toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De wael, A. url  openurl
  Title Model-based quantitative scanning transmission electron microscopy for measuring dynamic structural changes at the atomic scale Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages xiv, 146 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanomaterialen kunnen uiterst interessante eigenschappen vertonen voor een verscheidenheid aan veelbelovende toepassingen, gaande van zonnecrème tot batterijen voor elektrische auto’s. Een nanometer is een miljard keer kleiner dan een meter. Op deze schaal kunnen de materiaaleigenschappen volledig verschillen van bulkmaterialen op grotere schaal. Bovendien hangen de eigenschappen van nanomaterialen sterk af van hun exacte grootte en vorm. Kleine verschillen in de posities van de atomen, in de grootte-orde van een picometer (nog eens duizend maal kleiner dan een nanometer), kunnen de fysische eigenschappen al drastisch beïnvloeden. Daarom is een betrouwbare kwantificering van de atomaire structuur van kritisch belang om de evolutie naar materiaalontwerp mogelijk te maken en inzicht te verwerven in de relatie tussen de fysische eigenschappen en de structuur van nanomaterialen. Daarnaast kan de atomaire structuur van nanomaterialen ook veranderen in de loop van de tijd ten gevolge van verschillende fysische processen. Het onderzoek dat in deze thesis gepresenteerd wordt, maakt het mogelijk om de dynamische structuurveranderingen van nanomaterialen betrouwbaar te kwantificeren op atomaire schaal door gebruik te maken van raster transmissie elektronenmicroscopie (STEM). Ik heb dit gerealiseerd door methodes te ontwikkelen waarmee ik het aantal atomen “achter elkaar” kan tellen in elke atoomkolom van een nanomateriaal, en dit op basis van beelden opgenomen met een elektronenmicroscoop. Een belangrijk verschil met telmethodes voor de analyse van een enkel beeld is het schatten van de kans dat een atoomkolom atomen zal verliezen of bijkrijgen van het ene naar het andere beeld in de tijdreeks. Deze kwantitatieve methode kan het ontrafelen van de tijdsafhankelijke structuur-eigenschappen relatie van een nanomateriaal mogelijk maken, wat uiteindelijk kan leiden tot efficiënter design en productie van nanomaterialen voor innovatieve toepassingen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179514 Serial 6870  
Permanent link to this record
 

 
Author Arslan Irmak, E. url  openurl
  Title Modelling three-dimensional nanoparticle transformations based on quantitative transmission electron microscopy Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 169 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanomaterials are materials that have at least one dimension in the nanometer length scale, which corresponds to a billionth of a meter. When three dimensions are confined to the nanometer scale, these materials are referred to as nanoparticles. These materials are of great interest since they exhibit unique physical and chemical properties that cannot be observed for bulk systems. Due to their unique and often superior properties, nanomaterials have become central in the field of electronics, catalysis, and medicine. Moreover, they are expected to be one of the most promising systems to tackle many challenges that our society is facing, such as reducing the emission of greenhouse gases and finding effective treatments for cancer. The unique properties of nanomaterials are linked to their size, shape, structure, and composition. If one is able to measure the positions of the atoms, their chemical nature, and the bonding between them, it becomes possible to predict the physicochemical properties of nanomaterials. In this manner, the development of novel nanostructures can be triggered. However, the morphology and structure of nanomaterials are highly sensitive to the conditions for relevant applications, such as elevated temperatures or intense light illumination. Furthermore, any small change in the local structure at higher temperatures or pressures may significantly modify their performance. Hence, three-dimensional (3D) characterization of nanomaterials under application-relevant conditions is important in designing them with desired functional properties for specific applications. Among different structural characterization approaches, transmission electron microscopy (TEM) is one of the most efficient and versatile tools to investigate the structure and composition of nanomaterials since it can provide atomically resolved images, which are sensitive to the local 3D structure of the investigated sample. However, TEM only provides two-dimensional (2D) images of the 3D nanoparticle, which may lead to an incomplete understanding of their structure-property relationship. The most known and powerful technique for the 3D characterization of nanomaterials is electron tomography, where the images of a nanostructured material taken from different directions are mathematically combined to retrieve its 3D structure. Although these experiments are already state-of-the-art, 3D characterization by TEM is typically performed under ultra-high vacuum conditions and at room temperature. Such conditions are unfortunately not sufficient to understand transformations during synthesis or applications of nanomaterials. This limitation can be overcome by in situ TEM where external stimuli, such as heat, gas, and liquids, can be controllably introduced inside the TEM using specialized holders. However, there are some technical limitations to successful perform 3D in situ electron tomography experiments. For example, the long acquisition time required to collect a tilt series limits this technique when one wants to observe 3D dynamic changes with atomic resolution. A solution for this problem is the estimation of the 3D structure of nanomaterials from 2D projection images acquired along a single viewing direction. For this purpose, annular dark field scanning TEM (ADF STEM) imaging mode provides a valuable tool for quantitative structural investigation of nanomaterials from single 2D images due to its thickness and mass sensitivity. For quantitative analysis, an ADF STEM image is considered as a 2D array of pixels where relative variation of pixel intensity values is proportional to the total number of atoms and the atomic number of the elements in the sample. By applying advanced statistical approaches to these images, structural information, such as the number or types of atoms, can be retrieved with high accuracy and precision. The outcome can then be used to build a 3D starting model for energy minimization by atomistic simulations, for example, molecular dynamics simulations or the Monte Carlo method. However, this methodology needs to be further evaluated for in situ experiments. This thesis is devoted to presenting robust approaches to accurately define the 3D atomic structure of nanoparticles under application-relevant conditions and understand the mechanism behind the atomic-scale dynamics in nanoparticles in response to environmental stimuli.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188295 Serial 7063  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Schryvers, D.; Verwerft, M. pdf  url
doi  openurl
  Title Characterization of (Ti,Mo,Cr)C nanoprecipitates in an austenitic stainless steel on the atomic scale Type A1 Journal article
  Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 164 Issue Pages 90-98  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanometer sized (Ti,Mo,Cr)C (MX-type) precipitates that grew in a 24% cold worked Ti-stabilized austenitic stainless steel (grade DIN 1.4970, member of the 15-15Ti austenitic stainless steels) after heat treatment were fully characterized with transmission electron microscopy (TEM), probe corrected high angle annular dark field scanning transmission electron microscopy (HR-HAADF STEM), and atom probe tomography (APT). The precipitates shared the cube-on-cube orientation with the matrix and were facetted on {111} planes, yielding octahedral and elongated octahedral shapes. The misfit dislocations were believed to have Burgers vectors a/6<112> which was verified by geometrical phase analysis (GPA) strain mapping of a matrix-precipitate interface. The dislocations were spaced five to seven atomic

