toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Zuniga-Puelles, E.; Levytskyi, V.; Özden, A.; Guerel, T.; Bulut, N.; Himcinschi, C.; Sevik, C.; Kortus, J.; Gumeniuk, R. doi  openurl
  Title Thermoelectric properties and scattering mechanisms in natural PbS Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195203-195215  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract X-ray diffraction and energy dispersive x-ray spectroscopic analyses showed a natural galena (PbS) crystal from Freiberg in Saxony (Germany) to be a single phase specimen [rock salt (NaCl) structure type, space group Fm3m, a = 5.932(1) angstrom] with stoichiometric composition and an enhanced dislocation density (8 approximate to 1011 cm-2). The latter parameter leads to an increase of the electrical resistivity in the high-temperature regime, as well as to the appearance of phonon resonance with a characteristic frequency coPR = 3.8(1) THz. Being in the same range (i.e., 3-5.5 THz) with the sulfur optical modes of highest group velocities, it results in a drastic reduction (by similar to 75%) of thermal conductivity (K) at lower temperatures (i.e., < 100 K), as well as in the appearance of a characteristic minimum in K at T approximate to 30 K. Furthermore, the studied galena is characterized by phonon-drag behavior and by temperature dependent switch of the charge carrier scattering mechanism regime (i.e., scattering on dislocations for T < 100 K, on acoustic phonons for 100 K < T < 170 K and on both acoustic and optical phonons for 170 K < T < 300 K). The combined theoretical calculation and optical spectroscopic study confirm this mineral to be a direct gap degenerate semiconductor. The possible origins of the second-order Raman spectrum are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001009980400008 Publication Date 2023-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197808 Serial 8943  
Permanent link to this record
 

 
Author (down) Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal Article
  Year 2023 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Materials  
  Volume Issue Pages  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001129424500001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124  
  Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979  
Permanent link to this record
 

 
Author (down) Živanić, M.; Espona‐Noguera, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Current State of Cold Atmospheric Plasma and Cancer‐Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels Type A1 Journal article
  Year 2023 Publication Advanced Science Abbreviated Journal Adv Sci  
  Volume Issue Pages 2205803  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention

as a well-tolerated cancer treatment that can enhance anti-tumor immune

responses, which are important for durable therapeutic effects. This review

offers a comprehensive and critical summary on the current understanding of

mechanisms in which CAP can assist anti-tumor immunity: induction of

immunogenic cell death, oxidative post-translational modifications of the

tumor and its microenvironment, epigenetic regulation of aberrant gene

expression, and enhancement of immune cell functions. This should provide

a rationale for the effective and meaningful clinical implementation of CAP. As

discussed here, despite its potential, CAP faces different clinical limitations

associated with the current CAP treatment modalities: direct exposure of

cancerous cells to plasma, and indirect treatment through injection of

plasma-treated liquids in the tumor. To this end, a novel modality is proposed:

plasma-treated hydrogels (PTHs) that can not only help overcome some of the

clinical limitations but also offer a convenient platform for combining CAP

with existing drugs to improve therapeutic responses and contribute to the

clinical translation of CAP. Finally, by integrating expertise in biomaterials and

plasma medicine, practical considerations and prospective for the

development of PTHs are offered.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918224200001 Publication Date 2023-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes European Research Council, 714793 ; Fonds Wetenschappelijk Onderzoek, 12S9221N G044420N ; Ministerio de Economía y Competitividad, PID2019‐103892RB‐I00/AEI/10.13039/501100011033 ; Approved Most recent IF: 15.1; 2023 IF: 9.034  
  Call Number PLASMANT @ plasmant @c:irua:193166 Serial 7238  
Permanent link to this record
 

 
Author (down) Zhu, W.; Van Tendeloo, M.; De Paepe, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 387 Issue Pages 129607-129609  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 degrees C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 & PLUSMN; 2.6 mg NH3-N L-1) or FNA (3.1 & PLUSMN; 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001063180200001 Publication Date 2023-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access Not_Open_Access: Available from 21.02.2024  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:199051 Serial 8843  
Permanent link to this record
 

 
Author (down) Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 385 Issue Pages 129359-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001031586400001 Publication Date 2023-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:198259 Serial 8866  
Permanent link to this record
 

 
Author (down) Zhou, S.; Xu, W.; Xiao, Y.; Xiao, H.; Zhang, J.; Wang, Z.; He, G.; Liu, J.; Li, Y.; Peeters, F.M. pdf  url
doi  openurl
  Title Influence of neutron irradiation on X-ray diffraction, Raman spectrum and photoluminescence from pyrolytic and hot-pressed hexagonal boron nitride Type A1 Journal article
  Year 2023 Publication Journal of luminescence Abbreviated Journal  
  Volume 263 Issue Pages 120118-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hexagonal boron nitride (hBN) is considered as an ideal semiconductor material for solid-state neutron detector, owing to its large neutron scattering section because of the low atomic number of B and excellent physical properties. Here we study the influence of neutron irradiation on crystal structure and on intermediate energy state (IMES) levels induced by the presence of impurities and defects in hBN. Large-size and thick pyrolytic and hot-pressed hBN (PBN and HBN) samples, which can be directly applied for neutron detector devices, are prepared and bombarded by neutrons with different irradiation fluences. The SEM and TEM are used to observe the sample difference of PBN and HBN. X-ray diffraction and Raman spectroscopy are applied to examine the influence of neutron irradiation on lattice structures along different crystal directions of PBN and HBN samples. Photoluminescence (PL) is employed to study the effect of neutron irradiation on IMESs in these samples. We find that the neutron irradiation does not alter the in-plane lattice structures of both PBN and HBN samples, but it can release the inter-layer tensions induced by sample growth of the PBN samples. Interestingly and surprisingly, the neutron irradiation does not affect the IMES levels responsible for PL generation, where PL is attributed mainly from phonon-assisted radiative electron-hole coupling for both PBN and HBN samples. Furthermore, the results indicate that the neutron irradiation can weaken the effective carrier-phonon coupling and exciton transitions in PBN and HBN samples. Overall, both PBN and HBN samples show some degree of the resistance to neutron irradiation in terms of these basic physical properties. The interesting and important findings from this work can help us to gain an in-depth understanding of the influence of neutron irradiation on basic physical properties of hBN materials. These effects can be taken into account when designing and applying the hBN materials for neutron detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077086300001 Publication Date 2023-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2313 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200393 Serial 9047  
Permanent link to this record
 

