|
Record |
Links |
|
Author |
Poelma, R.H.; Fan, X.; Hu, Z.-Y.; Van Tendeloo, G.; van Zeijl, H.W.; Zhang, G.Q. |
|
|
Title |
Effects of Nanostructure and Coating on the Mechanics of Carbon Nanotube Arrays |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Advanced functional materials |
Abbreviated Journal |
Adv Funct Mater |
|
|
Volume |
26 |
Issue |
26 |
Pages |
1233-1242 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Nanoscale materials are one of the few engineering materials that can be grown from the bottom up in a controlled manner. Here, the effects of nanostructure and nanoscale conformal coating on the mechanical behavior of vertically aligned carbon nanotube (CNT) arrays through experiments and simulation are systematically investigated. A modeling approach is developed and used to quantify the compressive strength and modulus of the CNT array under large deformation. The model accounts for the porous
nanostructure, which contains multiple CNTs with random waviness, van der Waals interactions, fracture strain, contacts, and frictional forces. CNT array micropillars are grown and their porous nanostructure is controlled by the infi ltration and deposition of thin conformal coatings using chemical vapor deposition. Flat-punch nanoindentation experiments reveal signifi cant changes in material properties as a function of coating thickness. The simulations explain the experimental results and show the novel failure transition regime that changes from collective CNT buckling toward structural collapse due to fracture. The compressive strength and the elastic
modulus increase exponentially as a function of the coating thickness and demonstrate a unique dependency on the CNT waviness. More interestingly, a design rule is identifi ed that predicts the optimum coating thickness for porous materials. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000371078100010 |
Publication Date |
2016-01-04 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1616-301X |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
12.124 |
Times cited |
17 |
Open Access |
|
|
|
Notes |
The research leading to the TEM/HAADF-STEM results received funding from the EC Framework 7 Program ESTEEM2 (Reference 312483). We wish to acknowledge the support of the Else Kooi Laboratory for their assistance during the clean room processing.; esteem2_ta |
Approved |
Most recent IF: 12.124 |
|
|
Call Number |
c:irua:130060 c:irua:130060 |
Serial |
3996 |
|
Permanent link to this record |