planes apart, on average slightly wider than expected for the lattice parameters of steel and TiC. Quantitative atom probe tomography analysis of the precipitates showed that precipitates were significantly enriched in Mo, Cr and V, and that they were hypostoichiometric with respect to C. These findings were consistent with a reduced lattice parameter. The precipitates were found primarily on Shockley

partial dislocations originating from the original perfect dislocation network. These novel findings could contribute to the understanding of how TiC nanoprecipitates interact with point defects and matrix dislocations. This is essential for the application of these Ti-stabilized steels in high temperature environments or fast spectrum nuclear fission reactors.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456902800008 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 2 Open Access Not_Open_Access: Available from 12.10.2020  
  Notes This work was supported by ENGIE [contract number 2015-AC- 007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07- 051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program in development at SCKCEN, Belgium. Special thanks to Dr. H. Mezerji and Dr. T. Altantzis for the work on the FEI Titan microscope.We also want to thank Ms. J. Burns for the help on the FIB and Dr. Y. Wu at CAES for conducting the APT measurements. Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @c:irua:154873UA @ admin @ c:irua:154873 Serial 5060  
Permanent link to this record
 

 
Author Schouteden, K.; Zeng, Y.-J.; Lauwaet, K.; Romero, C.P.; Goris, B.; Bals, S.; Van Tendeloo, G.; Lievens, P.; Van Haesendonck, C. pdf  url
doi  openurl
  Title Band structure quantization in nanometer sized ZnO clusters Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 5 Issue 9 Pages 3757-3763  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanometer sized ZnO clusters are produced in the gas phase and subsequently deposited on clean Au(111) surfaces under ultra-high vacuum conditions. The zinc blende atomic structure of the approximately spherical ZnO clusters is resolved by high resolution scanning transmission electron microscopy. The large band gap and weak n-type conductivity of individual clusters are determined by scanning tunnelling microscopy and spectroscopy at cryogenic temperatures. The conduction band is found to exhibit clear quantization into discrete energy levels, which can be related to finite-size effects reflecting the zero-dimensional confinement. Our findings illustrate that gas phase cluster production may provide unique possibilities for the controlled fabrication of high purity quantum dots and heterostructures that can be size selected prior to deposition on the desired substrate under controlled ultra-high vacuum conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000317859400026 Publication Date 2013-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 13 Open Access  
  Notes FWO; Hercules; COUNTATOMS Approved Most recent IF: 7.367; 2013 IF: 6.739  
  Call Number UA @ lucian @ c:irua:108518 Serial 219  
Permanent link to this record
 

 
Author Zanaga, D.; Bleichrodt, F.; Altantzis, T.; Winckelmans, N.; Palenstijn, W.J.; Sijbers, J.; de Nijs, B.; van Huis, M.A.; Sanchez-Iglesias, A.; Liz-Marzan, L.M.; van Blaaderen, A.; Joost Batenburg, K.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Quantitative 3D analysis of huge nanoparticle assemblies Type A1 Journal article
  Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 8 Issue 8 Pages 292-299  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (up) Nanoparticle assemblies can be investigated in 3 dimensions using electron tomography. However, it is not straightforward to obtain quantitative information such as the number of particles or their relative position. This becomes particularly difficult when the number of particles increases. We propose a novel approach in which prior information on the shape of the individual particles is exploited. It improves the quality of the reconstruction of these complex assemblies significantly. Moreover, this quantitative Sparse Sphere Reconstruction approach yields directly the number of particles and their position as an output of the reconstruction technique, enabling a detailed 3D analysis of assemblies with as many as 10 000 particles. The approach can also be used to reconstruct objects based on a very limited number of projections, which opens up possibilities to investigate beam sensitive assemblies where previous reconstructions with the available electron tomography techniques failed.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. sara.bals@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366911700028 Publication Date 2015-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 34 Open Access OpenAccess  
  Notes The authors acknowledge financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS, ERC Advanced Grant # 291667 HierarSACol and ERC Advanced Grant 267867 – PLASMAQUO), the European Union under the FP7 (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI and N. 312483 ESTEEM2), and from the Netherlands Organisation for Scientific Research (NWO), project number 639.072.005 and NWO CW 700.57.026. Networking support was provided by COST Action MP1207.; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367  
  Call Number c:irua:131062 c:irua:131062 Serial 3979  
Permanent link to this record
 

 
Author Altantzis, T.; Zanaga, D.; Bals, S. pdf  url
doi  openurl
  Title Advanced electron tomography of nanoparticle assemblies Type A1 Journal article
  Year 2017 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 119 Issue 119 Pages 38001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoparticle assemblies have attracted enormous scientific interest during the last

years, due to their unique properties compared to those of their building blocks. To understand

the origin of these properties and to establish the connection with their structure, a detailed and

quantitative structural characterization is essential. Transmission electron microscopy has been

widely used to investigate nano-assemblies. However, TEM images only correspond to a twodimensional

projection of a three-dimensional object. Therefore, in order to obtain the necessary

3D structural information electron tomography has to be applied. By means of advanced electron

tomography, both qualitative and quantitative information can be obtained, which can be used

for detailed theoretical studies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415019400023 Publication Date 2017-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 8 Open Access OpenAccess  
  Notes We would like to thank the colleagues who have contributed to this work over the years, including L. M. Liz- Marzan, M. Grzelczak, A. Sanchez-Iglesias, D. Vanmaekelbergh, M. P. Boneschanscher, W. H. Evers, J. J. Geuchies, B. Goris, A. de Backer, S. van Aert, M.-P. Pileni, Z. Yang, K. J. Batenburg, J. Sijbers, F. Bleichrodt, W. J. Palenstijn, A. van Blaaderen, M. A. van Huis, F. M. Peeters, N. Winckelmans and D. Wang. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915 G.0374.13 and funding of a postdoctoral grant to TA). SB and DZ acknowledge funding from the European Research Council, ERC grant No. 335078 – Colouratom. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 1.957  
  Call Number EMAT @ emat @c:irua:146096UA @ admin @ c:irua:146096 Serial 4733  
Permanent link to this record
 

 
Author Wu, L.; Kolmeijer, K.E.; Zhang, Y.; An, H.; Arnouts, S.; Bals, S.; Altantzis, T.; Hofmann, J.P.; Costa Figueiredo, M.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO₂ reduction conditions Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 9 Pages 4835-4844  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (up) Nanoparticle modified electrodes constitute an attractive way to tailor-make efficient carbon dioxide (CO2) reduction catalysts. However, the restructuring and sintering processes of nanoparticles under electrochemical reaction conditions not only impedes the widespread application of nanoparticle catalysts, but also misleads the interpretation of the selectivity of the nanocatalysts. Here, we colloidally synthesized metallic copper (Cu) and silver (Ag) nanoparticles with a narrow size distribution (<10%) and utilized them in electrochemical CO2 reduction reactions. Monometallic Cu and Ag nanoparticle electrodes showed severe nanoparticle sintering already at low overpotential of -0.8 V vs. RHE, as evidenced by ex situ SEM investigations, and potential-dependent variations in product selectivity that resemble bulk Cu (14% for ethylene at -1.3 V vs. RHE) and Ag (69% for carbon monoxide at -1.0 V vs. RHE). However, by co-deposition of Cu and Ag nanoparticles, a nanoparticle stabilization effect was observed between Cu and Ag, and the sintering process was greatly suppressed at CO2 reducing potentials (-0.8 V vs. RHE). Furthermore, by varying the Cu/Ag nanoparticle ratio, the CO2 reduction reaction (CO2RR) selectivity towards methane (maximum of 20.6% for dense Cu-2.5-Ag-1 electrodes) and C-2 products (maximum of 15.7% for dense Cu-1-Ag-1 electrodes) can be tuned, which is attributed to a synergistic effect between neighbouring Ag and Cu nanoparticles. We attribute the stabilization of the nanoparticles to the positive enthalpies of Cu-Ag solid solutions, which prevents the dissolution-redeposition induced particle growth under CO2RR conditions. The observed nanoparticle stabilization effect enables the design and fabrication of active CO2 reduction nanocatalysts with high durability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000628024200011 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 24 Open Access OpenAccess  
  Notes This work is funded by the Strategic UU-TU/e Alliance project ‘Joint Centre for Chemergy Research’ (budget holder B. M. W.). S. B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S. A. and T. A. acknowledge funding from the University of Antwerp Research fund (BOF). We thank Eric Hellebrand (Faculty of Geosciences, Utrecht University) for the assistance in SEM measurements. Dr Ramon Oord (ARC Chemical Building Blocks Consortium, Faculty of Science, Utrecht University) is acknowledged for assisting with the grazing incidence XRD measurements; sygma Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:176723 Serial 6737  
Permanent link to this record
 

 
Author Agrawal, H.; Patra, B.K.; Altantzis, T.; De Backer, A.; Garnett, E.C. url  doi
openurl 
  Title Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 12 Issue 7 Pages 8788-8794  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (up) Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing

dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after selfassembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515214300101 Publication Date 2020-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; H2020 Research Infrastructures, 731019 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 14846 ; The work at AMOLF is part of the research program of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). This work was supported by the NWO VIDI grant (project no. 14846). The authors would like to thank Reinout Jaarsma and Dr. Sven Askes for helping with the XPS measurements. A.D.B. acknowledges a postdoctoral grant from the research foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement no. 731019 EUSMI. Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number EMAT @ emat @c:irua:167770 Serial 6398  
Permanent link to this record
 

 
Author Payne, L.M.; Albrecht, W.; Langbein, W.; Borri, P. url  doi
openurl 
  Title The optical nanosizer – quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoparticles are widely utilised for a range of applications, from catalysis to medicine, requiring accurate knowledge of their size and shape. Current techniques for particle characterisation are either not very accurate or time consuming and expensive. Here we demonstrate a rapid and quantitative method for particle analysis based on measuring the polarisation-resolved optical extinction cross-section of hundreds of individual nanoparticles using wide-field microscopy, and determining the particle size and shape from the optical properties. We show measurements on three samples consisting of nominally spherical gold nanoparticles of 20 nm and 30 nm diameter, and gold nanorods of 30 nm length and 10 nm diameter. Nanoparticle sizes and shapes in three dimensions are deduced from the measured optical cross-sections at different wavelengths and light polarisation, by solving the inverse problem, using an ellipsoid model of the particle polarisability in the dipole limit. The sensitivity of the method depends on the experimental noise and the choice of wavelengths. We show an uncertainty down to about 1 nm in mean diameter, and 10% in aspect ratio when using two or three color channels, for a noise of about 50 nm<sup>2</sup>in the measured cross-section. The results are in good agreement with transmission electron microscopy, both 2D projection and tomography, of the same sample batches. Owing to its combination of experimental simplicity, ease of access to statistics over many particles, accuracy, and geometrical particle characterisation in 3D, this “optical nanosizer” method has the potential to become the technique of choice for quality control in next-generation particle manufacturing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558928800022 Publication Date 2020-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes This work was supported by a Welsh Government Life Sciences Bridging Fund (grant LSBF/R6-005) and by the UK EPSRC (grant no. EP/I005072/1 and EP/M028313/1). PB acknowledges the Royal Society for her Wolfson research merit award (grant WM140077). The authors acknowledge funding from the European Commission (Grant EUSMI E191000350). WA acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU’s Horizon 2020 program (Grant 797153, SOPMEN), and Sara Bals for supporting the STEM measurements. The bright-field TEM was performed by Thomas Davies at Cardiff University. We acknowledge Attilio Zilli for helpful discussions and contributions in calculating the relative field strengths in the illumination and finite-element simulation of cross-sections shown in the ESI.† We acknowledge Iestyn Pope for technical support of the optical equipment. Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ lucian @c:irua:170485 Serial 6397  
Permanent link to this record
 

 
Author Wang, D.; Hermes, M.; Najmr, S.; Tasios, N.; Grau-Carbonell, A.; Liu, Y.; Bals, S.; Dijkstra, M.; Murray, C.B.; van Blaaderen, A. url  doi
openurl 
  Title Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages 6001-6012  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties. Nanoplatelets can be used as anisotropic building blocks for constructing novel optoelectronic materials. Here, Wang et al. show a route of assembling nanoplatelets with controllable positional and orientational order in three dimensions facilitated by the surface tension of drying emulsion droplets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000867312100031 Publication Date 2022-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 7 Open Access OpenAccess  
  Notes We thank A. Kadu, M. Chiappini, F. Rabouw, S. Paliwal, X. Xie, C. Xia and Z. Wang for fruitful discussions. D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Y.L. acknowledges the Sustainability project between the faculties of Science and Geosciences of Utrecht University. M.D. acknowledges financial support from European Research Council (Grant No. ERC-2019-ADV-H2020 884902 SoftML). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. C.B.M. acknowledges support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. The authors acknowledge the EM square center at Utrecht University for the access to the microscopes. Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:191387 Serial 7214  
Permanent link to this record
 

 
Author Geboes, B.; Ustarroz, J.; Sentosun, K.; Vanrompay, H.; Hubin, A.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Electrochemical behavior of electrodeposited nanoporous Pt catalysts for the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 6 Issue 6 Pages 5856-5864  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (up) Nanoporous Pt based nanoparticles (NP's) are promising fuel cell catalysts due to their high surface area and increased electrocatalytic activity toward the ORR In this work a direct double-pulse electrodeposition procedure at room temperature is applied to obtain dendritic Pt structures (89 nm diameter) with a high level of porosity (ca. 25%) and nanopores of 2 nm protruding until the center of the NP's. The particle morphology is characterized using aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and electron tomography (ET) combined with field emission scanning electron microscopy (FESEM) and macroscopic electrochemical measurements to assess their activity and stability toward the ORR. Macroscopic determination of the active surface area through hydrogen UPD measurements in combination with FESEM and ET showed that a considerable amount of the active sites inside the pores of the low overpotential NP's were accessible to oxygen species. As a result of this accessibility, up to a 9-fold enhancement of the Pt mass corrected ORR activity at 0.85 V vs RHE was observed at the highly porous structures. After successive potential cycling upward to 1.5 V vs RHE in a deaerated HClO4 solution a negative shift of 71 mV in half-wave potential occurred. This decrease in ORR activity could be correlated to the partial collapse of the nanopores, visible in both the EASA values and 3D ET reconstructions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382714000025 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 48 Open Access OpenAccess  
  Notes ; The Quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish Government. The authors acknowledge financial support from the Fonds Wetenschappelijk Onderzoek in Flanders (FWOAL708). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_Sara Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:135703 Serial 4302  
Permanent link to this record
 

 
Author Ustarroz, J.; Geboes, B.; Vanrompay, H.; Sentosun, K.; Bals, S.; Breugelmans, T.; Hubin, A. url  doi
openurl 
  Title Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 16168-16177  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (up) Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity towards the oxygen reduction reaction (ORR). Herein, we report on the infuence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (HUPD) and compared for the rst time to high angle annular dark eld scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of Pt roughened spheroids, which provide large roughness factor (Rf ) but low mass-speci c electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores protruding to the center of the structure. At the expense of smaller Rf , the obtained EASA values of these structures are in the range of these of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a signi cant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results to macroscopic electrochemical parameters indicated that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly a ected by the measurement itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401782500028 Publication Date 2017-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 24 Open Access OpenAccess  
  Notes Jon Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). S.B. and T.B. acknowledge the University of Antwerp for nancial support in the frame of a GOA project. H.V. gratefully acknowledges nancial support by the Flemish Fund for Scienti c Research (FWO Vlaanderen). All the authors acknowledge Laurens Stevaert for his contribution to the work presented in this manuscript. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:142345UA @ admin @ c:irua:142345 Serial 4552  
Permanent link to this record
 

 
Author Verbist, K.; Vasiliev, A.L.; Van Tendeloo, G. pdf  doi
openurl 
  Title Y2O3 inclusions in YBa2Cu3O7-\delta thin films Type A1 Journal article
  Year 1995 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 66 Issue 11 Pages 1424-1426  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoprecipitates in YBa2Cu3O7‐δ(YBCO) thin films have been identified by high resolution electron microscopy (HREM) as Y2O3 inclusions; they correspond to two different types of epitaxial relationships namely [001] or [110] parallel to the YBCOc‐axis. The [001] precipitates are situated near the YBCO surface, in the bulk and on the YBCO film/substrate interface. The [110] precipitates have only been observed at the surface. Literature data have been reinterpreted.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1995QL57700042 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 28 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 54/144 Q2 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 9/35 Q2 #  
  Call Number UA @ lucian @ c:irua:13324 Serial 3564  
Permanent link to this record
 

 
Author Schnepf, M.J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Förster, S.; Bals, S.; König, T.A.F.; Fery, A. pdf  url
doi  openurl
  Title Nanorattles with tailored electric field enhancement Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 9 Issue 9 Pages 9376-9385  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanorattles are metallic core–shell particles with core and shell separated by a dielectric spacer. These

nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high

electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry

owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions

and commensurate variations in enhancement factor. We present a novel synthetic approach for

the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric

nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission

electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering

cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference

time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of

high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy

(STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of

structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic

applications where a defined and robust unit cell is crucial.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405387100015 Publication Date 2017-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 69 Open Access OpenAccess  
  Notes This study was funded by the European Research Council under grant Template-assisted assembly of METAmaterials using MECHanical instabilities (METAMECH) ERC-2012-StG 306686. This work was also supported by the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed). M. T. wants to acknowledge funding by the Elite Network of Bavaria, the Bavarian Ministry of State according to the Bavarian elite promotion act (BayEFG), as well as the Alexander von Humboldt Foundation for a Feodor-Lynen Research Fellowship. S. B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T. A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. We thank Ken Harris from the National Research Council Canada for valuable discussion of the manuscript. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @ c:irua:144797UA @ admin @ c:irua:144797 Serial 4631  
Permanent link to this record
 

 
Author Hinterding, S.O.M.; Berends, A.C.; Kurttepeli, M.; Moret, M.-E.; Meeldijk, J.D.; Bals, S.; van der Stam, W.; de Donega, C.M. url  doi
openurl 
  Title Tailoring Cu+ for Ga3+ cation exchange in Cu2-xS and CuInS2 nanocrystals by controlling the Ga precursor chemistry Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 12880-12893  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoscale cation exchange (CE) has resulted in colloidal nanomaterials that are unattainable by direct synthesis methods. Aliovalent CE is complex and synthetically challenging because the exchange of an unequal number of host and guest cations is required to maintain charge balance. An approach to control aliovalent CE reactions is the use of a single reactant to both supply the guest cation and extract the host cation. Here, we study the application of GaCl3-L complexes [L = trioctylphosphine (TOP), triphenylphosphite (TPP), diphenylphosphine (DPP)] as reactants in the exchange of Cu+ for Ga3+ in Cu2-xS nanocrystals. We find that noncomplexed GaCl3 etches the nanocrystals by S2- extraction, whereas GaCl3-TOP is unreactive. Successful exchange of Cu+ for Ga3+ is only possible when GaCl3 is complexed with either TPP or DPP. This is attributed to the pivotal role of the Cu2-xS-GaCl3-L activated complex that forms at the surface of the nanocrystal at the onset of the CE reaction, which must be such that simultaneous Ga3+ insertion and Cu+ extraction can occur. This requisite is only met if GaCl3 is bound to a phosphine ligand, with a moderate bond strength, to allow facile dissociation of the complex at the nanocrystal surface. The general validity of this mechanism is demonstrated by using GaCl3-DPP to convert CuInS2 into (Cu,Ga,In)S-2 nanocrystals, which increases the photoluminescence quantum yield 10 -fold, while blue -shifting the photoluminescence into the NIR biological window. This highlights the general applicability of the mechanistic insights provided by our work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000500650000061 Publication Date 2019-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 27 Open Access OpenAccess  
  Notes ; S.O.M.H., W.v.d.S., A.C.B., and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Nos. ECHO.712.012.0001 and ECHO.712.014.001. S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant No. 815128-REALNANO). S.O.M.H. is supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation Programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. DFT calculations were carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. This work was sponsored by NWO Physical Sciences for the use of supercomputer facilities. The authors thank Jessi van der Hoeven for EDS and TEM measurements. ; sygma Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:165149 Serial 6324  
Permanent link to this record
 

 
Author Kirilenko, D.A.; Dideykin, A.T.; Van Tendeloo, G. url  doi
openurl 
  Title Measuring the corrugation amplitude of suspended and supported graphene Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 23 Pages 235417-235417,5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoscale corrugation is a fundamental property of graphene arising from its low-dimensional nature. It places a fundamental limit to the conductivity of graphene and influences its properties. However the degree of the influence of the corrugation has not been well established because of the little knowledge about its spectrum in suspended graphene. We present a transmission electron microscopy technique that enables us to measure the average corrugation height and length. We applied the technique also to measure the temperature dependence of the corrugation. The difference in corrugation between suspended and supported graphene has been illustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297764700003 Publication Date 2011-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93629 Serial 1971  
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Galvita, V.V.; Poelman, H.; Marin, G.B.; Van Tendeloo, G. doi  openurl
  Title Local environment of Fe dopants in nanoscale Fe : CeO2-x oxygen storage material Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 3196-3204  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoscale Fe : CeO2-x oxygen storage material for the process of chemical looping has been investigated by advanced transmission electron microscopy and electron energy-loss spectroscopy before and after a model looping procedure, consisting of redox cycles at heightened temperature. Separately, the activity of the nanomaterial has been tested in a toluene total oxidation reaction. The results show that the material consists of ceria nanoparticles, doped with single Fe atoms and small FeOx clusters. The iron ion is partially present as Fe3+ in a solid solution within the ceria lattice. Furthermore, enrichment of reduced Fe2+ species is observed in nanovoids present in the ceria nanoparticles, as well as at the ceria surface. After chemical looping, agglomeration occurs and reduced nanoclusters appear at ceria grain boundaries formed by sintering. These clusters originate from surface Fe2+ aggregation, and from bulk Fe3+, which “leaks out” in reduced state after cycling to a slightly more agglomerated form. The activity of Fe : CeO2 during the toluene total oxidation part of the chemical looping cycle is ensured by the dopant Fe in the Fe1-xCexO2 solid solution, and by surface Fe species. These measurements on a model Fe : CeO2-x oxygen storage material give a unique insight into the behavior of dopants within a nanosized ceria host, and allow to interpret a plethora of (doped) cerium oxide-based reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000349473200046 Publication Date 2015-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 17 Open Access  
  Notes Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:125299 Serial 1828  
Permanent link to this record
 

 
Author Poelma, R.H.; Fan, X.; Hu, Z.-Y.; Van Tendeloo, G.; van Zeijl, H.W.; Zhang, G.Q. pdf  doi
openurl 
  Title Effects of Nanostructure and Coating on the Mechanics of Carbon Nanotube Arrays Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 26 Issue 26 Pages 1233-1242  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoscale materials are one of the few engineering materials that can be grown from the bottom up in a controlled manner. Here, the effects of nanostructure and nanoscale conformal coating on the mechanical behavior of vertically aligned carbon nanotube (CNT) arrays through experiments and simulation are systematically investigated. A modeling approach is developed and used to quantify the compressive strength and modulus of the CNT array under large deformation. The model accounts for the porous

nanostructure, which contains multiple CNTs with random waviness, van der Waals interactions, fracture strain, contacts, and frictional forces. CNT array micropillars are grown and their porous nanostructure is controlled by the infi ltration and deposition of thin conformal coatings using chemical vapor deposition. Flat-punch nanoindentation experiments reveal signifi cant changes in material properties as a function of coating thickness. The simulations explain the experimental results and show the novel failure transition regime that changes from collective CNT buckling toward structural collapse due to fracture. The compressive strength and the elastic

modulus increase exponentially as a function of the coating thickness and demonstrate a unique dependency on the CNT waviness. More interestingly, a design rule is identifi ed that predicts the optimum coating thickness for porous materials.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371078100010 Publication Date 2016-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 17 Open Access  
  Notes The research leading to the TEM/HAADF-STEM results received funding from the EC Framework 7 Program ESTEEM2 (Reference 312483). We wish to acknowledge the support of the Else Kooi Laboratory for their assistance during the clean room processing.; esteem2_ta Approved Most recent IF: 12.124  
  Call Number c:irua:130060 c:irua:130060 Serial 3996  
Permanent link to this record
 

 
Author Nord, M.; Semisalova, A.; Kákay, A.; Hlawacek, G.; MacLaren, I.; Liersch, V.; Volkov, O.M.; Makarov, D.; Paterson, G.W.; Potzger, K.; Lindner, J.; Fassbender, J.; McGrouther, D.; Bali, R. pdf  url
doi  openurl
  Title Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets Type A1 Journal article
  Year 2019 Publication Small Abbreviated Journal Small  
  Volume Issue Pages 1904738  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000495563400001 Publication Date 2019-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 2 Open Access  
  Notes Deutsche Forschungsgemeinschaft, BA5656/1‐1 ; Engineering and Physical Sciences Research Council, EP/M009963/1 ; Approved Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:164059 Serial 5376  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Sree, S.P.; Gobechiya, E.; Kirschhock, C.E.A.; Van Tendeloo, G.; Martens, J.A. pdf  url
doi  openurl
  Title Anatase TiO2nanoparticle coating on porous COK-12 platelets as highly active and reusable photocatalysts Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 46678-46685  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoscale TiO2 photocatalysts are widely used for biomedical applications, self-cleaning processes and wastewater treatments. The impregnation/deposition of TiO2 nanoparticles is indispensable for facile handling and separation as well as the improvement of their photocatalytic performance. In the present study, ordered mesoporous COK-12 silica thin platelets with a high-aspect-ratio and rough surfaces are demonstrated as a potential nanoporous support for homogeneous TiO2 nanoparticle coatings with high loading up to 16.7 wt%. The photocatalytic composite of COK-12 platelets and TiO2 nanoparticles is characterized in detail by HRSEM, SAXS, XRD, N2 physisorption analysis, solid-state UV-vis spectroscopy, HAADF-STEM, EDX analysis, and electron tomography. HAADF-STEM-EDX and electron tomography studies reveal a homogeneous dispersion of nanosized TiO2 nanoparticles over COK-12 platelets. The final composite material with anatase TiO2 nanoparticles that demonstrate a blueshifted semiconductor band gap energy of 3.2 eV coated on a highly porous COK-12 support shows exceptional photocatalytic catalytic activity for photodegradation of organic dyes (rhodamine 6G and methylene blue) and an organic pollutant (1-adamantanol) under UV light radiation, outperforming the commercial P25 TiO2 (Degussa) catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377254800070 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 6 Open Access  
  Notes L. H. W. and S. T. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number (12M1415N) and (G004613N), respectively. J. A.Mgratefully acknowledge nancial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgium Government (IAP-PAI networking). Approved Most recent IF: 3.108  
  Call Number c:irua:133775 Serial 4074  
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title Biocompatible Zr-based nanoscale MOFs coated with modified poly(epsilon-caprolactone) as anticancer drug carriers Type A1 Journal article
  Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut  
  Volume 509 Issue 509 Pages 208-218  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(epsilon-caprolactone) with d-alpha-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity. The drugs physical state and release rate was studied at 37 degrees C using Simulated Body Fluid. It was found that the drug release depends on the interaction between the MOFs and the drugs while the controlled release rates can be attributed to the microencapsulated formulations. The in vitro antitumor activity was assessed using HSC-3 (human oral squamous carcinoma; head and neck) and U-87 MG (human glioblastoma grade IV; astrocytoma) cancer cells. Cytotoxicity studies for both cell lines showed that the polymer coated, drug loaded MOFs exhibited better anticancer activity compared to free paclitaxel and cisplatin solutions at different concentrations.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000378949800022 Publication Date 2016-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.649 Times cited 37 Open Access  
  Notes This work is performed within the framework of the IAP-P7/05. S.T. Gratefully acknowledges the Fund for Scientific Research Flanders (FWO). K.L. acknowledges the financial support from the Ghent University BOF postdoctoral grant 01P06813T and UGent GOA Grant 01G00710. Approved Most recent IF: 3.649  
  Call Number c:irua:134039 Serial 4088  
Permanent link to this record
 

 
Author Friedrich, T. url  openurl
  Title Quantifying atomic structures using neural networks from 4D scanning transmission electron microscopy (STEM) datasets Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 127 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanoscience and nanotechnologies are of immense importance across many fields of science and for numerous practical applications. In this context, scanning transmission electron microscopy (STEM) and 4D-STEM are among the most powerful characterization methods at the atomic scale. Annular dark-field (ADF)-STEM can be used to quantify atomic structures in 3D by counting atoms based on a single projection image. In 4D-STEM a full diffraction pattern is recorded at each scan step, which enables more dose efficient imaging and the utilization of various advanced imaging modalities, which can however be complex and slow. Both, STEM and 4D-STEM suffer from noise and distortions. In the first section of this work the most important of these distortions are discussed and it is shown how image restoration with a dedicated convolutional neural network (CNN) can be beneficial for atomic structure quantifications in ADF-STEM. In the second part, a new 4D-STEM imaging method real-time-integrated-centre-of-mass (riCOM) is introduced, which is a very dose-efficient and fast algorithm that enables unprecedented live-imaging capabilities for 4D-STEM. It is based on the integrated centre-of-mass approach, but is reformulated with variable integration ranges and optional filters, which allows for a tunable contrast transfer function. This enables the imaging of light and heavy elements simultaneously at very low doses. In the third part another new 4D-STEM method, coined AIRPI (AI-assisted rapid phase imaging) is introduced, which uses a CNN to retrieve a patch of the specimen's phase image for each scan position, based on the diffraction patterns in the probe's immediate surroundings. This allows also live imaging in principle and surpasses comparable state-of-the-art algorithms in terms of resolution also at low doses. Different atomic columns can be reliably distinguished over a wide range of atomic numbers, enabling a very good image interpretability. Further, AIRPI can recover low frequency image components, which preserves thickness information. This is a unique and important feature which could make quantitative 4D-STEM feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196826 Serial 8919  
Permanent link to this record
 

 
Author Koblischka, M.R.; Winter, M.; Das, P.; Koblischka-Veneva, A.; Muralidhar, M.; Wolf, T.; Babu, N.H.; Turner, S.; Van Tendeloo, G.; Hartmann, U. pdf  doi
openurl 
  Title Observation of nanostripes and -clusters in (Nd, EuGd)Ba2Cu3Ox superconductors Type A1 Journal article
  Year 2009 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 469 Issue 4 Pages 168-176  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanostripes are observed in melt-textured and single-crystalline samples of the ternary light rare earth (LRE)-compound (Nd0.33Eu0.33Gd0.33)Ba2Cu3Ox (NEG) by means of atomic force microscopy, scanning tunnelling microscopy at ambient conditions, combined with transmission electron microscopy and electron backscatter diffraction. This enables the observation of several important features: The nanostripes are formed by chains of nanoclusters, representing the LRE/Ba substitution. The dimensions of the nanostripes are similar for both types of NEG samples. The periodicity of the nanostripes is found to range between 40 and 60 nm; the shape of the nanoclusters is elliptic with a major axis length between 300 and 500 nm and a minor axis length of about 30150 nm. The stripes are filling effectively the space in between the twin boundaries. Concerning the flux pinning, the nanoclusters are the important pinning sites, not the nanostripes themselves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000264657100008 Publication Date 2009-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.404; 2009 IF: 0.723  
  Call Number UA @ lucian @ c:irua:76403 Serial 2418  
Permanent link to this record
 

 
Author Sun, Z.; Madej, E.; Wiktor; Sinev, I.; Fischer, R.A.; Van Tendeloo, G.; Muhler, M.; Schuhmann, W.; Ventosa, E. pdf  doi
openurl 
  Title One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 21 Issue 21 Pages 16154-16161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li-ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene through high-pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon-coated iron oxide, while the graphene acts as a high-surface-area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative-electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363890700036 Publication Date 2015-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 8 Open Access  
  Notes Approved Most recent IF: 5.317; 2015 IF: 5.731  
  Call Number UA @ lucian @ c:irua:129510 Serial 4218  
Permanent link to this record
 

 
Author Tarasov, A.; Hu, Z.-Y.; Meledina, M.; Trusov, G.; Goodilin, E.; Van Tendeloo, G.; Dobrovolsky, Y. pdf  url
doi  openurl
  Title One-Step Microheterogeneous Formation of Rutile@Anatase Core–Shell Nanostructured Microspheres Discovered by Precise Phase Mapping Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 4443-4450  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanostructured core−shell microspheres with a rough rutile core and a thin anatase shell are synthesized via a one-step heterogeneous templated hydrolysis process of TiCl4 vapor on the aerosol water−air interface. The rutile-in-anatase core−shell structure has been evidenced by different electron microscopy techniques, including electron energy-loss spectroscopy and 3D electron tomography. A new mechanism for the formation of a crystalline rutile core inside the anatase shell is proposed based on a statistical evaluation of a large number of electron microscopy data. We found that the control over the TiCl4 vapor pressure, the ratio between TiCl4 and H2O aerosol, and the reaction conditions plays a crucial role in the formation of the core−shell morphology and increases the yield of nanostructured microspheres.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395616200038 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 4 Open Access OpenAccess  
  Notes Z.-Y.H., M. M., and G.V.T. acknowledge support from the the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @ c:irua:141720 Serial 4472  
Permanent link to this record
 

 
Author Khazzan, S.; Bessais, L.; Van Tendeloo, G.; Mliki, N. pdf  doi
openurl 
  Title Correlation between the nanocrystalline Sm(Fe,Mo)12 and its out of equilibrium phase Sm(Fe,Mo)10 Type A1 Journal article
  Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 363 Issue Pages 125-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanostructured Sm-Fe-Mo semi-hard magnetic material exhibiting enhanced magnetic properties can be produced by ball milling followed by recrystallization. Milled samples were annealed for 30 min in a vacuum at different temperatures (T-A) between 700 and 1190 degrees C. The effects of heat treatment and Mo content on structural and magnetic property changes have been investigated by means of X-ray diffraction using the Rietvekl method, transmission electron microscopy and magnetic measurements. For samples annealed at T-A > 900 degrees C the tetragonal ThMn12-type structure is identified, while for 700 < T-A < 900 degrees C a new out of equilibrium P6/mmm type structure was found as the major phase. This novel nanocrystalline phase has never been synthesized before. The correspondent stoichiometry is determined on the basis of the vacancy model. The Rietveld analysis gives a stoichiometry ratio equal to 1:10, for the out of equilibrium hexagonal phase, which is described with three crystallographic transition metal sites: 3g is fully occupied, 61 occupation is limited to hexagons surrounding the Fe dumbbell pairs 2e. We have performed a magnetic and structural study of nanocrystalline metastable P6/mrnm Sm(Fe1-xMo)(10), correlated with structural transformation towards its equilibrium derivative 14/mrnm Sm(Fe1-xMo)(12). A maximum of the coercive field H-C (H-C > 5 kOe) has been observed for the new hexagonal P6/rnmm phase suggesting that nanocrystalline Sm(Fe,Mo)(10), is a semi hard material, and is potential candidate for magnetic recording. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000335393900021 Publication Date 2014-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.63; 2014 IF: 1.970  
  Call Number UA @ lucian @ c:irua:117139 Serial 524  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M. pdf  url
doi  openurl
  Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
  Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414151800068 Publication Date 2017-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:145926 Serial 4710  
Permanent link to this record
 

 
Author Komulainen, S.; Verlackt, C.; Pursiainen, J.; Lajunen, M. pdf  doi
openurl 
  Title Oxidation and degradation of native wheat starch by acidic bromate in water at room temperature Type A1 Journal article
  Year 2013 Publication Carbohydrate Polymers Abbreviated Journal Carbohyd Polym  
  Volume 93 Issue 1 Pages 73-80  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract (up) Native wheat starch was oxidized by benign acidic bromate in water at room temperature. HPLC-ELSD study indicated that starch degraded in the course of oxidation but it still had a polymeric structure characterized by H-1, C-13, HSQC and HMBC NMR measurements. Products were generally water-soluble fragments but the use of a short reaction time and dilute reaction mixture yielded water-insoluble products. Titration of the products showed, that the increase of the starch content and reaction time increased the content of carbonyl and carboxyl groups in the range of 0.5-2.5% and 1.7-17.2%, respectively, in the product fragments. A mechanism for the oxidation reaction was proposed. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316512900011 Publication Date 2012-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-8617; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.811 Times cited 32 Open Access  
  Notes Approved Most recent IF: 4.811; 2013 IF: 3.916  
  Call Number UA @ lucian @ c:irua:108288 Serial 2537  
Permanent link to this record
 

 
Author Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis Type A1 Journal article
  Year 2019 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 12 Issue 1 Pages 33-39  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Natural organisms contain rich elements and naturally optimized smart structures, both of which have inspired various innovative concepts and designs in human society. In particular, several natural organisms have been used as element sources to synthesize low-cost and environmentally friendly electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries, which are clean energy devices. However, to date, no naturally optimized smart structures have been employed in the synthesis of ORR catalysts, including graphene-based materials. Here, we demonstrate a novel strategy to synthesize graphene-graphite films (GGFs) by heating butterfly wings coated with FeCl3 in N-2, in which the full power of natural organisms is utilized. The wings work not only as an element source for GGF generation but also as a porous supporting structure for effective nitrogen doping, two-dimensional spreading, and double-face exposure of the GGFs. These GGFs exhibit a half-wave potential of 0.942 V and a H2O2 yield of < 0.07% for ORR electrocatalysis; these values are comparable to those for the best commercial Pt/C and all previously reported ORR catalysts in alkaline media. This two-in-one strategy is also successful with cicada and dragonfly wings, indicating that it is a universal, green, and cost-effective method for developing high-performance graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453629900004 Publication Date 2018-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited 7 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Drs Qiang Wang and Wenjuan Yuan for useful discussions. This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21601136 and 11404016), the National Program for Thousand Young Talents of China, Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology. This work also made use of the resources of the National Center for Electron Microscopy in Beijing. ; Approved Most recent IF: 7.354  
  Call Number UA @ admin @ c:irua:156210 Serial 5265  
Permanent link to this record
 

 
Author Shi, H.; Frenzel, J.; Martinez, G.T.; Van Rompaey, S.; Bakulin, A.; Kulkova, A.; Van Aert, S.; Schryvers, D. pdf  doi
openurl 
  Title Site occupation of Nb atoms in ternary Ni-Ti-Nb shape memory alloys Type A1 Journal article
  Year 2014 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 74 Issue Pages 85-95  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Nb occupancy in the austenite B2-NiTi matrix and Ti2Ni phase in NiTiNb shape memory alloys was investigated by aberration-corrected scanning transmission electron microscopy and precession electron diffraction. In both cases, Nb atoms were found to prefer to occupy the Ti rather than Ni sites. A projector augmented wave method within density functional theory was used to calculate the atomic and electronic structures of the austenitic B2-NiTi matrix phase and the Ti2Ni precipitates both with and without addition of Nb. The obtained formation energies and analysis of structural and electronic characteristics explain the preference for Ti sites for Nb over Ni sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000338621400009 Publication Date 2014-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 21 Open Access  
  Notes Approved Most recent IF: 5.301; 2014 IF: 4.465  
  Call Number UA @ lucian @ c:irua:118334 Serial 3028  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: