toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Felgen, N.; Naydenov, B.; Turner, S.; Jelezko, F.; Reithmaier, J.P.; Popov, C. pdf  url
doi  openurl
  Title Incorporation and study of SiV centers in diamond nanopillars Type A1 Journal article
  Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 64 Issue 64 Pages 64-69  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) We report on the incorporation of SiV centers during hot filament chemical vapor deposition of diamond on top of diamond nanopillars with diameters down to 100 nm. The nanopillars themselves were prepared from nano crystalline diamond films by applying electron beam lithography and inductively coupled plasma reactive ion etching. The optical investigations revealed the presence of ensembles of SiV color centers incorporated during the overgrowth step. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000374608100009 Publication Date 2016-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.561  
  Call Number UA @ lucian @ c:irua:133623 Serial 4193  
Permanent link to this record
 

 
Author Schouteden, K.; Li, Z.; Chen, T.; Song, F.; Partoens, B.; Van Haesendonck, C.; Park, K. url  doi
openurl 
  Title Moire superlattices at the topological insulator Bi2Te3 Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 20278  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We report on the observation of complex superlattices at the surface of the topological insulator Bi2Te3. Scanning tunneling microscopy reveals the existence of two different periodic structures in addition to the Bi2Te3 atomic lattice, which is found to strongly affect the local electronic structure. These three different periodicities are interpreted to result from a single small in-plane rotation of the topmost quintuple layer only. Density functional theory calculations support the observed increase in the DOS near the Fermi level, and exclude the possibility that strain is at the origin of the observed Moire pattern. Exploration of Moire superlattices formed by the quintuple layers of topological insulators holds great potential for further tuning of the properties of topological insulators.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000369543200001 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 14 Open Access  
  Notes ; The research in Leuven and Antwerp has been supported by the Research Foundation – Flanders (FWO, Belgium). The research in Leuven received additional support from the Flemish Concerted Research Action program (BOF KU Leuven, Project No. GOA/14/007). Z.L. thanks the China Scholarship Council for financial support (No. 2011624021). K.S. acknowledges support from the FWO. K.P. was supported by U.S. National Science Foundation DMR-1206354 and San Diego Supercomputer Center (SDSC) Trestles under DMR060009N. T.C. and F.S. acknowledge the financial support of the National Key Projects for Basic Research of China (Grant Nos: 2013CB922103), the National Natural Science Foundation of China (Grant Nos: 91421109, 11522432), the PAPD project, and the Natural Science Foundation of Jiangsu Province (Grant BK20130054). ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:131612 Serial 4208  
Permanent link to this record
 

 
Author Ackerman, M.L.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M.; Singh, S. url  doi
openurl 
  Title Anomalous dynamical behavior of freestanding graphene membranes Type A1 Journal article
  Year 2016 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 117 Issue 117 Pages 126801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report subnanometer, high-bandwidth measurements of the out-of-plane (vertical) motion of atoms in freestanding graphene using scanning tunneling microscopy. By tracking the vertical position over a long time period, a 1000-fold increase in the ability to measure space-time dynamics of atomically thin membranes is achieved over the current state-of-the-art imaging technologies. We observe that the vertical motion of a graphene membrane exhibits rare long-scale excursions characterized by both anomalous mean-squared displacements and Cauchy-Lorentz power law jump distributions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000383171800010 Publication Date 2016-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 46 Open Access  
  Notes ; The authors thank Theodore L. Einstein, Michael F. Shlesinger, and Woodrow L. Shew for their careful reading of the manuscript and insightful comments. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. P. M. T. was supported by the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. M.N.-A. was supported by Iran Science Elites Federation (ISEF) under Grant No. 11/66332. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:137125 Serial 4347  
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M. pdf  doi
openurl 
  Title Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 335601  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000383780500012 Publication Date 2016-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:137155 Serial 4363  
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; da Silva Pereira, T.A.; Milošević, M.V. url  doi
openurl 
  Title Electronic states in an atomistic carbon quantum dot patterned in graphene Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 155417  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We reveal the emergence of metallicKondo clouds in an atomistic carbon quantum dot, realized as a single-atom junction in a suitably patterned graphene nanoflake. Using density functional dynamical mean-field theory (DFDMFT) we show how correlation effects lead to striking features in the electronic structure of our device, and how those are enhanced by the electron-electron interactions when graphene is patterned at the atomistic scale. Our setup provides a well-controlled environment to understand the principles behind the orbital-selective Kondo physics and the interplay between orbital and spin degrees of freedom in carbon-based nanomaterials, which indicate new pathways for spintronics in atomically patterned graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373760900004 Publication Date 2016-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; L.C.'s work is supported by CNPq (Proc. No. 307487/2014-8). Acknowledgment (L.C.) is also made to G. Seifert for discussions and the Department of Theoretical Chemistry at Technical University Dresden for hospitality. T.A.S.P. thanks PRONEX/CNPq/FAPEMAT 850109/2009 for financial support. M.V.M. acknowledges support from Research Foundation-Flanders (FWO), TOPBOF, and the CAPES-PVE program. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133260 Serial 4171  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. url  doi
openurl 
  Title High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 107-110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392036900025 Publication Date 2016-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 267 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 Serial 4339  
Permanent link to this record
 

 
Author Orlova, N.V.; Kuopanportti, P.; Milošević, M.V. url  doi
openurl 
  Title Skyrmionic vortex lattices in coherently coupled three-component Bose-Einstein condensates Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue 2 Pages 023617  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We show numerically that a harmonically trapped and coherently Rabi-coupled three-component Bose-Einstein condensate can host unconventional vortex lattices in its rotating ground state. The discovered lattices incorporate square and zig-zag patterns, vortex dimers and chains, and doubly quantized vortices, and they can be quantitatively classified in terms of a skyrmionic topological index, which takes into account the multicomponent nature of the system. The exotic ground-state lattices arise due to the intricate interplay of the repulsive density-density interactions and the Rabi couplings as well as the ubiquitous phase frustration between the components. In the frustrated state, domain walls in the relative phases can persist between some components even at strong Rabi coupling, while vanishing between others. Consequently, in this limit the three-component condensate effectively approaches a two-component condensate with only density-density interactions. At intermediate Rabi coupling strengths, however, we face unique vortex physics that occurs neither in the two-component counterpart nor in the purely density-density-coupled three-component system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381303800006 Publication Date 2016-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926;2469-9934; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 16 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO). P. K. acknowledges financial support from the Emil Aaltonen Foundation, the Finnish Cultural Foundation, the Magnus Ehrnrooth Foundation, and the Technology Industries of Finland Centennial Foundation. The authors thank R. P. Anderson, E. Babaev, I. O. Cherednikov, V. R. Misko, T. P. Simula, and J. Tempere for useful comments and discussions. ; Approved Most recent IF: 2.925  
  Call Number UA @ lucian @ c:irua:144673 Serial 4688  
Permanent link to this record
 

 
Author De Schutter, B.; Van Stiphout, K.; Santos, N.M.; Bladt, E.; Jordan-Sweet, J.; Bals, S.; Lavoie, C.; Comrie, C.M.; Vantomme, A.; Detavernier, C. pdf  url
doi  openurl
  Title Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111) Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 135305  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) We studied the solid-phase reaction between a thin Nifilm and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situX-ray diffraction and in situRutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide with a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374150200035 Publication Date 2016-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 14 Open Access OpenAccess  
  Notes The authors thank the FWO-vlaanderen, BOF-UGent (under Contract No. “GOA 01G01513”) and the Hercules Foundation (under Project No. “AUGE/09/014”) for financial support. S. Bals acknowledges financial support from European Research Council (ERC Starting Grant No. “#335078-COLOURATOMS”). A. Vantomme thanks the BOF-KULeuven (under Contract No. “GOA/14/007”) and the Joint Science and Technology Collaboration between the FWO (G.0031.14) and NRF (UID88013). The National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Contract No. DE-AC02-98CH10886).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:restricted); Approved Most recent IF: 2.068  
  Call Number c:irua:132897 Serial 4066  
Permanent link to this record
 

 
Author Aghaei, M.; Bogaerts, A. url  doi
openurl 
  Title Particle transport through an inductively coupled plasma torch: elemental droplet evaporation Type A1 Journal article
  Year 2016 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 31 Issue 31 Pages 631-641  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) We studied the transport of copper droplets through an inductively coupled plasma, connected to the sampling cone of a mass spectrometer, by means of a computational model. The sample droplets are followed until they become evaporated. They are inserted as liquid particles from the central inlet and the effects of injection position (i.e. “on” and “off” axis), droplet diameter, as well as mass loading flow rate are investigated. It is shown that more “on-axis” injection of the droplets leads to a more straight path line, so that the droplets move less in the radial direction and are evaporated more on the central axis, enabling a better sample transfer efficiency to the sampler cone. Furthermore, there are optimum ranges of diameters and flow rates, which guarantee the proper position of evaporation along the torch, i.e. not too early, so that the sample can get lost in the torch, and not too late, which reduces the chance of becoming ionized before reaching the sampler.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372857300003 Publication Date 2015-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 21 Open Access  
  Notes The authors are very grateful to H. Lindner for the many fundamental and fruitful discussions. They are also gratefully acknowledge nancial support from the Fonds voor Wetenschappelijk Onderzoek (FWO). Approved Most recent IF: 3.379  
  Call Number c:irua:133240 Serial 4024  
Permanent link to this record
 

 
Author Van der Donck, M.; De Beule, C.; Partoens, B.; Peeters, F.M.; Van Duppen, B. doi  openurl
  Title Piezoelectricity in asymmetrically strained bilayer graphene Type A1 Journal article
  Year 2016 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 3 Issue 3 Pages 035015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We study the electronic properties of commensurate faulted bilayer graphene by diagonalizing the one-particle Hamiltonian of the bilayer system in a complete basis of Bloch states of the individual graphene layers. Our novel approach is very general and can be easily extended to any commensurate graphene-based heterostructure. Here, we consider three cases: (i) twisted bilayer graphene, (ii) bilayer graphene where triaxial stress is applied to one layer and (iii) bilayer graphene where uniaxial stress is applied to one layer. We show that the resulting superstructures can be divided into distinct classes, depending on the twist angle or the magnitude of the induced strain. The different classes are distinguished from each other by the interlayer coupling mechanism, resulting in fundamentally different low-energy physics. For the cases of triaxial and uniaxial stress, the individual graphene layers tend to decouple and we find significant charge transfer between the layers. In addition, this piezoelectric effect can be tuned by applying a perpendicular electric field. Finally, we show how our approach can be generalized to multilayer systems.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000384072500003 Publication Date 2016-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 10 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vl) through aspirant research grants to MVDD, CDB, and BVD. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:137203 Serial 4361  
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Quantum magnetotransport properties of a MoS2 monolayer Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 035406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We study transport properties of a MoS2 monolayer in the presence of a perpendicular magnetic field B. We derive and discuss its band structure and take into account spin and valley Zeeman effects. Compared to a conventional two-dimensional electron gas, these effects lead to new quantum Hall plateaus and new peaks in the longitudinal resistivity as functions of the magnetic field. The field B leads to a significant enhancement of the spin splitting in the conduction band, to a beating of the Shubnikov-de Haas (SdH) oscillations in the low-field regime, and to their splitting in the high-field regime. The Zeeman fields suppress significantly the beating of the SdH oscillations in the low-field regime and strongly enhance their splitting at high fields. The spin and valley polarizations show a similar beating pattern at low fields and are clearly separated at high fields in which they attain a value higher than 90%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000367663500003 Publication Date 2016-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 42 Open Access  
  Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131093 Serial 4233  
Permanent link to this record
 

 
Author De Beule, C.; Ziani, N.T.; Zarenia, M.; Partoens, B.; Trauzettel, B. url  doi
openurl 
  Title Correlation and current anomalies in helical quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 155111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We theoretically investigate the ground-state properties of a quantum dot defined on the surface of a strong three-dimensional time-reversal invariant topological insulator. Confinement is realized by ferromagnetic barriers and Coulomb interaction is treated numerically for up to seven electrons in the dot. Experimentally relevant intermediate interaction strengths are considered. The topological origin of the dot has several consequences: (i) spin polarization increases and the ground state exhibits quantum phase transitions at specific angular momenta as a function of interaction strength, (ii) the onset of Wigner correlations takes place mainly in one spin channel, and (iii) the ground state is characterized by a robust persistent current that changes sign as a function of the distance from the center of the dot.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385242200001 Publication Date 2016-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; We thank F. Cavaliere, F. Crepin, C. Felser, and B. Yan for interesting discussions, and S. Curreli for performing the finite-element calculation of the magnetic field in COMSOL. C.D.B. and M.Z. are supported by the Flemish Research Foundation (FWO). N.T.Z. and B.T. acknowledge financial support by the DFG (SPP1666 and SFB1170 “ToCoTronics”), the Helmholtz Foundation (VITI), and the ENB Graduate School on “Topological Insulators.” ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137234 Serial 4351  
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Pavlovic, S.; Cukaric, N.A.; Tadic, M.Z.; Peeters, F.M. pdf  openurl
  Title On improving accuracy of finite-element solutions of the effective-mass Schrodinger equation for interdiffused quantum wells and quantum wires Type A1 Journal article
  Year 2016 Publication Communications in theoretical physics Abbreviated Journal Commun Theor Phys  
  Volume 65 Issue 1 Pages 105-113  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schrodinger equation. The accuracy of the solution is explored as it varies with the range of the numerical domain. The model potentials are those of interdiffused semiconductor quantum wells and axially symmetric quantum wires. Also, the model of a linear harmonic oscillator is considered for comparison reasons. It is demonstrated that the absolute error of the electron ground state energy level exhibits a minimum at a certain domain range, which is thus considered to be optimal. This range is found to depend on the number of mesh nodes N approximately as alpha(0) log(e)(alpha 1) (alpha N-2), where the values of the constants alpha(0), alpha(1), and alpha(2) are determined by fitting the numerical data. And the optimal range is found to be a weak function of the diffusion length. Moreover, it was demonstrated that a domain range adaptation to the optimal value leads to substantial improvement of accuracy of the solution of the Schrodinger equation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wallingford Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0253-6102; 1572-9494 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.989 Times cited Open Access  
  Notes Approved Most recent IF: 0.989  
  Call Number UA @ lucian @ c:irua:133213 Serial 4216  
Permanent link to this record
 

 
Author Mulkers, J.; Milošević, M.V.; Van Waeyenberge, B. url  doi
openurl 
  Title Cycloidal versus skyrmionic states in mesoscopic chiral magnets Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 214405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) When subjected to the interfacially induced Dzyaloshinskii-Moriya interaction, the ground state in thin ferromagnetic films with high perpendicular anisotropy is cycloidal. The period of this cycloidal state depends on the strength of the Dzyaloshinskii-Moriya interaction. In this work, we have studied the effect of confinement on the magnetic ground state and excited states, and we determined the phase diagram of thin strips and thin square platelets by means of micromagnetic calculations. We show that multiple cycloidal states with different periods can be stable in laterally confined films, where the period of the cycloids does not depend solely on the Dzyaloshinskii-Moriya interaction strength but also on the dimensions of the film. The more complex states comprising skyrmions are also found to be stable, though with higher energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377298600006 Publication Date 2016-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number c:irua:133919 Serial 4081  
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M. doi  openurl
  Title Atomic Collapse in Graphene Type P1 Proceeding
  Year 2016 Publication Nanomaterials For Security Abbreviated Journal  
  Volume Issue Pages 3-17  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) When the charge Z of an atom exceeds the critical value of 170, it will undergo a process called atomic collapse which triggers the spontaneous creation of electron-positron pairs. The high charge requirements have prevented the observation of this phenomenon with real atomic nuclei. However, thanks to the relativistic nature of the carriers in graphene, the same physics is accessible at a much lower scale. The atomic collapse analogue in graphene is realized using artificial nuclei which can be created via the deposition of impurities on the surface of graphene or using charged vacancies. These supercritically charged artificial nuclei trap electrons in a sequence of quasi-bound states which can be observed experimentally as resonances in the local density of states.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor  
  Language Wos 000386506200001 Publication Date 2016-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-94-017-7593-9; 978-94-017-7591-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:138237 Serial 4348  
Permanent link to this record
 

 
Author Han, M.; De Clippeleir, H.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Bott, C.; Murthy, S. doi  openurl
  Title Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification Type A1 Journal article
  Year 2016 Publication Water science and technology Abbreviated Journal  
  Volume 74 Issue 2 Pages 375-384  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) While deammonification of high-strength wastewater in the sludge line of sewage treatment plants has become well established, the potential cost savings spur the development of this technology for mainstream applications. This study aimed at identifying the effect of aeration and organic carbon on the deammonification process. Two 10 L sequencing bath reactors with different aeration frequencies were operated at 25 degrees C. Real wastewater effluents from chemically enhanced primary treatment and high-rate activated sludge process were fed into the reactors with biodegradable chemical oxygen demand/nitrogen (bCOD/N) of 2.0 and 0.6, respectively. It was found that shorter aerobic solids retention time (SRT) and higher aeration frequency gave more advantages for aerobic ammonium-oxidizing bacteria (AerAOB) than nitrite oxidizing bacteria (NOB) in the system. From the kinetics study, it is shown that the affinity for oxygen is higher for NOB than for AerAOB, and higher dissolved oxygen set-point could decrease the affinity of both AerAOB and NOB communities. After 514 days of operation, it was concluded that lower organic carbon levels enhanced the activity of anoxic ammonium-oxidizing bacteria (AnAOB) over denitrifiers. As a result, the contribution of AnAOB to nitrogen removal increased from 40 to 70%. Overall, a reasonably good total removal efficiency of 66% was reached under a low bCOD/N ratio of 2.0 after adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380765500011 Publication Date 2016-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:135032 Serial 8062  
Permanent link to this record
 

 
Author Pant, A.; Torun, E.; Chen, B.; Bhat, S.; Fan, X.; Wu, K.; Wright, D.P.; Peeters, F.M.; Soignard, E.; Sahin, H.; Tongay, S. pdf  doi
openurl 
  Title Strong dichroic emission in the pseudo one dimensional material ZrS3 Type A1 Journal article
  Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 8 Issue 8 Pages 16259-16265  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) Zirconium trisulphide (ZrS3), a member of the layered transition metal trichalcogenides (TMTCs) family, has been studied by angle-resolved photoluminescence spectroscopy (ARPLS). The synthesized ZrS3 layers possess a pseudo one-dimensional nature where each layer consists of ZrS3 chains extending along the b-lattice direction. Our results show that the optical properties of few-layered ZrS3 are highly anisotropic as evidenced by large PL intensity variation with the polarization direction. Light is efficiently absorbed when the E-field is polarized along the chain (b-axis), but the field is greatly attenuated and absorption is reduced when it is polarized vertical to the 1D-like chains as the wavelength of the exciting light is much longer than the width of each 1D chain. The observed PL variation with polarization is similar to that of conventional 1D materials, i.e., nanowires, and nanotubes, except for the fact that here the 1D chains interact with each other giving rise to a unique linear dichroism response that falls between the 2D (planar) and 1D (chain) limit. These results not only mark the very first demonstration of PL polarization anisotropy in 2D systems, but also provide novel insight into how the interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of pseudo-1D materials. Results are anticipated to have an impact on optical technologies such as polarized detectors, near-field imaging, communication systems, and bio-applications relying on the generation and detection of polarized light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384531600018 Publication Date 2016-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 54 Open Access  
  Notes ; S. Tongay gratefully acknowledges support from NSF DMR-1552220. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO postdoctoral fellowship. ; Approved Most recent IF: 7.367  
  Call Number UA @ lucian @ c:irua:144656 Serial 4116  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: