confinement is assumed along the radial direc-
tion. In this case the radial and angular motion are decoupled
and the energy levels, given by Eq. �2�, are shifted by
�2l2 /2m*w2, where l is an integer. The results presented
above correspond to the lowest l=1 mode. If mode mixing is
considered, a further study is necessary. However, on ac-
count of similar studies in straight waveguides,11 we expect
more complicated but qualitatively the same patterns.
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FIG. 9. Magnetoconductance G vs field B for two temperatures,
T=1.96 and 0.196 K, and three different values of � corresponding
to a Aharonov-Casher phase equal, from left to right, to � /4, � /2,
and �. In all panels the solid �dashed� curves show the spin-up G1

�spin-down G2� conductance. On the scale used the results for T
=0.6 K are indistinguishable from those for T=0.196 K in the up-
per panels.
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