 
Author (down) Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; Tu, X.; Bogaerts, A.; Li, X. url  doi
openurl 
  Title Enhanced NH3Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2 Type A1 Journal Article
  Year 2023 Publication JACS Au Abbreviated Journal JACS Au  
  Volume 3 Issue 5 Pages 1328-1336  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2−NOx−NH3 pathway. To efficiently reduce NO2− to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h−1 cm−2 at −0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3−1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2− to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000981779300001 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2691-3704 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (51976191, 5227060056, 52276214) and the National Key Technologies R&D Program of China (2018YFE0117300). N.G. was financially supported through an NWO Rubicon Grant (019.202EN.012). X.T. acknowl- edges the support of the Engineering and Physical Sciences Research Council (EP/X002713/1). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:196761 Serial 8792  
Permanent link to this record
 

 
Author (down) Zhang, Z.; Lobato, I.; De Backer, A.; Van Aert, S.; Nellist, P. pdf  url
doi  openurl
  Title Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditions Type A1 Journal article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal  
  Volume 246 Issue Pages 113671  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Advanced materials often consist of multiple elements which are arranged in a complicated structure. Quantitative scanning transmission electron microscopy is useful to determine the composition and thickness of nanostructures at the atomic scale. However, significant difficulties remain to quantify mixed columns by comparing the resulting atomic resolution images and spectroscopy data with multislice simulations where dynamic scattering needs to be taken into account. The combination of the computationally intensive nature of these simulations and the enormous amount of possible mixed column configurations for a given composition indeed severely hamper the quantification process. To overcome these challenges, we here report the development of an incoherent non-linear method for the fast prediction of ADF-EDX scattering cross-sections of mixed columns under channelling conditions. We first explain the origin of the ADF and EDX incoherence from scattering physics suggesting a linear dependence between those two signals in the case of a high-angle ADF detector. Taking EDX as a perfect incoherent reference mode, we quantitatively examine the ADF longitudinal incoherence under different microscope conditions using multislice simulations. Based on incoherent imaging, the atomic lensing model previously developed for ADF is now expanded to EDX, which yields ADF-EDX scattering cross-section predictions in good agreement with multislice simulations for mixed columns in a core–shell nanoparticle and a high entropy alloy. The fast and accurate prediction of ADF-EDX scattering cross-sections opens up new opportunities to explore the wide range of ordering possibilities of heterogeneous materials with multiple elements.  
  Address  
  Corporate Author Zezhong Zhang Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000995063900001 Publication Date 2022-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited Open Access OpenAccess  
  Notes European Research Council 770887 PICOMETRICS; Fonds Wetenschappelijk Onderzoek No.G.0502.18N; Horizon 2020, 770887 ; Horizon 2020 Framework Programme; European Research Council, 823717 ESTEEM3 ; esteem3reported; esteem3JRa Approved Most recent IF: 2.2; 2023 IF: 2.843  
  Call Number EMAT @ emat @c:irua:195890 Serial 7251  
Permanent link to this record
 

 
Author (down) Zhang, Z.; Lobato, I.; Brown, H.; Jannis, D.; Verbeeck, J.; Van Aert, S.; Nellist, P. doi  openurl
  Title Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions Type Dataset
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract Inelastic excitation as exploited in Electron Energy Loss Spectroscopy (EELS) contains a rich source of information that is revealed in the scattering process. To accurately quantify core-loss EELS, it is common practice to fit the observed spectrum with scattering cross-sections calculated using experimental parameters and a Generalized Oscillator Strength (GOS) database [1].   The GOS is computed using Fermi’s Golden Rule and orbitals of bound and excited states. Previously, the GOS was based on Hartree-Fock solutions [2], but more recently Density Functional Theory (DFT) has been used [3]. In this work, we have chosen to use the Dirac equation to incorporate relativistic effects and have performed calculations using Flexible Atomic Code (FAC) [4]. This repository contains a tabulated GOS database based on Dirac solutions for computing double differential cross-sections under experimental conditions.   We hope the Dirac-based GOS database can benefit the EELS community for both academic use and industry integration.   Database Details: – Covers all elements (Z: 1-108) and all edges – Large energy range: 0.01 – 4000 eV – Large momentum range: 0.05 -50 Å-1 – Fine log sampling: 128 points for energy and 256 points for momentum – Data format: GOSH [3]   Calculation Details: – Single atoms only; solid-state effects are not considered – Unoccupied states before continuum states of ionization are not considered; no fine structure – Plane Wave Born Approximation – Frozen Core Approximation is employed; electrostatic potential remains unchanged for orthogonal states when – core-shell electron is excited – Self-consistent Dirac–Fock–Slater iteration is used for Dirac calculations; Local Density Approximation is assumed for electron exchange interactions; continuum states are normalized against asymptotic form at large distances – Both large and small component contributions of Dirac solutions are included in GOS – Final state contributions are included until the contribution of the previous three states falls below 0.1%. A convergence log is provided for reference.   Version 1.1 release note: – Update to be consistent with GOSH data format [3], all the edges are now within a single hdf5 file. A notable change in particular, the sampling in momentum is in 1/m, instead of previously in 1/Å. Great thanks to Gulio Guzzinati for his suggestions and sending conversion script.  Version 1.2 release note: – Add “File Type / File version” information [1] Verbeeck, J., and S. Van Aert. Ultramicroscopy 101.2-4 (2004): 207-224. [2] Leapman, R. D., P. Rez, and D. F. Mayers. The Journal of Chemical Physics 72.2 (1980): 1232-1243. [3] Segger, L, Guzzinati, G, & Kohl, H. Zenodo (2023). doi:10.5281/zenodo.7645765 [4] Gu, M. F. Canadian Journal of Physics 86(5) (2008): 675-689.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:203392 Serial 9042  
Permanent link to this record
 

 
Author (down) Zhang, Y.; van Schayck, J.P.; Pedrazo-Tardajos, A.; Claes, N.; Noteborn, W.E.M.; Lu, P.-H.; Duimel, H.; Dunin-Borkowski, R.E.; Bals, S.; Peters, P.J.; Ravelli, R.B.G. pdf  url
doi  openurl
  Title Charging of vitreous samples in cryogenic electron microscopy mitigated by graphene Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 16 Pages 15836-15846  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Cryogenic electronmicroscopy can provide high-resolution reconstructionsof macromolecules embedded in a thin layer of ice from which atomicmodels can be built de novo. However, the interactionbetween the ionizing electron beam and the sample results in beam-inducedmotion and image distortion, which limit the attainable resolutions.Sample charging is one contributing factor of beam-induced motionsand image distortions, which is normally alleviated by including partof the supporting conducting film within the beam-exposed region.However, routine data collection schemes avoid strategies wherebythe beam is not in contact with the supporting film, whose rationaleis not fully understood. Here we characterize electrostatic chargingof vitreous samples, both in imaging and in diffraction mode. We mitigatesample charging by depositing a single layer of conductive grapheneon top of regular EM grids. We obtained high-resolution single-particleanalysis (SPA) reconstructions at 2 & ANGS; when the electron beamonly irradiates the middle of the hole on graphene-coated grids, usingdata collection schemes that previously failed to produce sub 3 & ANGS;reconstructions without the graphene layer. We also observe that theSPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to dataobtained without the graphene layer. This mitigation of charging couldhave broad implications for various EM techniques, including SPA andcryotomography, and for the study of radiation damage and the developmentof future sample carriers. Furthermore, it may facilitate the explorationof more dose-efficient, scanning transmission EM based SPA techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041649900001 Publication Date 2023-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes We thank H. Nguyen for editing the manuscript. We warmly thank the M4i Microscopy CORE Lab team of FHML Maastricht University (MU) for their support and collaboration and Eve Timlin and Ye Gao (MU) for providing protein samples. Members of the Amsterdam Scientific Instruments team are acknowledged for their Timepix detector support. This work benefited from access to The Netherlands Centre for Electron Nanoscopy (NeCEN) with assistance from Ludovic Renault and Meindert Lamers. The authors acknowledge financial support of the Netherlands Electron Microscopy Infrastructure (NEMI), project number 184.034.014 of the National Roadmap for Large-Scale Research Infrastructure of the Dutch Research Council (NWO), the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health, to stimulate public-private partnerships, project 4DEM, number LSHM21029, and the LINK program from the Province of Limburg, The Netherlands, as well as financial support from the European Commission under the Horizon 2020 Programme by grant no. 815128 (REALNANO). Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:198376 Serial 8840  
Permanent link to this record
 

 
Author (down) Zhang, K.; Wang, J.; Ninakanti, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 474 Issue Pages 145188-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic acetaldehyde degradation exhibits satisfactory performance only at relatively low acetaldehyde flow rates, predominately below 10 × 10-3 mL/min, leaving ample room for improvement. Therefore, it is necessary to prepare more efficient photocatalysts for acetaldehyde degradation. Moreover, the impact of the interaction strength between the titania surface and surface water on the photocatalytic acetaldehyde efficiency is poorly understood. To address these issues, in this work a series of (0 0 1)-faceted anatase titania samples with various surface properties and structures were synthesized via a solvothermal method and tested at high acetaldehyde flow rates under UV light irradiation. With increasing solvothermal time, the pore volume, surface area, and the abundance of surface OH groups all increased, while the crystallite size decreased. These were all identified to be beneficial to promote the degradation performance. When the solvothermal temperature was 180 ℃ and the reaction time was 5 h, the prepared sample displayed the most efficient performance at 19.25× 10-3 mL/min of acetaldehyde (conversion of (74 ± 1)% versus (29 ± 1)% for P25), and achieved a 100 % conversion at 16 × 10-3 mL/min. A weaker interaction strength between surface water and the titania surface was found to improve the acetaldehyde adsorption capacity, thereby promoting the acetaldehyde degradation efficiency. The stability of the best performing sample was tested over 48 h, demonstrating a highly stable performance with no signs of deactivation. Even at a relative humidity of 30 %, the acetaldehyde conversion retains 82% of its efficiency in a dry atmosphere, highlighting its potential in practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 06.02.2024  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:198652 Serial 8933  
Permanent link to this record
 

 
Author (down) Zhang, K. file  openurl
  Title Revealing the correlation between titania support properties and propylphosphonic acid modification by in-depth characterization Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages XVI, 262 p.  
  Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Grafting organophosphonic acids modification (PAs) on metal oxides has shown to be a flexible technology to tune the surface properties of metal oxides for various applications. Nevertheless, there are still puzzles that need to be addressed, such as the correlations between metal oxides properties (types of surface reactive sites) and the modification (modification degree), the correlations between metal oxides properties and the properties of modified surfaces. Moreover, the currently used liquid-phase method for the grafting has associated impeding effects of solvent on tailoring the modification degrees, and also causes the formation of metal phosphonate side products. The solid-phase method can induce the unwanted changes in crystal phase of supports. Based on these questions, the three titania supports with divergent surface properties were selected as the metal oxides supports investigated, propylphosphonic acid (3PA) modification was carried out under the same synthesis conditions: four different concentrations, two solvents (water or toluene), and one reaction time (4 h) and temperature (90 ). MeOH chemisorption was introduced to probe the surface (un)reactive sites for 3PA modification. On the other hand, MeOH chemisorption and inverse gas chromatography (IGC) were combined to characterize the changes in surface polarity and acidic properties induced by the modification. Next, a solid-phase method, manual grinding, was proposed to graft 3PA on titania, avoiding the impeding effects of solvent on improving modification degree and the formation of the titania phosphonate side products, as well as preserving the crystal phase. The results indicate that methanol chemisorption can qualitatively analyze the surface active sites that are consumed by 3PA modification, its chemisorption capacity shows the consistent trend with the maximum modification degree, hereby revealing the kinds of interactions that are important in controlling surface coverage. Titania supports is found to play an important role in changes in surface polarity and acidic properties by charactering the three modified titania samples at a similar modification degree using the methanol chemisorption coupled with in-situ infrared and thermogravimetric-mass spectrometer, and the IGC. Moreover, IGC provides additional information about the changes in binding modes. Furthermore, grafting 3PA modification on titania was achieved by manual grinding. Compared to the liquid-phase method, the maximum modification degree obtained by the manual grinding is 25 % higher while using 83.3 % or 75.0% lower amounts of expensive 3PA and limiting the formation of titania phosphonate side products. Compared to the reactive milling method, the proposed manual grinding method preserves the crystal phase(s) of titania.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198726 Serial 8924  
Permanent link to this record
 

 
Author (down) Zhang, H.; Jin, Q.; Hu, T.; Liu, X.; Zhang, Z.; Hu, C.; Zhou, Y.; Han, Y.; Wang, X. url  doi
openurl 
  Title Electron-irradiation-facilitated production of chemically homogenized nanotwins in nanolaminated carbides Type A1 Journal article
  Year 2023 Publication Journal of Advanced Ceramics Abbreviated Journal  
  Volume 12 Issue 6 Pages 1288-1297  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Twin boundaries have been exploited to stabilize ultrafine grains and improve mechanical properties of nanomaterials. The production of the twin boundaries and nanotwins is however prohibitively challenging in carbide ceramics. Using a scanning transmission electron microscope as a unique platform for atomic-scale structure engineering, we demonstrate that twin platelets could be produced in carbides by engineering antisite defects. The antisite defects at metal sites in various layered ternary carbides are collectively and controllably generated, and the metal elements are homogenized by electron irradiation, which transforms a twin-like lamellae into nanotwin platelets. Accompanying chemical homogenization, alpha-Ti3AlC2 transforms to unconventional beta-Ti3AlC2. The chemical homogeneity and the width of the twin platelets can be tuned by dose and energy of bombarding electrons. Chemically homogenized nanotwins can boost hardness by similar to 45%. Our results provide a new way to produce ultrathin (< 5 nm) nanotwin platelets in scientifically and technologically important carbide materials and showcase feasibility of defect engineering by an angstrom-sized electron probe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001004930200012 Publication Date 2023-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2226-4108; 2227-8508 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 16.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 16.9; 2023 IF: 1.198  
  Call Number UA @ admin @ c:irua:197470 Serial 8860  
Permanent link to this record
 

 
Author (down) Zhang, G.; Huang, S.; Chaves, A.; Yan, H. pdf  doi
openurl 
  Title Black phosphorus as tunable Van der Waals quantum wells with high optical quality Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 6 Pages 6073-6080  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Van der Waals quantum wells, naturally formed in two-dimensional layered materials with nanoscale thickness, possess many inherent advantages over conventional molecular beam epitaxy grown counterparts, and could bring up intriguing physics and applications. However, optical transitions originated from the series of quantized states in these emerging quantum wells are still elusive. Here, we show that multilayer black phosphorus appears to be an excellent candidate for van der Waals quantum wells with well-defined subbands and high optical quality. Using infrared absorption spectroscopy, we probe subband structures of multilayer black phosphorus with tens of atomic layers, revealing clear signatures for optical transitions with subband index as high as 10, far from what was attainable previously. Surprisingly, in addition to allowed transitions, an unexpected series of “forbidden” transitions is also evidently observed, which enables us to determine energy spacings separately for conduction and valence subbands. Furthermore, the linear tunability of subband spacings by temperature and strain is demonstrated. Our results are expected to facilitate potential applications for infrared optoelectronics based on tunable van der Waals quantum wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953463300001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196100 Serial 7565  
Permanent link to this record
 

 
Author (down) Zhang, C.; Ren, K.; Wang, S.; Luo, Y.; Tang, W.; Sun, M. pdf  doi
openurl 
  Title Recent progress on two-dimensional van der Waals heterostructures for photocatalytic water splitting : a selective review Type A1 Journal article
  Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 56 Issue 48 Pages 483001-483024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen production through photocatalytic water splitting is being developed swiftly to address the ongoing energy crisis. Over the past decade, with the rise of graphene and other two-dimensional (2D) materials, an increasing number of computational and experimental studies have focused on relevant van der Waals (vdW) semiconductor heterostructures for photocatalytic water splitting. In this review, the fundamental mechanism and distinctive performance of type-II and Z-scheme vdW heterostructure photocatalysts are presented. Accordingly, we have conducted a systematic review of recent studies focusing on candidates for photocatalysts, specifically vdW heterostructures involving 2D transition metal disulfides (TMDs), 2D Janus TMDs, and phosphorenes. The photocatalytic performance of these heterostructures and their suitability in theoretical scenarios are discussed based on their electronic and optoelectronic properties, particularly in terms of band structures, photoexcited carrier dynamics, and light absorption. In addition, various approaches for tuning the performance of these potential photocatalysts are illustrated. This strategic framework for constructing and modulating 2D heterostructure photocatalysts is expected to provide inspiration for addressing possible challenges in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076327300001 Publication Date 2023-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200353 Serial 9081  
Permanent link to this record
 

 
Author (down) Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A. openurl 
  Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
  Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal  
  Volume 17 Issue 7 Pages 54-58  
  Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2030-2738 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202271 Serial 9004  
Permanent link to this record
 

 
Author (down) Zaripov, A.A.; Khalilov, U.B.; Ashurov, K.B. pdf  doi
openurl 
  Title Synergism of the initial stage of removal of dielectric materials during electrical erosion processing in electrolytes Type A1 Journal article
  Year 2023 Publication Surface engineering and applied electrochemistry Abbreviated Journal  
  Volume 59 Issue 6 Pages 712-718  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ceramics and composites, many of whose physicochemical properties significantly exceed similar properties of metals and their alloys, are processed qualitatively mainly by the electroerosion method. Despite the existing works, the mechanism of the initial stage of the removal of materials has not yet been identified. For a comprehensive understanding of the mechanism of the removal of dielectrics, a new model is proposed based on the experimental results obtained on an improved electroerosion installation. It was revealed that the initial stage of the removal of a dielectric material consists of three successive stages that are associated with the synergistic effect on the process of the anionic group of electrolytes, plasma flare, and the cavitation shock. This makes it possible to better understand the mechanism of the removal of composite and ceramic materials, which should contribute to ensuring the machinability of those materials and their wide use in promising technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001126070700009 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1068-3755; 1934-8002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202754 Serial 9102  
Permanent link to this record
 

 
Author (down) Zamani, M.; Yapicioglu, H.; Kara, A.; Sevik, C. pdf  doi
openurl 
  Title Statistical analysis of porcelain tiles' technical properties : full factorial design investigation on oxide ratios and temperature Type A1 Journal article
  Year 2023 Publication Physica scripta Abbreviated Journal  
  Volume 98 Issue 12 Pages 125953-18  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This study focuses on optimizing the composition and firing temperature of porcelain tiles using statistical analysis techniques. A full factorial design, including model adequacy checking, analysis of variance, Pareto charts, interaction plots, regression model, and response optimizer is employed. The key factors were the Seger ratios of SiO2/Al2O3, Na2O/K2O, MgO/CaO, and firing temperature. The response variables investigated were bulk density, water absorption, linear shrinkage, coefficient of thermal expansion (at 500 degrees C), and strength. The statistical analysis revealed highly significant results, which were further validated, confirming their reliability for practical use in the production of porcelain tiles. The study demonstrated the effectiveness of utilizing Seger formulas and properties of typical raw materials to accurately predict the final properties of ceramic tiles. By employing SiO2/Al2O3 = 5.2, Na2O/K2O = 1.50, MgO/CaO = 3.0, and firing temperature of 1180 degrees C, optimized properties, such as maximum strength, maximum bulk density, and minimum water absorption, was achieved with a composite desirability of 0.9821.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105879800001 Publication Date 2023-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949; 1402-4896 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202033 Serial 9097  
Permanent link to this record
 

 
Author (down) Yuan, Y.; Wu, F.-J.; Xiao, S.-T.; Wang, Y.-T.; Yin, Z.-W.; Van Tendeloo, G.; Chang, G.-G.; Tian, G.; Hu, Z.-Y.; Wu, S.-M.; Yang, X.-Y. url  doi
openurl 
  Title Hierarchical zeolites containing embedded Cd0.2Zn0.8S as a photocatalyst for hydrogen production from seawater Type A1 Journal article
  Year 2023 Publication Chemical communications Abbreviated Journal  
  Volume 59 Issue 47 Pages 7275-7278  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Uncovering an efficient and stable photocatalytic system for seawater splitting is a highly desirable but challenging goal. Herein, Cd0.2Zn0.8S@Silicalite-1 (CZS@S-1) composites, in which CZS is embedded in the hierarchical zeolite S-1, were prepared and show remarkably high activity, stability and salt resistance in seawater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994367000001 Publication Date 2023-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9; 2023 IF: 6.319  
  Call Number UA @ admin @ c:irua:197291 Serial 8878  
Permanent link to this record
 

 
Author (down) Yu, R.; Zeng, W.; Zhou, L.; Van Tendeloo, G.; Mai, L.; Yao, Z.; Wu, J. url  doi
openurl 
  Title Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes Type A1 Journal article
  Year 2023 Publication Cell reports physical science Abbreviated Journal  
  Volume 4 Issue 7 Pages 101480-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-energy-density nickel (Ni)-rich cathode materials are used in commercial lithium (Li)-ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling. Planar gliding and microcracking are seeds for fatal mechanical fracture, but their origin remains unclear. Herein, we show that “layer-by -layer delithiation”is activated at high voltages during the charge process when the “lattice collapse”(a characteristic high-voltage lattice evolution in Ni-rich cathodes) occurs. Layer-by-layer deli-thiation is evidenced by direct observation of the consecutive lattice collapse using in situ scanning transmission electron micro-scopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. Localized strain will be induced at lattice-collapsing interface where planar gliding and intragranular microcracks are generated to release this strain. Our study reveals that layer-by-layer delithia-tion during lattice collapse is the fundamental origin of the mechanical instability in single-crystalline Ni-rich cathodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001048074500001 Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198299 Serial 8893  
Permanent link to this record
 

 
Author (down) Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
  Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue Pages 223  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher SciPost Place of Publication Editor  
  Language English Wos 001116838500002 Publication Date 2023-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 1 Open Access  
  Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:202037 Serial 8984  
Permanent link to this record
 

 
Author (down) Yu, C.-P. url  isbn
openurl 
  Title Novel imaging methods of transmission electron microscopy based on electron beam scattering and modulation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages x, 154 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is a technique that uses an electron beam to analyze materials. This analysis is based on the interaction between the electron beam and the sample, such as photon emission and electron diffraction pattern, to name a few. Sample damage, however, also occurs when such interaction alters the structure of the sample. To ensure information from the undamaged material can be acquired, the electron expense to probe the material is thus limited. In this work, we propose efficient methods for acquiring and processing the information originating from the electron-sample interaction so that the study of the material and the conducting of the TEM experiment can be less hindered by the limited dose usage. In the first part of the work, the relationship between the scattering of the electron and the local physical property of the sample is studied. Based on this relationship, two reconstruction schemes are proposed capable of producing high-resolution images at low-dose conditions. Besides, the proposed reconstructions are not restricted to complete datasets but instead work on pieces of data, therefore allowing live feedback during data acquisition. Such feature of the methods allows the whole TEM experiment to be carried out under low dose conditions and thus further reduces possible beam damage on the studied material. In the second part of the work, we discuss our approach to modulating the electron beam and its benefits. An electrostatic device that can alter the wavefront of the passing electron wave is introduced and characterized. The beam-modulation ability is demonstrated by creating orthogonal beam sets, and applications that exploit the adaptability of the wave modulator are demonstrated with both simulation and experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 987-90-5728-534-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200885 Serial 9064  
Permanent link to this record
 

 
Author (down) Ysebaert, T.; Samson, R.; Denys, S. pdf  doi
openurl 
  Title Revisiting dry deposition modelling of particulate matter on vegetation at the microscale Type A1 Journal article
  Year 2023 Publication Air quality, atmosphere & health Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Dry deposition is an important process determining pollutant concentrations, especially when studying the influence of urban green infrastructure on particulate matter (PM) levels in cities. Computational fluid dynamics (CFD) models of PM capture by vegetation are useful tools to increase their applicability. The meso-scale models of Zhang et al. (Atmos Environ 35:549-560, 2001) and Petroff and Zhang (Geosci Model Dev 3(2):753-769, 2010) have often been adopted in CFD models, however a comparison of these models with measurements including all PM particle sizes detrimental to health has been rarely reported and certainly not for green wall species. This study presents dry deposition experiments on real grown Hedera helix in a wind tunnel setup with wind speeds from 1 to 4 m s(-1) and PM consisting of a mixture of soot (0.02 – 0.2 mu mu m) and dust particles (0.3 – 10 mu mu m). Significant factors determining the collection efficiency (%) were particle diameter and wind speed, but relative air humidity and the type of PM (soot or dust) did not have a significant influence. Zhang's model outperformed Petroff's model for particles < 0.3 mu mu m, however the inclusion of turbulent impaction in Petroff's model resulted in better agreement with the measurements for particles > 2 – 3 mu mu m. The optimised model had an overall root-mean-square-error of similar to 4% for collection efficiency (CE) and 0.4 cm s-1 for deposition velocity (nu d), which was shown to be highly competitive against previously described models. It can thus be used to model PM deposition on other plant species, provided the correct parameterisation of the drag by this species. A detailed description of the spatial distribution of the vegetation could solve the underestimation for particle sizes of 0.3 – 2 mu mu m.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001125841300001 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1873-9318; 1873-9326 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201986 Serial 9086  
Permanent link to this record
 

 
Author (down) Ysebaert, T. openurl 
  Title Modelling and experimental validation of deposition on vegetation to facilitate urban particulate matter mitigation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages xxvi, 234 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Exposure to air pollution, such as particulate matter (PM), causes adverse health effects, particularly to the respiratory tract and cardiovascular system. PM is the collective name for all kinds of particles ranging from small particles and liquid droplets, which contain organic compounds, acids and metals, to soil or dust particles. One distinguishes PM10, PM2.5 and PM0.1, which have aerodynamic particle sizes smaller than 10, 2.5 and 0.1 µm, respectively. It is mainly the latter that is the most harmful, as PM0.1 penetrates deep into the respiratory system and carries relatively more toxic substances than the other PM fractions. Over a 15-year period, PM concentrations in European member states have fallen by about 30%. Nevertheless, the World Health Organisation (WHO) air quality guidelines, which became stricter in 2021, are exceeded in most places around the world. Particularly in cities, excessive levels of PM are measured and it is here that PM mitigation should be investigated. For this, the implementation of urban green infrastructure, including trees, shrubs, green roofs and green walls, is being looked at. Plants hinder airflow and remove PM from the air by deposition on their leaves and branches. This process is known as dry deposition. Plants can capture PM very efficiently, due to their complex structure of leaves and branches. Green walls offer significant advantages over other types of urban green infrastructure because they can grow on the huge available wall area and, because they do not hinder air circulation, as we sometimes see with trees. Green walls are believed to have a much greater, untapped potential to reduce PM pollution. However, a literature review showed that we do not know the quantitative impact of green walls and lack the tools and/or general methodology to do so. The objective of this thesis is therefore to develop a method for assessing PM removal by green walls, based on predictive models and based on relevant parameters that are experimentally determined. Computational fluid dynamics (CFD) is a numerical method to simulate airflow in complex environments such as cities. These models can also simulate the vegetation-wind interaction in detail and are interesting tools to assess the effect of green walls on PM concentrations in real environments. It is important to first study the aerodynamic effect of green walls and parameterise it correctly in CFD models. Plants decrease the wind speed and create turbulence through a combination of viscous and form drag, which are determined by the permeability (K) and drag coefficient (Cd), respectively. Wind tunnel experiments were conducted with three commonly found climbers (Hedera helix, Parthenocissus tricuspidata and Parthenocissus quinquefolia) and the variation of leaf area density was investigated for two of them. It was observed that the air resistance depended on plant species, leaf area density and wind speed. The difference between the plant species was assigned to the functional leaf size (FLS), the ratio of the largest circle within the boundaries of the leaf to the total leaf area. FLS is likely associated with other morphological characteristics of plants that, when considered collectively, provide a more comprehensive representation of leaf complexity. The pressure and velocity measurements obtained were used to optimise the permeability and drag coefficient in a CFD model. At wind speeds below 0.6 m s-1, the resistance was mainly determined by viscous drag and a larger leaf size resulted in a higher viscous drag. At wind speeds above 1.5 m s-1, form drag was dominant and the parameterised Cd decreased with increasing wind speed due to the sheltering effect of successive plant elements. The leaf area density had a significant effect on K and Cd and, is therefore an important plant parameters in CFD models. The main conclusion here is that the common practice of using a constant Cd to model the influence of plants on the air flow leads to deviations from reality. Wind tunnels are highly suitable to study the impact of green walls on PM concentration under controlled environmental conditions. For this purpose, a new wind tunnel setup was built and great attention was paid to obtaining a uniform air flow. Thus, based on CFD models, appropriate flow controllers were chosen, consisting of honeycombs and screens with different mesh sizes. New PM generation devices and measuring equipment were installed and set up appropriately. Devices were available for generating and measuring ultrafine dust (<0.1 µm, i.e. PM0.1) and fine dust (<0.3 µm, i.e. PM0.3) consisting of soot particles, and, on the other hand, fine dust with particle sizes smaller than 2.5 (PM2.5) and 10 µm (PM10) consisting of 'Arizona fine test dust'. With the new wind tunnel setup, it was possible to measure the influence of Hedera helix (common ivy), grown in a planter against a climbing aid, on the PM concentration and this was expressed by a collection efficiency, i.e. the difference in concentration in front and behind the plants normalised for the incoming concentration. The collection efficiency of H. helix depended on the particle size of the PM and wind speed. The collection efficiency decreased when the particle size increased from 0.02 to 0.2 µm and increased again for particle sizes above 0.3 µm. The collection efficiency also increased with increasing wind speed, especially for particle sizes > 0.03 µm. On the other hand, relative humidity and the type of PM (soot or dust) did not significantly affect the collection efficiency. The main objective of this study was to obtain an optimised size-resolved deposition model. Dry deposition occurs through several mechanisms, in particular gravity, diffusion, impaction and interception, and the subsequent resuspension of deposited PM back to the environment. The modelling of these mechanisms was described by \citet{Zhang2001} and \citet{Petroff2010}. The data obtained from the wind tunnel experiments allowed validating these deposition models. It was for the first time that deposition of real PM on green walls was studied. The different PM deposition mechanisms were found to be strongly dependent on particle size and wind speed. The models of \citet{Zhang2001} and \citet{Petroff2010} each matched PM concentration measurements for only certain particle sizes. Therefore, a combination of the two models was investigated and the root mean square error was lower by on average 3.5% (PM < 0.03 µm) and 46% (PM > 0.03 µm) compared to the original models at wind speeds greater than 1.5 m s-1. For wind speeds less than 1.5 m s-1, the optimised model did not differ from the original models. The optimised model was able to meet the imposed criteria for air quality models, where a correct model exhibits low deviation from measurements ('normalised mean square error' < 1.5), low bias ('fractional bias' between -0.3 and 0.3) and high R2. In comparison, the R$2$ of the optimised model was 0.57, while that of Zhang et al. (2001) and Petroff et al. (2010) was 0.23 and 0.31, respectively. The optimised model was however characterised by a high scatter, with the fraction of modeled results located within a factor of two of the measurements being lower than 50. A model study with a green façade oriented parallel to the incoming airflow showed that deposition by interception and impaction reduced remarkably, but that the orientation had no effect on deposition by Brownian diffusion. A promising green wall form for PM mitigation is the living wall system (LWS). LWS consist of supporting structures with substrate to grow plants in and can be planted with a variety of plant species. This allows to select plant species with optimal characteristics to achieve PM deposition. These characteristics refer to the macro- and microstructure of the leaves, and research has been conducted mainly on these. On the other hand, the influence of the supporting structure and substrate on PM concentrations has rarely been studied. With the new wind tunnel setup, LWS from different manufacturers were tested for their ability to capture PM. The setups were subjected for three hours to an air flow with a low PM concentration (resuspension phase) and then for three hours to an air flow to which additional PM was added (deposition phase). Some setups were able to decrease the PM concentration during both phases, while others just caused the concentration to increase. Some systems were able to reduce particulate matter concentration during both phases, namely LWS consisting of planters (-2% and -4% for PM0.1 and PM2.5, respectively) and textile cloths (-23% and -5% for PM0.1 and PM2.5, respectively). While other systems actually resulted in an increase in concentration especially LWS existing textile fabrics consisting of geotextiles (+11% for both PM fractions) and with moss as substrate (+2% and +5% for PM0.1 and PM2.5, respectively). This highlights the importance of careful selection of suspension systems to reduce particulate matter concentrations. Further research is therefore needed on the materials used in these systems in relation to their particulate content, as well as on plant development in these systems. In addition to air measurements, measurements were taken of the amount of PM deposited on the leaves and suspension system of LWS. This allowed the difference in PM resuspension and deposition between plant species to be investigated. The amount of deposited particulate matter was determined based on 'saturation isothermal remanent magnetisation' (SIRM), a measure of magnetisable particulate matter. This was possible because the added 'Arizona fine test dust' contained iron oxide. However, no significant difference was observed between the SIRM values measured before the wind tunnel experiment, after resuspension and after deposition. This suggested that the iron oxide content in the Arizona fine test dust was too low to measure a significant difference in the SIRM values on leaves after three hours. The plant species did give rise to different SIRM values ranging between 5 and 260 µ A. In particular, SIRM values above 26 µ A were observed for the plant species that were grouped due to their significantly higher accumulation of PM. 'Specific leaf area' (SLA), specifically the ratio of the one-sided 'fresh' leaf area to its dry mass, was the significant leaf characteristic. SLA correlated with leaf complexity. In particular, plant species with elongated leaves were characterized by low SLA, high FLS and high complexity and showed significantly higher SIRM values. Finally, the optimised size-resolved deposition model was also tested in an urban model to get an idea of the impact of a green wall on PM concentrations in a so-called 'street canyon'. These are narrow streets with high buildings on both sides, making air pollution more persistent. To this end, an ideal scenario was tested in which a green wall was introduced along both sides of the street over a length of about 270 m. The model result showed a decrease in PM2.5 and PM10 of 46 ± 12% and 52 ± 14%. This result is of course for a very optimal scenario where the green wall covers the entire building façades. Since this is not feasible in reality, other ways of promoting contact between green walls and polluted air can be explored. The insights obtained illustrate that the use of climbing plants can be a cost-effective and environmentally friendly solution to reduce PM concentrations. Moreover, the findings showed that models can be used to investigate the impact of green walls on PM levels. These findings fit within the broader context of designing healthy and sustainable urban environments and developing innovative solutions based on solid scientific knowledge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199439 Serial 8900  
Permanent link to this record
 

 
Author (down) Ying, J.; Xiao, Y.; Chen, J.; Hu, Z.-Y.; Tian, G.; Van Tendeloo, G.; Zhang, Y.; Symes, M.D.D.; Janiak, C.; Yang, X.-Y. pdf  doi
openurl 
  Title Fractal design of hierarchical PtPd with enhanced exposed surface atoms for highly catalytic activity and stability Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume 23 Issue 16 Pages 7371-7378  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hierarchicalassembly of arc-like fractal nanostructures not onlyhas its unique self-similarity feature for stability enhancement butalso possesses the structural advantages of highly exposed surface-activesites for activity enhancement, remaining a great challenge for high-performancemetallic nanocatalyst design. Herein, we report a facile strategyto synthesize a novel arc-like hierarchical fractal structure of PtPdbimetallic nanoparticles (h-PtPd) by using pyridinium-type ionic liquidsas the structure-directing agent. Growth mechanisms of the arc-likenanostructured PtPd nanoparticles have been fully studied, and precisecontrol of the particle sizes and pore sizes has been achieved. Dueto the structural features, such as size control by self-similaritygrowth of subunits, structural stability by nanofusion of subunits,and increased numbers of exposed active atoms by the curved homoepitaxialgrowth, h-PtPd displays outstanding electrocatalytic activity towardoxygen reduction reaction and excellent stability during hydrothermaltreatment and catalytic process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001042181100001 Publication Date 2023-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number UA @ admin @ c:irua:198408 Serial 8870  
Permanent link to this record
 

 
Author (down) Yedukondalu, N.; Pandey, T.; Roshan, S.C.R. pdf  doi
openurl 
  Title Effect of hydrostatic pressure on lone pair activity and phonon transport in Bi₂O₂S Type A1 Journal article
  Year 2023 Publication ACS applied energy materials Abbreviated Journal  
  Volume 6 Issue 4 Pages 2401-2411  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Dibismuth dioxychalcogenides, Bi2O2Ch (Ch = S, Se, Te), are a promising class of materials for next-generation electronics and thermoelectrics due to their ultrahigh carrier mobility and excellent air stability. An interesting member of this family is Bi2O2S, which has a stereochemically active 6s2 lone pair of Bi3+ cations, heterogeneous bonding, and a high mass contrast between its constituent elements. In the present study, we have used first-principles calculations in combination with Boltzmann transport theory to systematically investigate the effect of hydrostatic pressure on lattice dynamics and phonon transport properties of Bi2O2S. We found that the ambient Pnmn phase has a low average lattice thermal conductivity (kappa l) of 1.71 W/(m K) at 300 K. We also predicted that Bi2O2S undergoes a structural phase transition from a low-symmetry (Pnmn) to a high-symmetry (I4/mmm) structure at around 4 GPa due to centering of Bi3+ cations with pressure. Upon compression, the lone pair activity of Bi3+ cations is suppressed, which increases kappa l by almost 3 times to 4.92 W/ (m K) at 5 GPa for the I4/mmm phase. The computed phonon lifetimes and Gru''neisen parameters show that anharmonicity decreases with increasing pressure due to further suppression of the lone pair activity and strengthening of intra-and intermolecular interactions, leading to an average room-temperature kappa l of 12.82 W/(m K) at 20 GPa. Overall, this study provides a comprehensive understanding of the effect of hydrostatic pressure on the stereochemical activity of the lone pair of Bi3+ cations and its implications on the phonon transport properties of Bi2O2S.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000929103700001 Publication Date 2023-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195245 Serial 7300  
Permanent link to this record
 

 
Author (down) Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D. pdf  url
doi  openurl
  Title Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
  Year 2023 Publication Materials characterization Abbreviated Journal  
  Volume 199 Issue Pages 112772-112777  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000954788800001 Publication Date 2023-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714  
  Call Number UA @ admin @ c:irua:196106 Serial 8446  
Permanent link to this record
 

 
Author (down) Yang, T.; Kong, Y.; Du, Y.; Li, K.; Schryvers, D. url  doi
openurl 
  Title Discovery of core-shell quasicrystalline particles Type A1 Journal article
  Year 2023 Publication Scripta materialia Abbreviated Journal  
  Volume 222 Issue Pages 115040-115046  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Submicron-sized quasicrystalline particles were obtained in an Al-Zn-Mg-Cu alloy produced by traditional melting. These particles consist of an Al-Fe-Ni core and a Mg-Cu-Zn shell and were found to be stable and embedded randomly in the Al matrix. The diffraction patterns of these core-shell particles reveal a decagonal core and an icosahedral shell with, respectively, ten- and five-fold axes aligned. High resolution scanning transmission electron microscopy of the Mg-Cu-Zn shell confirms the five-fold symmetry atomic arrangement and the icosahedral structure. It can therefore be concluded that Fe and Ni impurities play an important role in mediating the formation of such an unusual ternary core-shell quasicrystalline particle. These findings provide some novel insights in the formation of quasicrystals in traditional industrial Al alloys.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000864491400005 Publication Date 2022-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6; 2023 IF: 3.747  
  Call Number UA @ admin @ c:irua:191489 Serial 7144  
Permanent link to this record
 

 
Author (down) Yang, T. openurl 
  Title Characterization of Laves phase structural evolution and regulation of its precipitation behavior in Al-Zn-Mg based alloys Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages ii, 106 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Al-Zn-Mg-based high strength alloys are widely used in aerospace applications due to their low density and excellent mechanical properties. A systematic study of the structural evolution of the nano-precipitation phase and its growth mechanism is an important guide for the design of new high-strength alloys. In this work, the Laves structure precipitates in Al-Zn-Mg(-Cu/Y) alloy was systematically characterized. Based on the structure evolution, the structure of submicron Laves particles and quasicrystalline particles in the alloy at microscale, as well as the regulation of the precipitation behavior after adding Y at nanoscale were further investigated. The main innovative results are summarized as follows: (1) Investigation on coexistence of defect structures in Laves structural nanoprecipitates. Three types of Laves structures can coexist within the η-MgZn2 precipitates: C14, C15 and C36, and the Laves structure transition sequence of C14→C36→C15 in this system was determined. Meanwhile, it was found that there are diverse defect structures in the MgZn2 phase, including stacking faults, planar defects and five-fold domain structures, which have significant effects on relieving the internal stress/strain of the precipitates. (2) Investigation on multiple phase transition of Laves structural nanoprecipitates from C14 to C36 and from C14 to quasicrystal clusters. It is found that C14 precipitates can be completely transformed into the C36 precipitates. And it is also found that the C14 Laves phase structure can also transform into quasicrystalline clusters. These investigations on various phase transition mechanisms among Laves phases provide theoretical support for the microstructural characterization of materials containing multi-scale Laves phases. (3) Characterization of Laves and quasicrystal structural particles in submicron scale. Submicron-scale quasicrystal particles were obtained in conventional casting Al-Zn-Mg-Cu alloys for the first time. Industrial impurity elements Fe and Ni can induce the formation of quasicrystalline particles. When there is no Fe/Ni enriched in particles, the structure is characterized as C15-Laves phase. When Fe/Ni is as quasicrystalline core, a stable core-shell quasicrystalline structure with Al-Fe-Ni nucleus and Mg-Cu-Zn shell can be formed. (4) Investigation on the regulation of nanoscale Laves precipitates’ growth. To regulate the defect structure of the precipitates, rare earth element Y was added in Al-Zn-Mg alloys and its influence on the precipitation behavior was investigated. The addition of Y element can dynamically combine with different alloying elements during aging process, which can refine the size of precipitate and further improve the nucleation rate and precipitation rate of the precipitates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196404 Serial 7631  
Permanent link to this record
 

 
Author (down) Yang, S.; An, H.; Arnouts, S.; Wang, H.; Yu, X.; de Ruiter, J.; Bals, S.; Altantzis, T.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Halide-guided active site exposure in bismuth electrocatalysts for selective CO₂ conversion into formic acid Type A1 Journal article
  Year 2023 Publication Nature Catalysis Abbreviated Journal  
  Volume 6 Issue 9 Pages 796-806  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract It remains a challenge to identify the active sites of bismuth catalysts in the electrochemical CO2 reduction reaction. Here we show through in situ characterization that the activation of bismuth oxyhalide electrocatalysts to metallic bismuth is guided by the halides. In situ X-ray diffraction results show that bromide promotes the selective exposure of planar bismuth surfaces, whereas chloride and iodide result in more disordered active sites. Furthermore, we find that bromide-activated bismuth catalysts outperform the chloride and iodide counterparts, achieving high current density (>100 mA cm(-2)) and formic acid selectivity (>90%), suggesting that planar bismuth surfaces are more active for the electrochemical CO2 reduction reaction. In addition, in situ X-ray absorption spectroscopy measurements reveal that the reconstruction proceeds rapidly in chloride-activated bismuth and gradually when bromide is present, facilitating the formation of ordered planar surfaces. These findings show the pivotal role of halogens on selective facet exposure in activated bismuth-based electrocatalysts during the electrochemical CO2 reduction reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001050367400001 Publication Date 2023-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited 13 Open Access OpenAccess  
  Notes B.M.W. acknowledges support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research' as well as from the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). We also thank J. Wijten, J. Janssens and T. Prins (all from the Inorganic Chemistry and Catalysis group, Utrecht University) for helpful technical support. S. Deelen (Faculty of Science, Utrecht University) and L. Wu (Inorganic Chemistry and Catalysis group, Utrecht University) are acknowledged for the design of the in situ XRD cell. We also acknowledge B. Detlefs, P. Glatzel and V. Paidi (ESRF) for the support during the HERFD-XANES measurements on the ID26 beamline of the ESRF. Approved Most recent IF: 37.8; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:199190 Serial 8877  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: