toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Odin, G.P.; Vanmeert, F.; Janssens, K.; Lelièvre, H.; Mertz, J.-D.; Rouchon, V. pdf  doi
openurl 
  Title Accelerated ageing of shales of palaeontological interest : impact of temperature conditions Type A1 Journal article
  Year 2014 Publication Annales de paléontologie Abbreviated Journal Ann Paleontol  
  Volume 100 Issue 2 Pages 137-149  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The palaeontological collections of the Muséum national dHistoire naturelle (MNHN, Paris, France) and the Muséum dHistoire naturelle dAutun (MHNA, Autun, France) include many fossil specimens originating from the argillaceous shales of the Autun basin (Saône-et-Loire, France). These fossils are preserved within sedimentary rocks containing unstable sulphide compounds, such as pyrite, which may deteriorate in contact with water and oxygen. This alteration provokes crystalline efflorescence and cracks, thus compromising the preservations of the fossils. This work constitutes the first step of a project that aims to understand the mechanisms of alteration of these materials in order to define conservation guidelines for palaeontological collections. For this purpose, eight damaged specimens originating from the Permian Autun basin (Saône-et-Loire, France) were selected and analyzed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy coupled to energy dispersive X-ray spectrometry (SEM/EDS) and X-ray absorption spectroscopy at the threshold of the sulphur Kα-edge (XANES). This methodology enabled the characterization of the matrices composition and the chemical nature of the alterations. Subsequently, we have sought to reproduce by artificial ageing the alteration phenomena encountered in the collections. New shale samples were collected on seven outcrops of the same Autun basin. They were analyzed and subjected to artificial ageing at 50% relative humidity (RH) and at temperatures ranging between 40 °C and 90 °C. Our work shows that damaged specimens and newly collected shale have a similar mineralogical composition. Yet the crystalline efflorescence material formed on the surface of damaged specimens belongs to the iron sulphate group whereas gypsum predominates on artificially aged shale samples. Reproducing the alterations observed on specimens by artificial ageing remains therefore problematic. Additionally, it appears that the temperature of ageing controls the nature of the damage: at 40 °C, many samples are mechanically damaged whereas no or minor crystalline efflorescence occurs. At 90 °C, it is the opposite tendency that is observed. Finally, mechanical damages do not seem to be correlated with the development of the efflorescence: samples with efflorescent crystals generally do not show clearly visible cracks; those that seem most fragmented do not show any visible efflorescence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000338607500006 Publication Date 2014-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0753-3969 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.113 Times cited 5 Open Access  
  Notes ; This work is part of a PhD that is funded by the Museum national d'Histoire naturelle, Paris, France and was additionally supported via the S2-ART project (SDD programme of BELSPO, Brussels). The research was realized in partnership with the Palaeontological Collection Management Unit, Collection Department and with the Centre de Recherche sur la Paleodiversite et les Paleoenvironnements (CR2P, CNRS, UMR7207) of the Museum national d'Histoire naturelle, Paris, France. We are grateful to our colleagues MM. Jean Dejax and Dominique Chabard who provided palaeontological specimens and gave us access to shale deposits and Mrs Marie-Madeleine Blanc-Valleron who was of great help for the interpretation of the XRD data. ; Approved (up) Most recent IF: 1.113; 2014 IF: 0.970  
  Call Number UA @ admin @ c:irua:116594 Serial 5456  
Permanent link to this record
 

 
Author Odin, G.P.; Vanmeert, F.; Farges, F.; Gand, G.; Janssens, K.; Romero-Sarmiento, M.-F.; Steyer, J.S.; Vantelon, D.; Rouchon, V. pdf  doi
openurl 
  Title Alteration of fossil-bearing shale (Autun, France; Permian), part II : monitoring artificial and natural ageing by combined use of S and Ca K-edge XANES analysis, Rock-Eval pyrolysis and FTIR analysis Type A1 Journal article
  Year 2015 Publication Annales de paléontologie Abbreviated Journal Ann Paleontol  
  Volume 101 Issue 3 Pages 225-239  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Fossil-bearing shale specimens that include sulfides in their compositions are chemically reactive and sometimes also mechanically fragile. This decay is often related to iron sulfate efflorescence resulting from the oxidation of sulfide compounds. The processes underlying these degradations are poorly known, thus impeding the elaboration of curative or preventive treatments. The present contribution aims to identify the origin of museum specimen alterations. It focuses on the Flouest collection housed at the Museum National d'Histoire Naturelle (MNHN, Paris, France) and originating from the Autun Basin (Saone-et-Loire, France, Permian). To evaluate the alteration of MNHN specimens, it appeared necessary to compare their composition with that of unaltered shale so as to identify chemical changes occurring during ageing. Therefore, new material was collected in the Autun Basin, among others on the locality of Muse that corresponds to the same lithostratigraphic unit as that of the MNHN specimens. This material was, if necessary, artificially aged. The first part of this work, presented elsewhere, deals with the use of Xray diffraction and Mossbauer spectroscopy for characterizing iron reactivity and speciation. It leads to the conclusion that the reactivity of iron in the shale matrix was limited and could not account for the large efflorescence of iron (II) sulfate occurring nearby the fossil. The second part presented here focuses on the use of S K-edge X-ray Absorption Near Edge Structure (XANES) spectroscopy for characterizing sulfur speciation and reactivity. Measurements were performed on the shale matrix and on thin layers of maceral found in the proximity of damaged areas. As sulfur may be found in association with calcium or organic matter, complementary techniques were implemented, such as FTIR spectroscopy, Rock-Eval pyrolysis (characterization of organic matter content) and Ca K-edge XANES (analysis of calcium speciation) spectroscopy. It was shown that sulfur is mainly related to thioether, sulfoxide, iron sulfide, and sulfates whereas calcium is mainly bound to carboxylate, carbonate and/or sulfate groups. FTIR analysis of the macerals confirmed the presence of vitrinite on damaged MNHN specimens. The low oxygen content of new shale samples determined by Rock-Eval pyrolysis indicates that the organic matter is well preserved, despite the fact that samples come from outcrop surface. In the newly collected material, sulfur is mainly related to organic sulfides (thioether) with a minor occurrence of iron sulfide. In the shale fraction of damaged MNHN specimens, sulfur is mostly oxidized into a mixture of iron and calcium sulfate. However, in the vitrinite layers of the same specimens, a large proportion of sulfur corresponds to organic sulfides. Also the oxidation of sulfur does not occur homogeneously but preferentially in the shale fraction, probably because this latter is porous whereas vitrinite is not. Artificial ageing of new shale material showed that the oxidation of organic sulfides could be reproduced at 90 degrees C, 80% of relative humidity. However, the obtained efflorescence almost exclusively corresponds to calcium sulfate whereas iron (II) sulfates are mostly observed on MNHN specimens. The new material collected on site is probably to be questioned, and future studies will have to select new samples with fossil remains. This will be the object of the third part of this work. (C) 2015 Elsevier Masson SAS. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363821700009 Publication Date 2015-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0753-3969 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.113 Times cited 6 Open Access  
  Notes ; This work was conducted within a PhD work that was supported by a doctoral school grant of the Museum national d'Histoire naturelle, Paris, France. We acknowledge SOLEIL for provision of synchrotron radiation facilities (Proposals ID “20130462” and “20110189”) and we would like to thank Nicolas Trcera, Pierre Lagarde and Anne Marie Flanck for assistance in using beamline LUCIA. ; Approved (up) Most recent IF: 1.113; 2015 IF: 0.970  
  Call Number UA @ admin @ c:irua:129523 Serial 5462  
Permanent link to this record
 

 
Author Vanmeert, F.; Mudronja, D.; Fazinic, S.; Janssens, K.; Tibljas, D. pdf  doi
openurl 
  Title Semi-quantitative analysis of the formation of a calcium oxalate protective layer for monumental limestone using combined micro-XRF and micro-XRPD Type A1 Journal article
  Year 2013 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom  
  Volume 42 Issue 4 Pages 256-261  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A current method for the protection of cretaceous limestone present in various monuments consists of performing a passivating treatment with ammonium oxalate (AmOx). A calcium oxalate protective layer is formed on the surface and enhances the acid resistance of the stone. The in-depth formation of the calcium oxalate layer was investigated on cross sections by using combined micro X-ray fluorescence and micro X-ray powder diffraction (mu XRF/mu XRPD). XRPD showed the presence of both whewellite and weddellite in the calcite stone matrix. A correction was made for sample misalignment, which was visible in both the fluorescence and the diffraction line measurements. A semi-quantitative analysis was performed on the basis of Klug's equation for a two-phase mixture (the presence of weddellite was neglected) without the need for a known reference sample. By assuming two extreme compositions for a reference weight fraction (1 and 99wt%), it was possible to obtain whewellite concentration profiles, which can be used for comparing the effectiveness of different methods for the application of AmOx to the stone surface and the effect of treatment time and AmOx concentration used. It is shown that for the relative amounts of whewellite formed, the differences due to the assumed weight fractions are smaller than the errors due to sample heterogeneity and preferred orientation. Copyright (c) 2013 John Wiley & Sons, Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000320727900015 Publication Date 2013-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.298 Times cited 5 Open Access  
  Notes ; The authors would like to thank De Nolf W. for his valuable feedback on the analysis of the X-ray diffraction data. We acknowledge SOLEIL for provision of SR facilities (proposal ID 20100979), and we would like to thank Dr. C. Mocuta for his assistance at the DIFFABS beamline. This research was supported by the Interuniversity Attraction Poles Program – Belgian Science Policy (IUAP VI/16). The text also presents results of GOA 'XANES meets ELNES' (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. The EU Community's FP7 Research Infrastructures program for the CHARISMA Project (grant agreement 228330) and, within framework in particular, the access possibilities to the SOLEIL and IPANEMA facilities are also acknowledged. ; Approved (up) Most recent IF: 1.298; 2013 IF: 1.187  
  Call Number UA @ admin @ c:irua:109579 Serial 5827  
Permanent link to this record
 

 
Author 't Hart, L.; Storme, P.; Anaf, W.; Nuyts, G.; Vanmeert, F.; Dorriné, W.; Janssens, K.; De Wael, K.; Schalm, O. pdf  url
doi  openurl
  Title Monitoring the impact of the indoor air quality on silver cultural heritage objects using passive and continuous corrosion rate assessments Type A1 Journal article
  Year 2016 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater  
  Volume 122 Issue 10 Pages 923-10  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract There is a long tradition in evaluating industrial atmospheres by measuring the corrosion rate of exposed metal coupons. The heritage community also uses this method, but the interpretation of the corrosion rate often lacks clarity due to the low corrosivity in indoor museum environments. This investigation explores the possibilities and drawbacks of different silver corrosion rate assessments. The corrosion rate is determined by three approaches: (1) chemical characterization of metal coupons using analytical techniques such as electrochemical measurements, SEM-EDX, XRD, and µ-Raman spectroscopy, (2) continuous corrosion monitoring methods based on electrical resistivity loss of a corroding nm-sized metal wire and weight gain of a corroding silver coated quartz crystal, and (3) characterization of the visual degradation of the metal coupons. This study confirms that subtle differences in corrosivity between locations inside a museum can be determined on condition that the same corrosion rate assessment is used. However, the impact of the coupon orientation with respect to the prevailing direction of air circulation can be substantially larger than the impact of the coupon location.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384753800053 Publication Date 2016-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.455 Times cited 3 Open Access  
  Notes ; This research has been sponsored by the Belgian Federal Public Planning Service Science Policy (BELSPO) under Project Number BR/132/A6/AIRCHECQ. In this project an innovative monitoring kit is developed that continuously and simultaneously measures both environmental parameters and material behaviour, enabling the study of the cause-effect relationships. The Quanta 250 FEG microscope at the University of Antwerp was funded by the Hercules foundation of the Flemish Government. ; Approved (up) Most recent IF: 1.455  
  Call Number UA @ admin @ c:irua:135511 Serial 5733  
Permanent link to this record
 

 
Author Mudronja, D.; Vanmeert, F.; Hellemans, K.; Fazinic, S.; Janssens, K.; Tibljas, D.; Rogosic, M.; Jakovljevic, S. pdf  doi
openurl 
  Title Efficiency of applying ammonium oxalate for protection of monumental limestone by poultice, immersion and brushing methods Type A1 Journal article
  Year 2013 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater  
  Volume 111 Issue 1 Pages 109-119  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Samples of cretaceous limestone have been treated with three application methods (poultice, immersion and brushing) using different concentrations of ammonium oxalate solution (AmOx) and varying treatment time in order to test the efficiency of surface and in-depth formation of a protective layer of calcium oxalate (CaOx). Synchrotron-based microanalytical techniques (SR-mu XRD with 12.5 mu mx7.5 mu m (HxV) probe size, SR-mu FTIR with 10 mu mx10 mu m and 8 mu mx20 mu m probe sizes) and laboratory mu FTIR, XRD and SEM have been employed for analysis of the treated samples. Synchrotron-based techniques showed variations in the CaOx distribution along the surface on a micrometer scale. All treatments resulted in the development of a CaOx layer with a maximum thickness of approximately 40 mu m. Application by the brushing method with 10 1-min applications with 5-min breaks during one hour showed a development of the calcium oxalate layer equivalent to the poultice treatment taking 10 h. This treatment could be preferred for large marble or limestone surfaces where poultice usage is economically not feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316075700014 Publication Date 2012-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.455 Times cited 13 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of GOA 'XANES meets ELNES' (Research Fund, University of Antwerp, Belgium) and from FWO (Brussels, Belgium) project nos. G.0704.08 and G.01769.09. The research leading to these results has received financial support by the Access to Research Infrastructures activity in the 7th Framework Programme of the EU (CHARISMA Grant Agreement No. 228330). ; Approved (up) Most recent IF: 1.455; 2013 IF: 1.694  
  Call Number UA @ admin @ c:irua:108262 Serial 5584  
Permanent link to this record
 

 
Author Alfeld, M.; van der Snickt, G.; Vanmeert, F.; Janssens, K.; Dik, J.; Appel, K.; van der Loeff, L.; Chavannes, M.; Meedendorp, T.; Hendriks, E. pdf  doi
openurl 
  Title Scanning XRF investigation of a Flower Still Life and its underlying composition from the collection of the Kröller-Muller Museum Type A1 Journal article
  Year 2013 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater  
  Volume 111 Issue 1 Pages 165-175  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316075700020 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.455 Times cited 35 Open Access  
  Notes ; This research was supported by the SSD program of BELSPO, Brussels (project S2-ART). Results are also presented here from Gemeenschappelijke Onderzoeksactie (GOA) 'XANES meets ELNES' (Research Fund, University of Antwerp, Belgium) and from Fonds voor Wetenschappelijk Onderzoek (FWO) (Brussels, Belgium) project Nos. G.0704.08 and G.01769.09. The research leading to these results was funded by the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement No. 226716 and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) under the VIDI project “Looking Over the Painter's Shoulder” (grant No. 700.10.426). M. Alfeld is the recipient of a Ph.D. fellowship of the Research Foundation-Flanders (FWO). ; Approved (up) Most recent IF: 1.455; 2013 IF: 1.694  
  Call Number UA @ admin @ c:irua:108264 Serial 5826  
Permanent link to this record
 

 
Author Salvant, J.; Williams, J.; Ganio, M.; Casadio, F.; Daher, C.; Sutherland, K.; Monico, L.; Vanmeert, F.; De Meyer, S.; Janssens, K.; Cartwright, C.; Walton, M. pdf  doi
openurl 
  Title A Roman Egyptian Painting Workshop : technical investigation of the portraits from Tebtunis, Egypt Type A1 Journal article
  Year 2018 Publication Archaeometry Abbreviated Journal Archaeometry  
  Volume 60 Issue 4 Pages 815-833  
  Keywords A1 Journal article; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Roman-period mummy portraits are considered to be ancient antecedents of modern portraiture. However, the techniques and materials used in their manufacture are not thoroughly understood. Analytical study of the pigments as well as the binding materials helps to address questions on what aspects of the painting practices originate from Pharaonic and/or Graeco-Roman traditions, and can aid in determining the provenance of the raw materials from potential locations across the ancient Mediterranean and European worlds. Here, one of the largest assemblages of mummy portraits to remain intact since their excavation from the site of Tebtunis in Egypt was examined using multiple analytical techniques to address how they were made. The archaeological evidence suggests that these portraits were products of a single workshop and, correspondingly, they are found to be made using similar techniques and materials: wax-based and lead white-rich paint combined with a variety of iron-based pigments (including hematite, goethite and jarosite), as well as Egyptian blue, minium, indigo and madder lake to create subtle variations and tones.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438195100011 Publication Date 2017-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-813x; 1475-4754 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.47 Times cited 6 Open Access  
  Notes ; This collaborative initiative is part of NU-ACCESS's broad portfolio of activities, made possible by generous support of the Andrew W. Mellon Foundation as well as supplemental support provided by the Materials Research Center, the Office of the Vice President for Research, the McCormick School of Engineering and Applied Science and the Department of Materials Science and Engineering at Northwestern University. This work made use of the Keck-II facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. Part of this research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF), and at ESRF (experiment no. HG-79). We are grateful to Marine Cotte and Wout De Nolf for their support during the experiment at beamline ID21. We would like to thank Gerald Falkenberg and Jan Garrevoet for their assistance in using beamline P06. ; Approved (up) Most recent IF: 1.47  
  Call Number UA @ admin @ c:irua:152396 Serial 5455  
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S. url  doi
openurl 
  Title Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
  Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue 45 Pages 27825-27835  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590753400016 Publication Date 2020-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access  
  Notes Approved (up) Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:174323 Serial 8107  
Permanent link to this record
 

 
Author Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K. doi  openurl
  Title Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 25 Pages 7418-7422  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434949200023 Publication Date 2018-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access  
  Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved (up) Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:153185 Serial 5517  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Hendriks, E.; Vanmeert, F.; van der Snickt, G.; Cotte, M.; Falkenberg, G.; Brunetti, B.G.; Miliani, C. pdf  doi
openurl 
  Title Evidence for degradation of the chrome yellows in Van Gogh's sunflowers : a study using noninvasive in situ methods and synchrotron-radiation-based x-ray techniques Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 47 Pages 13923-13927  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-xSxO4 (x approximate to 0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr-III compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367722500009 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 24 Open Access  
  Notes ; We acknowledge financial support from the Italian MIUR project SICH-PRIN (2010329WPF_001) and BELSPO (Brussels) Project S2-ART (SD04A), GOA “SOLARPAINT” (Research Fund Antwerp University, BOF-2015), and FWO (Brussels) projects G.0C12.13, G.0704.08, G.01769.09. We thank ESRF (EC-1051, HG-26) and DESY (I-20120312 EC) for beamtime grants received. Noninvasive analysis of Sunflowers were supported by the EU FP7 programme CHARISMA (Grant 228330) and the Fund Inbev-Baillet Latour (Brussels). L.M. acknowledges financial support from the CNR Short Term Mobility Programme-2013. We thank Muriel Geldof, Luc Megens, Suzan de Groot (The Netherlands Cultural Heritage Agency, RCE), Chiara Grazia, David Buti (CNR-ISTM and SMAArt Centre), and the staff of the Van Gogh Museum for their collaboration. ; Approved (up) Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:131110 Serial 5617  
Permanent link to this record
 

 
Author Vanmeert, F.; van der Snickt, G.; Janssens, K. pdf  doi
openurl 
  Title Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 12 Pages 3607-3610  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Red lead, a semiconductor pigment used by artists since antiquity, is known to undergo several discoloration phenomena. These transformations are either described as darkening of the pigment caused by the formation of either plattnerite (β-PbO2) or galena (PbS) or as whitening by which red lead is converted into anglesite (PbSO4) or (hydro)cerussite (2 PbCO3⋅Pb(OH)2; PbCO3). X-ray powder diffraction tomography, a powerful analytical method that allows visualization of the internal distribution of different crystalline compounds in complex samples, was used to investigate a microscopic paint sample from a Van Gogh painting. A very rare lead mineral, plumbonacrite (3 PbCO3⋅ Pb(OH)2⋅PbO), was revealed to be present. This is the first reported occurrence of this compound in a painting dating from before the mid 20th century. It constitutes the missing link between on the one hand the photoinduced reduction of red lead and on the other hand (hydro)cerussite, and thus sheds new light on the whitening of red lead.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351178300008 Publication Date 2015-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 24 Open Access  
  Notes ; The authors acknowledge L. Van der Loeff and M. Leeuwestein (Kroller-Muller Museum) for providing the paint sample. We thank Dr. J. Jaroszewicz (WUT) for performing the CT measurements. This research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We thank Dr. G. Falkenberg and the members of his team for their assistance in using beam line P06. We acknowledge financial support from the University of Antwerp GOA projects “XANES meets EELS” and “SOLARPaint”, as well as from BELSPO (Brussels) Project S2-ART and FWO (Brussels) project “ESRF-Dubble”. ; Approved (up) Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:124620 Serial 5774  
Permanent link to this record
 

 
Author De Keyser, N.; Broers, F.; Vanmeert, F.; De Meyer, S.; Gabrieli, F.; Hermens, E.; van der Snickt, G.; Janssens, K.; Keune, K. url  doi
openurl 
  Title Reviving degraded colors of yellow flowers in 17th century still life paintings with macro- and microscale chemical imaging Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal  
  Volume 8 Issue 23 Pages 1-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Over time, artist pigments are prone to degradation, which can decrease the readability of the artwork or notably change the artist's intention. In this article, the visual implication of secondary degradation products in a degraded yellow rose in a still life painting by A. Mignon is discussed as a case study. A multimodal combination of chemical and optical imaging techniques, including noninvasive macroscopic x-ray powder diffraction (MA-XRPD) and macroscopic x-ray fluorescence imaging, allowed us to gain a 3D understanding of the transformation of the original intended appearance of the rose into its current degraded state. MA-XRPD enabled us to precisely correlate in situ formed products with what is optically visible on the surface and demonstrated that the precipitated lead arsenates and arsenolite from the yellow pigment orpiment and the light-induced fading of an organic yellow lake irreversibly changed the artist's intentional light-shadow modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000811556500011 Publication Date 2022-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:189657 Serial 7205  
Permanent link to this record
 

 
Author Monico, L.; Cartechini, L.; Rosi, F.; Chieli, A.; Grazia, C.; De Meyer, S.; Nuyts, G.; Vanmeert, F.; Janssens, K.; Cotte, M.; De Nolf, W.; Falkenberg, G.; Sandu, I.C.A.; Tveit, E.S.; Mass, J.; De Freitas, R.P.; Romani, A.; Miliani, C. url  doi
openurl 
  Title Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques Type A1 Journal article
  Year 2020 Publication Science Advances Abbreviated Journal  
  Volume 6 Issue 20 Pages eaay3514  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The degradation of cadmium sulfide (CdS)-based oil paints is a phenomenon potentially threatening the iconic painting The Scream (ca. 1910) by Edvard Munch (Munch Museum, Oslo) that is still poorly understood. Here, we provide evidence for the presence of cadmium sulfate and sulfites as alteration products of the original CdS-based paint and explore the external circumstances and internal factors causing this transformation. Macroscale in situ noninvasive spectroscopy studies of the painting in combination with synchrotron-radiation x-ray microspectroscopy investigations of a microsample and artificially aged mock-ups show that moisture and mobile chlorine compounds are key factors for promoting the oxidation of CdS, while light (photodegradation) plays a less important role. Furthermore, under exposure to humidity, parallel/secondary reactions involving dissolution, migration through the paint, and recrystallization of water-soluble phases of the paint are associated with the formation of cadmium sulfates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000533573300009 Publication Date 2020-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited 4 Open Access  
  Notes ; The research was financially supported by the European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (grant agreement no. 654028); the project AMIS, within the program Dipartimenti di Eccellenza 2018-2022 (funded by MIUR and University of Perugia); and the program “Ricerca di Base 2017” (funded by University of Perugia). S.D.M. and K.J. acknowledge the GOA Project SolarPaint from the University of Antwerp Research Council and projects G056619N and G054719N from FWO (Brussels). F.V. and K.J. acknowledge support from Interreg Project Smart*Light and thank BELSPO (Brussels) for financial support via FED-tWIN mandate PRF055. L.M. acknowledges the Erasmus+ program (Staff Mobility for training, A. Y. 2018 to 2019) of the European Commission. In situ noninvasive analyses were performed using the European MOLAB platform, which is financially supported by the European project IPERION-CH. For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiment nos. HG32, HG64, and HG95), DESY-P06 beamline, a member of the Helmholtz Association HGF (experiment nos. I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. ; Approved (up) Most recent IF: 13.6; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169519 Serial 6585  
Permanent link to this record
 

 
Author Gonzalez, V.; Fazlic, I.; Cotte, M.; Vanmeert, F.; Gestels, A.; De Meyer, S.; Broers, F.; Hermans, J.; van Loon, A.; Janssens, K.; Noble, P.; Keune, K. url  doi
openurl 
  Title Lead(II) formate in Rembrandt's Night Watch : detection and distribution from the macro- to the micro-scale Type A1 Journal article
  Year 2023 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)(2), in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17(th) century recipes. Synchrotron radiation based micro-XRPD (SR-mu-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000920584500001 Publication Date 2023-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 16.6; 2023 IF: 11.994  
  Call Number UA @ admin @ c:irua:194279 Serial 7318  
Permanent link to this record
 

 
Author Mudronja, D.; Vanmeert, F.; Fazinic, S.; Janssens, K.; Tibljas, D.; Desnica, V. url  doi
openurl 
  Title Protection of stone monuments using a brushing treatment with ammonium oxalate Type A1 Journal article
  Year 2021 Publication Coatings Abbreviated Journal Coatings  
  Volume 11 Issue 4 Pages 379  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Stone monuments and buildings are susceptible to weathering. Carbonate-based stones are especially vulnerable in acidic environments, whereas magmatic acidic stones are more susceptible to chemical weathering in basic environments. To slow down surface corrosion of limestone and marble artworks/buildings, protective coatings which inhibit calcite dissolution have been proposed. In this work, samples from two stone types with different porosity were treated with ammonium oxalate (AmOx) to create a protective layer of calcium oxalate (CaOx) using the previously developed brushing method. Two different synchrotron microscopy experiments were performed to determine its protective capability. X-ray powder diffraction (SR-mu-XRPD) in transmission geometry allowed visualization of the distributions of calcium carbonate and oxalates along the sample depths. In a second step, X-ray fluorescence (SR-mu-XRF) was used to check the efficiency/integrity of the protective surface coating layer. This was done by measuring the sulfur distribution on the stone surface after exposing the protected stones to sulfuric acid. XRPD showed the formation of a protective oxalate layer with a thickness of 5-15 mu m on the less porous stone, while a 20-30 mu m thick layer formed on the more porous stone. The XRF study showed that the optimal treatment time depends on the stone porosity. Increasing the treatment time from 1 to 3 h resulted in a decreased efficiency of the protective layer for the low porosity stone. We assume that this is due to the formation of vertical channels (cracks) in the protective layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000642940900001 Publication Date 2021-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-6412 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.175 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 2.175  
  Call Number UA @ admin @ c:irua:178271 Serial 8428  
Permanent link to this record
 

 
Author Cagno, S.; Lind, O.C.; Popic, J.M.; Skipperud, L.; De Nolf, W.; Nuyts, G.; Vanmeert, F.; Jaroszewicz, J.; Janssens, K.; Salbu, B. url  doi
openurl 
  Title Micro-analytical characterization of thorium-rich aggregates from Norwegian NORM sites (Fen Complex, Telemark) Type A1 Journal article
  Year 2020 Publication Journal Of Environmental Radioactivity Abbreviated Journal J Environ Radioactiv  
  Volume 219 Issue Pages 106273  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this study we performed microscopic characterization of mineral particles that were collected in the thorium-rich Fen Complex in Norway and identified and isolated based on autoradiography in function of their radioactivity. For this we combined information obtained with X-ray absorption mu-CT, mu-XRF and mu-XRD, both in bi- and in three-dimensional (tomographic) mode. We demonstrate that radionuclides and metals are heterogeneously distributed both within soil samples and within individual Th-enriched aggregates, which are characterised as low-density mineral bulk particles with high density material inclusions, where Th as well as several metals are highly concentrated. For these sites, it is important to take into account how these inhomogeneous distributions could affect the overall environmental behaviour of Th and progeny upon weathering due to human or environmental factors. Moreover, the estimated size of the Th-containing inclusions as determined in this work represents information of importance for the characterization of radionuclides and toxic metals exposure, as well as for assessing the viability of mining for Th and rare-earth metals in the Fen Complex and the associated environmental impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535130500005 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.3 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.3; 2020 IF: 2.31  
  Call Number UA @ admin @ c:irua:181195 Serial 8229  
Permanent link to this record
 

 
Author Simonsen, K.P.; Poulsen, J.N.; Vanmeert, F.; Ryhl-Svendsen, M.; Bendix, J.; Sanyova, J.; Janssens, K.; Mederos-Henry, F. url  doi
openurl 
  Title Formation of zinc oxalate from zinc white in various oil binding media: the influence of atmospheric carbon dioxide by reaction with 13CO2 Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 126  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The formation of metal oxalates in paintings has recently gained a great deal of interest within the field of heritage science as several types of oxalate compounds have been identified in oil paintings. The present work investigates the formation of metal oxalates in linseed oil in the presence of the artists' pigments zinc white, calcite, lead white, zinc yellow, chrome yellow, cadmium yellow, cobalt violet, and verdigris. The oil paint films were artificially photo-aged by exposure to UVA light at low and high relative humidity, and afterwards analysed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The results showed that, compared to the other pigments investigated, zinc white is especially prone to metal oxalate formation and that high humidity is a crucial factor in this process. Consequently, the reactivity and photo-aging of ZnO in various oil binding media was investigated further under simulated solar radiation and at high relative humidity levels. ATR-FTIR showed that zinc oxalate is formed in all oil binding media while X-ray powder diffraction (PXRD) revealed it was mainly present in an amorphous state. To examine whether atmospheric CO2(g) has any influence on the formation of zinc oxalate, experiments with isotopically enriched (CO2(g))-C-13 were performed. Based on ATR-FTIR measurements, neither (ZnC2O4)-C-13 nor (ZnCO3)-C-13 were formed which suggests that the carbon source for the oxalate formation is most likely the paint itself (and its oil component) and not the surrounding atmosphere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000596527000001 Publication Date 2020-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:174381 Serial 7979  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; George, J.; Kaplan, E.; Osmond, L.; Bright, L.; Newsome, G.A.; Kaczkowski, R.; Vanmeert, F.; Kavich, G.; Heald, S. url  doi
openurl 
  Title Identifying VOCs in exhibition cases and efflorescence on museum objects exhibited at Smithsonian’s National Museum of the American Indian-New York Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 115  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Two mass spectrometry (MS) methods, solid-phase microextraction gas chromatography (SPME–GC–MS) and direct analysis in real time (DART-MS), have been explored to investigate widespread efflorescence observed on exhibited objects at the Smithsonian’s National Museum of the American Indian in New York (NMAI-NY). Both methods show great potential, in terms of speed of analysis and level of information, for identifying the organic component of the efflorescence as 2,2,6,6-tetramethyl-4-piperidinol (TMP-ol) emitted by the structural adhesive (Terostat MS 937) used for exhibit case construction. The utility of DART-MS was proven by detecting the presence of TMP-ol in construction materials in a fraction of the time and effort required for SPME–GC–MS analysis. In parallel, an unobtrusive SPME sampling strategy was used to detect volatile organic compounds (VOCs) accumulated in the exhibition cases. This sampling technique can be performed by collections and conservation staff at the museum and shipped to an off-site laboratory for analysis. This broadens the accessibility of MS techniques to museums without access to instrumentation or in-house analysis capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000589423700001 Publication Date 2020-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:181925 Serial 8056  
Permanent link to this record
 

 
Author Peeters, H.; Keulemans, M.; Nuyts, G.; Vanmeert, F.; Li, C.; Minjauw, M.; Detavernier, C.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. url  doi
openurl 
  Title Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings Type A1 Journal article
  Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 267 Issue 267 Pages 118654  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Transparent photocatalytic TiO2 thin films hold great potential in the development of self-cleaning glass sur-

faces, but suffer from a poor visible light response that hinders the application under actual sunlight. To alleviate this problem, the photocatalytic film can be modified with plasmonic nanoparticles that interact very effectively with visible light. Since the plasmonic effect is strongly concentrated in the near surroundings of the nano- particle surface, an approach is presented to embed the plasmonic nanostructures in the TiO2 matrix itself, rather than deposit them loosely on the surface. This way the interaction interface is maximised and the plasmonic effect can be fully exploited. In this study, pre-fabricated gold nanoparticles are made compatible with the organic medium of a TiO2 sol-gel coating suspension, resulting in a one-pot coating suspension. After spin coating, homogeneous, smooth, highly transparent and photoactive gold-embedded anatase thin films are ob- tained.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518865300002 Publication Date 2020-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.1 Times cited 57 Open Access OpenAccess  
  Notes H.P. is grateful to the Research Foundation Flanders (FWO) for an aspirant PhD scholarship. Approved (up) Most recent IF: 22.1; 2020 IF: 9.446  
  Call Number EMAT @ emat @c:irua:165616 Serial 5446  
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K. pdf  doi
openurl 
  Title Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
  Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 615-622  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600074 Publication Date 2015-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 22 Open Access  
  Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved (up) Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:131100 Serial 5514  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Cotte, M.; Sorace, L.; Vanmeert, F.; Brunetti, B.G.; Miliani, C. pdf  url
doi  openurl
  Title Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium Type A1 Journal article
  Year 2016 Publication Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 272-282  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Environmental factors, such as light, humidity and temperature are triggering agents for the alteration of organic and/or inorganic constituents of oil paintings. The oxidation of the organic material is favored by increasing of relative humidity and temperature, whereas processes involving changes of the oxidation states of a number of inorganic pigments (e.g., vermilion, cadmium yellows, zinc yellows, chrome yellows) are mainly activated by light-exposure. In view of the optimization of the long-term conservation and restoration strategies of paintings it is of relevant interest to establish the consequences of thermal parameters (temperature and relative humidity) on the chemical/photochemical-reactivity and the nature of the alteration products of light sensitive-pigments in oil medium. To this aim here we propose a multi-method analytical approach based on the combination of diffuse reflectance UV-Vis, FTIR, synchrotron radiation (SR)-based micro X-ray fluorescence (mu-XRF)/micro-X-ray absorption neat edge structure ()CANES) and electron paramagnetic resonance (EPR) spectroscopies for studying the effects of different relative humidity conditions before and after light exposure on the reactivity of a series of lead chromate-based pigments [such as PbCrO4 center dot PbO (monoclinic), PbCrO4 (monoclinic) and PbCr0.2S0.8O4 (orthorhombic)] in an oil medium. The investigation of paint models was also compared to that of a late 19th century historical orthorhombic PbCr0.4S0.6O4 oil paint. Diffuse reflectance UV-Vis and FTIR spectroscopies were used to obtain information associated with chromatic changes and the formation of organo-metal degradation products at the paint surface. SR-based Cr K-edge mu-XANES/mu-XRF mapping analysis and EPR spectroscopy were employed in a complementary fashion to determine the amount, nature and distribution of Cr(III) and Cr(V)-based alteration compounds within the paints with micrometric spatial resolution. Under the employed thermal aging conditions, lead(II)-carboxylates and reduced Cr-compounds (in abundance of up to about 35% at the surface) have been identified in the lead chromate-based paints. The tendency of chromates to become reduced increased with increasing moisture levels and was favored for the orthorhombic PbCr0.2S0.8O4 compounds. The redox process gave rise to the formation of Cr(V)-species in relative amount much higher than that was formed in the equivalent paint which was exposed only to light. After light-exposure of the thermally aged paints, compounds ascribable to the oxidation of the organic binder were detected for all the types of pigments. Nevertheless, the previous thermal treatment increased the tendency toward photo-reduction of only the PbCr0.2S0.8O4 pigment. For this light-sensitive compound, the thickness variation of the reduced Cr-rich (ca. 70%) photo-alteration layer with moisture levels could be ascribed to a surface passivation phenomenon that had already occurred before photochemical aging. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600042 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 23 Open Access  
  Notes ; ; Approved (up) Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:131099 Serial 5519  
Permanent link to this record
 

 
Author Hirayama, A.; Abe, Y.; van Loon, A.; De Keyser, N.; Noble, P.; Vanmeert, F.; Janssens, K.; Tantrakarn, K.; Taniguchi, K.; Nakai, I. pdf  doi
openurl 
  Title Development of a new portable X-ray powder diffractometer and its demonstration to on-site analysis of two selected old master paintings from the Rijksmuseum Type A1 Journal article
  Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue 138 Pages 266-272  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A portable X-ray powder diffractometer (p-XRD) PT-APXRD III has been developed for onsite analysis of paintings and archaeological samples. By using a Cu anode X-ray tube and a silicon drift diode (SDD) detector, diffraction patterns with a high signalnoise (S/N) ratio can be recorded. The X-ray tube can be operated at a maximum voltage of 60 kV, which makes it possible to simultaneously record X-ray fluorescence spectra up to the high-energy region. The total weight of this instrument is 16 kg, which can be carried anywhere and the goniometer unit (5.6 kg) can be placed on a tripod for analysis of mural paintings. We brought the instrument to the Rijksmuseum in the Netherlands to examine its applicability for the analysis of oil paintings. We successfully analyzed two seventeenthcentury oil paintings by Johannes Vermeer and Jan Davidsz de Heem (copy after). Ultramarine blue, leadtin yellow type I, and Naples yellow were identified from the diffraction patterns, demonstrating the high practicality of this instrument. Furthermore, it was found from the SEM-EDX analysis of a paint cross section that the yellow pigment was applied in separate layers rather than being mixed. This diffractometer will be commercially available in the near future and will have many applications in the field of material analysis. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000030 Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 2 Open Access  
  Notes ; This research was conducted with the support of the JSPS (Tokyo, Japan)-FWO (Brussels, Belgium) bilateral exchange project. ; Approved (up) Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:151565 Serial 5575  
Permanent link to this record
 

 
Author Odin, G.P.; Belhadj, O.; Vanmeert, F.; Janssens, K.; Wattiaux, A.; Francois, A.; Rouchon, V. pdf  doi
openurl 
  Title Study of the influence of water and oxygen on the morphology and chemistry of pyritized lignite: Implications for the development of a preventive drying protocol Type A1 Journal article
  Year 2020 Publication Journal Of Cultural Heritage Abbreviated Journal J Cult Herit  
  Volume 42 Issue Pages 117-130  
  Keywords A1 Journal article; Art; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Lignite constitutes a unique testimony of past diversity and evolution of land plants. This material, usually waterlogged, is particularly difficult to dry because of its mechanical sensitivity to moisture changes. In addition, lignite may contain organic and inorganic sulfides, which are susceptible to oxidation once excavated. As a result, the conservation of lignite is particularly complicated and lignite remains scarce in paleobotanical collections. We experimentally test different drying protocols on waterlogged pyritized lignite, while documenting the respective role of water and oxygen on their morphology and chemistry. The results reveal that inorganic sulfides (pyrite) are more prone to oxidation than organic sulfides (thioethers). Critically, water is the main factor responsible for this oxidation, provoking sulfate efflorescence when samples are further exposed to oxygen. On the other hand, an abrupt removal of water provokes significant mechanical damage while sulfur remains mostly present as reduced compounds. The control of water and oxygen exchanges is thus critical for conserving lignite without physical damage and efflorescence. We successfully achieved this by storing the samples in hermetically sealed plastic bags made of semi-permeable films, which slowly release humidity while allowing a gradual influx of oxygen. We advise curators to quickly handle lignite once removed from its waterlogged environment because of the fast kinetics of oxidation, and to choose a drying protocol according to the purpose of the lignite treated. Finally, once dried, we advise to store the lignite in an anhydrous environment. (C) 2019 Elsevier Masson SAS. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525864000013 Publication Date 2019-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access  
  Notes ; This research was funded by a doctoral school grant from the Museum National d'Histoire Naturelle (Paris, France) and a post-doctoral grant from SU (Paris, France; Convergence program, ACOPAL project). We thank SOLEIL for provision of synchrotron radiation facilities (proposals 20130462and 0110189). We are grateful to Ronan Allain, Renaud Vacant and Dario de Franceschi for access to excavation sites and fruitful discussions, to the LUCIA beamline staff (D.Vantelon, N.Trcera, P.Lagarde, A.-M.Flank) and the AGLAE team (Quentin Lemasson, Brice Moignard, Claire Pacheco and Laurent Pichon) for support during allocated beamtime. We acknowledge the ICMCB (Bordeaux, France) and the ISA (Villeurbanne, France) for elemental quantifications. Finally, we thank two anonymous reviewers who helped to improve a previous version of the manuscript. ; Approved (up) Most recent IF: 3.1; 2020 IF: 1.838  
  Call Number UA @ admin @ c:irua:168651 Serial 6619  
Permanent link to this record
 

 
Author Rouchon, V.; Pellizzi, E.; Duranton, M.; Vanmeert, F.; Janssens, K. doi  openurl
  Title Combining XANES, ICP-AES, and SEM/EDS for the study of phytate chelating treatments used on iron gall ink damaged manuscripts Type A1 Journal article
  Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 26 Issue 12 Pages 2434-2441  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Many historical documents written with iron gall inks are endangered by the corrosive effects of these inks. In this work, a combination of complementary analytical methods was used for the first time in order to study the phytate process which is used in conservation studios to stabilize damaged manuscripts. This process consists of an antioxidant treatment performed by means of a calcium phytate (CP) solution, followed by a deacidification treatment performed with a calcium carbonate (CC) solution. The antioxidant treatment capitalizes on the properties of myo-inositol hexaphosphoric acid (phytic acid) that inhibits iron through chelation. In order to use relatively low acidic solutions, the pH of the CP solution is increased up to values between 5 and 6, which is in the range of the CP precipitation threshold. This study was performed on laboratory samples made of paper impregnated with iron gall ink and artificially aged in climatic chambers. It aims to investigate how the CP precipitate impacts the efficiency of the treatment. Side effects, such as elemental losses and deposits, were measured by means of several analytical techniques (FeK Edge XANES, SEM/EDS, and ICP-AES). These measurements were crosschecked with a ready to use colour spot test made of bathophenanthroline impregnated paper. It appeared that the CP treatment should necessarily be followed by the deacidification treatment in order to achieve long term stability. The precipitation of CP in the treating solution does finally not impact the efficiency of the treatment despite the fact that it should theoretically lower the availability of phytate to chelate iron. A scenario is proposed to explain this point.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297030400008 Publication Date 2011-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 10 Open Access  
  Notes ; This research was funded by SOLEIL (proposals 20060396 and 20080761) and was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. We are thankful to the paper conservator students of the Institut National du Patrimoine who were involved in some of the sample preparations, and to Dr Dominique Thiaudiere and Dr Solenn Reguer for their assistance and help during the experiments performed at SOLEIL beamline “DIFFABS”. ; Approved (up) Most recent IF: 3.379; 2011 IF: 3.220  
  Call Number UA @ admin @ c:irua:93845 Serial 5527  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Alfeld, M.; Cotte, M.; Vanmeert, F.; Ryan, C.G.; Falkenberg, G.; Howard, D.L.; Brunetti, B.G.; Miliani, C. url  doi
openurl 
  Title Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh Type A1 Journal article
  Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 30 Issue 3 Pages 613-626  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A combination of synchrotron radiation (SR) micro X-ray fluorescence (m-XRF) and XRF mode X-ray absorption near edge structure (XANES) measurements at the Cr K-edge already allowed us to establish that the photo-reduction of chromates to Cr(III) compounds is the cause of darkening of chrome yellow pigments (PbCr1-xSxO4, 0 <= x <= 0.8) in a number of paintings by Vincent van Gogh and in corresponding artificially aged paint models. A silicon drift detector (SDD) was employed to record the Cr-K XRF radiation in these X-ray micro beam-based measurements. However, in view of the limited count rate capabilities and collection solid angle of a single device, m-XRF and m-XANES employing single element SDDs (or similar) are primarily suited for collection of spectral data from individual points. Additionally, collection of XRF maps via point-by-point scanning with relatively long dwell times per point is possible but is usually confined to small areas. The development of the 384 silicon-diode array Maia XRF detector has provided valuable solutions in terms of data acquisition rate, allowing for full spectral (FS) XANES imaging in XRF mode, i.e., where spectroscopic information is available at each pixel in the scanned map. In this paper, the possibilities of SR Cr K-edge FS-XANES imaging in XRF mode using the Maia detector are examined as a new data collection strategy to study the speciation and distribution of alteration products of lead chromate-based pigments in painting materials. The results collected from two micro-samples taken from two Van Gogh paintings and an aged paint model show the possibility to perform FS-XANES imaging in practical time frames (from several minutes to a few hours) by scanning regions of sample sizes of the same order (more than 500 mm). The sensitivity and capabilities of FS-XANES imaging in providing representative chemical speciation information at the microscale (spatial resolution from similar to 2 to 0.6 mm) over the entire scanned area are demonstrated by the identification of Cr(OH) 3, Cr(III) sulfates and/or Cr(III) organometallic compounds in the corresponding phase maps, as alteration products. Comparable Cr-speciation results were obtained by performing equivalent higher spatial resolution SR m-XRF/single-point m-XANES analysis using a more conventional SDD from smaller regions of interest of each sample. Thus, large-area XRF mode FS-XANES imaging (Maia detector) is here proposed as a valuable and complementary data collection strategy in relation to “ zoomed-in” high-resolution m-XRF mapping and single-point m-XANES analysis (SDD).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350650800006 Publication Date 2014-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 28 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (S2-ART project S4DA), GOA “SOLARPAINT” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) project no. G.0C12.13, G.0704.08 and G.01769.09. Support from the Italian projects PRIN (SICH Sustainability in Cultural Heritage: from diagnosis to the development of innovative system for consolidation, cleaning and protection) and PON (ITACHA Italian advanced technologies for cultural heritage applications) is also acknowledged. For the grants received thanks are expressed to ESRF (experiments EC-799, EC-1051) and DESY (experiment H-20000043). Part of this research was undertaken at the XFM beamline at the Australian Synchrotron, Victoria, Australia (experiment M4604). LM acknowledges the CNR for the financial support received in the framework of the Short Term Mobility Programme 2013. Thanks are expressed to Ella Hendriks (Van Gogh Museum, Amsterdam), Muriel Geldof (Cultural Heritage Agency of The Netherlands) and Margje Leeuwestein (Kroller-Muller Museum, Otterlo) for selecting and sharing the information on the cross-section taken from the paintings The Bedroom and Falling Leaves (Les Alyscamps). All the staff of the Van Gogh Museum and the Kroller-Muller Museum are acknowledged for their agreeable cooperation. ; Approved (up) Most recent IF: 3.379; 2015 IF: 3.466  
  Call Number UA @ admin @ c:irua:125475 Serial 5628  
Permanent link to this record
 

 
Author Legrand, S.; Alfeld, M.; Vanmeert, F.; de Nolf, W.; Janssens, K. pdf  doi
openurl 
  Title Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range Type A1 Journal article
  Year 2014 Publication The analyst Abbreviated Journal Analyst  
  Volume 139 Issue 10 Pages 2489-2498  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this paper we demonstrate that by means of scanning reflection FTIR spectroscopy, it is possible to record highly specific distribution maps of organic and inorganic compounds from flat, macroscopic objects with cultural heritage value in a non-invasive manner. Our previous work involved the recording of macroscopic distributions of chemical elements or crystal phases from painted works of art based on respectively macroscopic X-ray fluorescence or X-ray powder diffraction analysis. The use of infrared radiation instead of X-rays has the advantage that more specific information about the nature and distribution of the chemical compounds present can be gathered. This higher imaging specificity represents a clear advantage for the characterization of painting and artist materials. It allows the distribution of metallo-organic compounds to be visualized and permits distinguishing between pigmented materials containing the same key metal. The prototype instrument allows the recording of hyperspectral datacubes by scanning the surface of the artefact in a contactless and sequential single-point measuring mode, while recording the spectrum of reflected infrared radiation. After the acquisition, spectral line intensities of individual bands and chemical distribution maps can be extracted from the datacube to identify the compounds present and/or to highlight their spatial distribution. Not only is information gained on the surface of the investigated artefacts, but also images of overpainted paint layers and, if present, the underdrawing may be revealed in this manner. A current major limitation is the long scanning times required to record these maps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000334734200028 Publication Date 2014-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.885 Times cited 25 Open Access  
  Notes ; ; Approved (up) Most recent IF: 3.885; 2014 IF: 4.107  
  Call Number UA @ admin @ c:irua:116595 Serial 5699  
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K. pdf  doi
openurl 
  Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
  Year 2016 Publication Topics in Current Chemistry Abbreviated Journal Topics Curr Chem  
  Volume 374 Issue 374 Pages 81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Springer international publishing ag Place of Publication Cham Editor  
  Language Wos 000391178900006 Publication Date 2016-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.033 Times cited 50 Open Access  
  Notes ; ; Approved (up) Most recent IF: 4.033  
  Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443  
Permanent link to this record
 

 
Author Janssens, K.; Legrand, S.; van der Snickt, G.; Vanmeert, F. pdf  doi
openurl 
  Title Virtual archaeology of altered paintings : multiscale chemical imaging tools Type A1 Journal article
  Year 2016 Publication Elements Abbreviated Journal Elements  
  Volume 12 Issue 1 Pages 39-44  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint's optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artefacts for future generations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370987700007 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1811-5209 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.038 Times cited 12 Open Access  
  Notes ; ; Approved (up) Most recent IF: 4.038  
  Call Number UA @ admin @ c:irua:132301 Serial 5904  
Permanent link to this record
 

 
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J. url  doi
openurl 
  Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
  Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules  
  Volume 27 Issue 6 Pages 1997-21  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000776369800001 Publication Date 2022-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:188053 Serial 7218  
Permanent link to this record
 

 
Author Avranovich Clerici, E.; De Meyer, S.; Vanmeert, F.; Legrand, S.; Monico, L.; Miliani, C.; Janssens, K. url  doi
openurl 
  Title Multi-scale X-ray imaging of the pigment discoloration processes triggered by chlorine compounds in the Upper Basilica of Saint Francis of Assisi Type A1 Journal article
  Year 2023 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal  
  Volume 28 Issue 16 Pages 6106-6123  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract In this paper, the chromatic alteration of various types of paints, present on mural painting fragments derived from the vaults of The Upper Basilica of Saint Francis of Assisi in Italy (12th-13th century), is studied using synchrotron radiation. Six painted mural fragments, several square centimeters in size, were available for analysis, originating from the ceiling paintings attributed to Cimabue and Giotto; they correspond to originally white, blue/green, and brown/yellow/orange areas showing discoloration. As well as collecting macroscopic X-ray fluorescence and diffraction maps from the entire fragments in the laboratory and at the SOLEIL synchrotron, corresponding paint cross-sections were also analyzed using microscopic X-ray fluorescence and powder diffraction mapping at the PETRA-III synchrotron. Numerous secondary products were observed on the painted surfaces, such as (a) copper tri-hydroxychloride in green/blue areas; (b) corderoite and calomel in vermillion red/cinnabar-rich paints; (c) plattnerite and/or scrutinyite assumed to be oxidation products of (hydro)cerussite (2PbCO(3)center dot Pb(OH)(2)) in the white areas, and (d) the calcium oxalates whewellite and weddellite. An extensive presence of chlorinated metal salts points to the central role of chlorine-containing compounds during the degradation of the 800-year-old paint, leading to, among other things, the formation of the rare mineral cumengeite (21PbCl(2)center dot 20Cu(OH) (2) center dot 6H(2)O).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056388600001 Publication Date 2023-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6; 2023 IF: 2.861  
  Call Number UA @ admin @ c:irua:199265 Serial 8902  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: