toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Parrilla, M.; Slosse, A.; Van Echelpoel, R.; Montiel, F.N.; Langley, A.R.; Van Durme, F.; De Wael, K. url  doi
openurl 
  Title Rapid on-site detection of illicit drugs in smuggled samples with a portable electrochemical device Type A1 Journal article
  Year (down) 2022 Publication Chemosensors Abbreviated Journal  
  Volume 10 Issue 3 Pages 108-116  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The smuggling of illicit drugs urges the development of new tools for rapid on-site identification in cargos. Current methods rely on presumptive color tests and portable spectroscopic techniques. However, these methods sometimes exhibit inaccurate results due to commonly used cutting agents, the colorful nature of the sample or because the drugs are smuggled in common goods. Interestingly, electrochemical sensors can deal with these specific problems. Herein, an electrochemical device is presented that uses affordable screen-printed electrodes for the electrochemical profiling of several illicit drugs by square-wave voltammetry (SWV). The identification of the illicit compound is based on the oxidation potential of the analyte. Hence, a library of electrochemical profiles is built upon the analysis of illicit drugs and common cutting agents. This library allows the design of a tailor-made script that enables the identification of each drug through a user-friendly interface (laptop or mobile phone). Importantly, the electrochemical test is compared by analyzing 48 confiscated samples with other portable devices based on Raman and FTIR spectroscopy as well as a laboratory standard method (i.e., gas chromatography-mass spectrometry). Overall, the electrochemical results, obtained through the analysis of different samples from confiscated cargos at an end-user site, present a promising alternative to current methods, offering low-cost and rapid testing in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000775813500001 Publication Date 2022-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187766 Serial 8920  
Permanent link to this record
 

 
Author de Jong, M.; Van Echelpoel, R.; Langley, A.R.; Eliaerts, J.; van den Berg, J.; De Wilde, M.; Somers, N.; Samyn, N.; De Wael, K. pdf  url
doi  openurl
  Title Real-time electrochemical screening of cocaine in lab and field settings with automatic result generation Type A1 Journal article
  Year (down) 2022 Publication Drug testing and analysis Abbreviated Journal  
  Volume 14 Issue 8 Pages 1471-1481  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak-recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak-recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple 'smuggled', colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000790965700001 Publication Date 2022-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187767 Serial 8921  
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; Ceto, X.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Resolution of opiate illicit drugs signals in the presence of some cutting agents with use of a voltammetric sensor array and machine learning strategies Type A1 Journal article
  Year (down) 2022 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 357 Issue Pages 131345  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract In the present work, the resolution and quantification of mixtures of different opiate compounds in the presence of common cutting agents using an electronic tongue (ET) is evaluated. More specifically, ternary mixtures of heroin, morphine and codeine were resolved in the presence of caffeine and paracetamol. To this aim, an array of three carbon screen-printed electrodes were modified with different ink-like solutions of graphite, cobalt (II) phthalocyanine and palladium, and their responses towards the different drugs were characterized by means of square wave voltammetry (SWV). Developed sensors showed a good performance with good linearity at the mu M level, LODs between 1.8 and 5.3 mu M for the 3 actual drugs, and relative standard deviation (RSD) ca. 2% for over 50 consecutive measurements. Next, a quantitative model that allowed the identification and quantification of the individual substances from the overlapped voltammograms was built using partial least squares regression (PLS) as the modeling tool. With this approach, quantification of the different drugs was achieved at the mu M level, with a total normalized root mean square error (NRMSE) of 0.084 for the test subset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000745113900003 Publication Date 2021-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:185446 Serial 8922  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Pelmuş, M.; Gorun, S.M.; De Wael, K. pdf  url
doi  openurl
  Title The role of singlet oxygen, superoxide, hydroxide, and hydrogen peroxide in the photoelectrochemical response of phenols at a supported highly fluorinated zinc phthalocyanine Type A1 Journal article
  Year (down) 2022 Publication ChemElectroChem Abbreviated Journal  
  Volume 9 Issue 6 Pages e202200108-10  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Photoelectrochemical (PEC) sensing of phenolic compounds using singlet oxygen (1O2)-generating photocatalysts has emerged as a powerful detection tool. However, it is currently not known how experimental parameters, such as pH and applied potential, influence the generation of reactive oxygen species (ROS) and their photocurrents. In this article, the PEC response was studied over the 6 to 10 pH range using a rotating (ring) disk (R(R)DE) set-up in combination with quenchers, to identify the ROS formed upon illumination of a supported photosensitizer, F64PcZn. The photocurrents magnitude depended on the applied potential and the pH of the buffer solution. The anodic responses were caused by the oxidation of O2.−, generated due to the quenching of 1O2 with −OH and the reaction of 3O2 with [F64Pc(3-)Zn]. The cathodic responses were assigned to the reduction of 1O2 and O2.−, yielding H2O2. These insights may benefit 1O2 – based PEC sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000773947300003 Publication Date 2022-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187524 Serial 8926  
Permanent link to this record
 

 
Author Filez, M.; Feng, J.-Y.; Minjauw, M.M.; Solano, E.; Poonkottil, N.; Van Daele, M.; Ramachandran, R.K.; Li, C.; Bals, S.; Poelman, H.; Detavernier, C.; Dendooven, J.; Filez, M.; Minjauw, M.; Solano, E.; Poonkottil, N.; Li, C.; Bals, S.; Dendooven, J. pdf  url
doi  openurl
  Title Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle properties Type A1 Journal article
  Year (down) 2022 Publication Chemistry of materials Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) typically employs metal precursors and co-reactant pulses to deposit thin films in a layer-by-layer fashion. While conventional ABAB-type ALD sequences implement only two functionalities, namely, a metal source and ligand exchange agent, additional functionalities have emerged, including etching and reduction agents. Herein, we construct gas-phase sequences-coined as ALD+-with complex-ities reaching beyond the classic ABAB-type ALD by freely combining multiple functionalities within irregular pulse schemes, e.g., ABCADC. The possibilities of such combinations are explored as a smart strategy to tailor bimetallic thin films and nanoparticle (NP) properties. By doing so, we demonstrate that bimetallic thin films can be tailored with target thickness and through the full compositional range, while the morphology can be flexibly modulated from thin films to NPs by shuI 1ing the pulse sequence. These complex pulse schemes are expected to be broadly applicable but are here explored for Pd-Ru bimetallic thin films and NPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823205700001 Publication Date 2022-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes This research was funded by the Research Foundation, Flanders (FWO) , and the Special Research Fund BOF of Ghent University (GOA 01G01019) . M.F. and M.M.M. acknowledge the FWO for a postdoctoral research fellowship (1280621N) . N.P. acknowledges the European Union's Horizon 2020 research and innovation program under the Marie Skiodowska-Curie grant agreement no. 765378. For the GISAXS measurements, the author s received funding from the European Community's Transnational Access Program CALIPSOplus. E.S. acknowledges the Spanish project RTI2018-093996-B-C32 MICINN/FEDER funds. Air Liquide is acknowledged for supporting this research. The authors acknowledge SOLEIL for the provision of synchrotron radiation facilities and would like to thank Dr. Alessandro Coati for assistance in using beamline SiXS. The GIWAXS experiments were performed at NCD-SWEET beamline at ALBA Synchrotron with the collaboration of ALBA staff . Approved no  
  Call Number UA @ admin @ c:irua:189541 Serial 8928  
Permanent link to this record
 

 
Author Blundo, E.; Faria, P.E., Jr.; Surrente, A.; Pettinari, G.; Prosnikov, M.A.; Olkowska-Pucko, K.; Zollner, K.; Wozniak, T.; Chaves, A.; Kazimierczuk, T.; Felici, M.; Babinski, A.; Molas, M.R.; Christianen, P.C.M.; Fabian, J.; Polimeni, A. url  doi
openurl 
  Title Strain-Induced Exciton Hybridization in WS2 Monolayers Unveiled by Zeeman-Splitting Measurements Type A1 Journal article
  Year (down) 2022 Publication Physical review letters Abbreviated Journal  
  Volume 129 Issue 6 Pages 067402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Mechanical deformations and ensuing strain are routinely exploited to tune the band gap energy and to enhance the functionalities of two-dimensional crystals. In this Letter, we show that strain leads also to a strong modification of the exciton magnetic moment in WS2 monolayers. Zeeman-splitting measurements under magnetic fields up to 28.5 T were performed on single, one-layer-thick WS2 microbubbles. The strain of the bubbles causes a hybridization of k-space direct and indirect excitons resulting in a sizable decrease in the modulus of they factor of the ground-state exciton. These findings indicate that strain may have major effects on the way the valley number of excitons can be used to process binary information in two-dimensional crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000842367600007 Publication Date 2022-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007; 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:198538 Serial 8936  
Permanent link to this record
 

 
Author Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Donnelly, R.F.; De Wael, K. pdf  url
doi  openurl
  Title Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose Type A1 Journal article
  Year (down) 2022 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 249 Issue Pages 123695-123699  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract According to the World Health Organization, about 422 million people worldwide have diabetes, with 1.5 million deaths directly attributed each year. Therefore, there is still a need to effectively monitor glucose in diabetic patients for proper management. Recently, wearable patches based on microneedle (MN) sensors provide minimally invasive analysis of glucose through the interstitial fluid (ISF) while exhibiting excellent correlation with blood glucose. Despite many advances in wearable electrochemical sensors, long-term stability and continuous monitoring remain unsolved challenges. Herein, we present a highly stable electrochemical biosensor based on a redox mediator bilayer consisting of Prussian blue and iron-nickel hexacyanoferrate to increase the long-term stability of the readout coupled with a hollow MN array as a sampling unit for ISF uptake. First, the enzymatic biosensor is developed by using affordable screen-printed electrodes (SPE) and optimized for long-term stability fitting the physiological range of glucose in ISF (i.e., 2.5–22.5 mM). In parallel, the MN array is assessed for minimally invasive piercing of the skin. Subsequently, the biosensor is integrated with the MN array leaving a microfluidic spacer that works as the electrochemical cell. Interestingly, a microfluidic channel connects the cell with an external syringe to actively and rapidly withdraw ISF toward the cell. Finally, the robust MN sensing patch is characterized during in vitro and ex vivo tests. Overall, affordable wearable MN-based patches for the continuous monitoring of glucose in ISF are providing an advent in wearable devices for rapid and life-threatening decision-making processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000826441800002 Publication Date 2022-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:188955 Serial 8955  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids Type A1 Journal article
  Year (down) 2022 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 197 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000719366400003 Publication Date 2021-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:183086 Serial 8957  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title On the kinetics and equilibria of plasma-based dry reforming of methane Type A1 Journal article
  Year (down) 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 405 Issue Pages 126630  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma reactors are interesting for gas-based chemical conversion but the fundamental relation between the plasma chemistry and selected conditions remains poorly understood. Apparent kinetic parameters for the loss and formation processes of individual components of gas conversion processes, can however be extracted by performing experiments in an extended residence time range (2–75 s) and fitting the gas composition to a firstorder kinetic model of the evolution towards partial chemical equilibrium (PCE). We specifically investigated the differences in kinetic characteristics and PCE state of the CO2 dissociation and CH4 reforming reactions in a dielectric barrier discharge reactor (DBD), how these are mutually affected when combining both gases in the dry reforming of methane (DRM) reaction, and how they change when a packing material (non-porous SiO2) is added to the reactor. We find that CO2 dissociation is characterized by a comparatively high reaction rate of 0.120 s−1 compared to CH4 reforming at 0.041 s−1; whereas CH4 reforming reaches higher equilibrium conversions, 82% compared to 53.6% for CO2 dissociation. Combining both feed gases makes the DRM reaction to proceed at a relatively high rate (0.088 s−1), and high conversion (75.4%) compared to CO2 dissociation, through accessing new chemical pathways between the products of CO2 and CH4. The addition of the packing material can also distinctly influence the conversion rate and position of the equilibrium, but its precise effect depends strongly on the gas composition. Comparing different CO2:CH4 ratios reveals the delicate balance of the combined chemistry. CO2 drives the loss reactions in DRM, whereas CH4 in the mixture suppresses back reactions. As a result, our methodology provides some of the insight necessary to systematically tune the conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621197700003 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; grant number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:172458 Serial 6411  
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y. pdf  url
doi  openurl
  Title Entropic and enthalpic factors determining the thermodynamics and kinetics of carbon segregation from transition metal nanoparticles Type A1 Journal article
  Year (down) 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 806-813  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The free energy surface (FES) for carbon segregation from nickel nanoparticles is obtained from advanced molecular dynamics simulations. A suitable reaction coordinate is developed that can distinguish dissolved carbon atoms from segregated dimers, chains and junctions on the nanoparticle surface. Because of the typically long segregation time scale (up to ms), metadynamics simulations along the developed reaction coordinate are used to construct FES over a wide range of temperatures and carbon concentrations. The FES revealed the relative stability of different stages in the segregation process, and free energy barriers and rates of the individual steps could then be calculated and decomposed into enthalpic and entropic contributions. As the carbon concentration in the nickel nanoparticle increases, segregated carbon becomes more stable in terms of both enthalpy and entropy. The activation free energy of the reaction also decreases with the increase of carbon concentration, which can be mainly attributed to entropic effects. These insights and the methodology developed to obtain them improve our understanding of carbon segregation process across materials science in general, and the nucleation and growth of carbon nanotube in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500084 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes Scientific Research, 19H02415 ; JSPS, 18J22727 ; Japan Society for the Promotion of Science; JSPS; JSPS; FWO; Research Foundation; Flanders, 12ZI420N ; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for 812 Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @c:irua:172452 Serial 6421  
Permanent link to this record
 

 
Author Attri, P.; Kaushik, N.K.; Kaushik, N.; Hammerschmid, D.; Privat-Maldonado, A.; De Backer, J.; Shiratani, M.; Choi, E.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells Type A1 Journal Article
  Year (down) 2021 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 182 Issue Pages 1724-1736  
  Keywords A1 Journal Article; Lysozyme; Cold atmospheric plasma; Cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This study aims to modify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect. We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichroism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural modification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment, which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were observed in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme significantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have potential as a new cancer cell killing drug.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675794700005 Publication Date 2021-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.671 Times cited Open Access OpenAccess  
  Notes Japan Society for the Promotion of Science; We gratefully acknowledge the European H2020 Marie SkłodowskaCurie Actions Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. NK thanks to National Research Foundation of Korea under Ministry of Science and ICT (NRF2021R1C1C1013875) of Korean Government. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:178813 Serial 6792  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title Lipid Oxidation: Role of Membrane Phase-Separated Domains Type A1 Journal Article
  Year (down) 2021 Publication Journal Of Chemical Information And Modeling Abbreviated Journal J Chem Inf Model  
  Volume 61 Issue 6 Pages 2857-2868  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Lipid oxidation is associated with several inflammatory and neurodegenerative diseases, but many questions to unravel its effects on biomembranes are still open due to the complexity of the topic. For instance, recent studies indicated that phase-separated domains can have a significant effect on membrane function. It is reported that domain interfaces are “hot spots” for pore formation, but the underlying mechanisms and the effect of oxidation-induced phase separation on membranes remain elusive. Thus, to evaluate the permeability of the membrane coexisting of liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed atomistic molecular dynamics simulations. Specifically, we studied the membrane permeability of nonoxidized or oxidized homogeneous membranes (single-phase) and at the Lo/Ld domain interfaces of heterogeneous membranes, where the Ld domain is composed of either oxidized or nonoxidized lipids. Our simulation results reveal that the addition of only 1.5% of lipid aldehyde molecules at the Lo/Ld domain interfaces of heterogeneous membranes increases the membrane permeability, whereas their addition at homogeneous membranes does not have any effect. This study is of interest for a better understanding of cancer treatment methods based on oxidative stress (causing among others lipid oxidation), such as plasma medicine and photodynamic therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000669541400034 Publication Date 2021-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.76 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1200219N ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; We thank Universidade Federal do ABC for providing the computational resources needed for completion of this work and CAPES for the scholarship granted. M.Y. acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 3.76  
  Call Number PLASMANT @ plasmant @c:irua:179766 Serial 6806  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year (down) 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Felipe Montiel, N.; Parrilla, M.; Beltrán, V.; Nuyts, G.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title The opportunity of 6-monoacetylmorphine to selectively detect heroin at preanodized screen printed electrodes Type A1 Journal Article
  Year (down) 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume Issue Pages 122005  
  Keywords A1 Journal Article; Antwerp X-ray Analysis, Electrochemistry and Speciation (AXES) ;  
  Abstract The illicit consumption of heroin is an increasing concern in our society. For this reason, rapid analytical methods to seize heroin samples in the field are of paramount importance to hinder drug trafficking, and thus prevent the availability of heroin in the drug market. The present work reports on the enriched electrochemical fingerprint of heroin, allowing its selective detection in street samples, based on the use of electrochemical pretreated screen printed electrodes (p-SPE). The voltammetric identification is built on two oxidation peaks of both heroin and its degradation product 6-monoacetylmorphine (6-MAM), generated in alkaline conditions. Interestingly, an anodic pretreatment of the screen printed electrodes (SPE) shifts the peak potential of paracetamol (the most encountered cutting agent in heroin seizures), allowing the detection of 6-MAM peak, overlapping with the paracetamol signal in the case of untreated SPE. Subsequently, the characterization of the p-SPE with scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, Raman and Fourier transform infrared (FTIR) spectroscopy is provided to demonstrate local changes on the surface of the electrode. From an analytical perspective, p-SPE provide higher sensitivity (0.019 μA μM-1), excellent reproducibility (6-MAM, RSD = 2.85%, and heroin RSD = 0.91%, n = 5) and lower limits of detection (LOD) (5.2 μM) in comparison to untreated SPE. The proposed protocol which integrates a tailor-made script is interrogated against common cutting agents, and finally, validated with the screening of 14 street samples, also analyzed by standard methods. Besides, a comparison with portable spectroscopic techniques on the confiscated samples shows the better performance of the electrochemical strategy. Overall, this sensing approach offers promising results for the rapid on-site profiling of suspicious heroin samples, also in the presence of paracetamol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000656959000033 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 833787, BorderSens. The authors acknowledge financial support from the University of Antwerp (IOF). Approved Most recent IF: 4.162  
  Call Number AXES @ axes @c:irua:174844 Serial 6663  
Permanent link to this record
 

 
Author Kleinhans, K.; Hallemans, M.; Huysveld, S.; Thomassen, G.; Ragaert, K.; Van Geem, K.M.; Roosen, M.; Mys, N.; Dewulf, J.; De Meester, S. pdf  doi
openurl 
  Title Development and application of a predictive modelling approach for household packaging waste flows in sorting facilities Type A1 Journal Article
  Year (down) 2021 Publication Waste Management Abbreviated Journal Waste Management  
  Volume 120 Issue Pages 290-302  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Household packaging waste sorting facilities consist of complex networks of processes to separate diverse waste streams. These facilities are a key first step to re-enter materials into the recycling chain. However, so far there are no general methods to predict the performance of such sorting facilities, i.e.

how efficiently the heterogeneous packaging waste is sorted into fractions with value for further recycling. In this paper, a model of the material flow in a sorting facility is presented, which allows changing the incoming waste composition, split factors on the sorting units as well as the setup of the sorting facility. The performance of the sorting facility is judged based on the purity of the output material (grade) and the recovery of the input material. A validation of the model was performed via a case study on Belgian post-consumer packaging waste with a selection of typical waste items that can be found in this stream. Moreover, the model was used to predict the possible sorting qualities of future Belgian postconsumer packaging waste after an extension of the allowed waste packaging items in the waste stream. Finally, a sensitivity analysis was performed on the split factors, which are a key data source in the model. Overall, the developed model is flexible and able to predict the performance of packaging waste sorting facilities as well as support waste management and design for recycling decisions, including future

design of packaging, to ensure proper sorting and separation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956053X ISBN Additional Links  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes We would like to thank Indaver (https://www.indaver.com/been/home/), especially Erik Huybrechts, Eric Goddaert, Eline Meyvis and Erik Moerman, for their great support on this research. Furthermore, we would like to acknowledge the help of Colruyt (https://www.colruyt.be/) and CEFLEX (https://ceflex.eu/) for the pre-studies for this research. Moreover, we would like to show our appreciation for the financial support by the Catalisti-ICON project (HBC.2018.0262) MATTER (Mechanical and Thermochemical Recycling of mixed plastic waste) funded by Flanders Innovation & Entrepreneurship (VLAIO). We also thank the Interreg 2 Seas program PlastiCity that is co-funded by the European Regional Development Fund under subsidy contract No. 2S05-021 and the province of East-Flanders for funding this research. Approved Most recent IF: NA  
  Call Number ENM @ enm @ Serial 6667  
Permanent link to this record
 

 
Author Marinov, D.; de Marneffe, J.-F.; Smets, Q.; Arutchelvan, G.; Bal, K.M.; Voronina, E.; Rakhimova, T.; Mankelevich, Y.; El Kazzi, S.; Nalin Mehta, A.; Wyndaele, P.-J.; Heyne, M.H.; Zhang, J.; With, P.C.; Banerjee, S.; Neyts, E.C.; Asselberghs, I.; Lin, D.; De Gendt, S. url  doi
openurl 
  Title Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers Type A1 Journal article
  Year (down) 2021 Publication npj 2D Materials and Applications Abbreviated Journal npj 2D Mater Appl  
  Volume 5 Issue 1 Pages 17  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H<sub>2</sub>plasma to clean the surface of monolayer WS<sub>2</sub>grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS<sub>2</sub>in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H<sub>2</sub>S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS<sub>2</sub>devices can be maintained by the combination of H<sub>2</sub>plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H<sub>2</sub>and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613258900001 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Daniil Marinov has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 752164. Ekaterina Voronina, Yuri Mankelevitch, and Tatyana Rakhimova are thankful to the Russian Science Foundation (RSF) for financial support (Grant No. 16-12-10361). This study was carried out using the equipment of the shared research facilities of high-performance computing resources at Lomonosov Moscow State University and the computational resources and services of the HPC core facility CalcUA of the University of Antwerp, and VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government. Patrick With gratefully acknowledges imec’s CTO office for financial support during his stay at imec. The authors thank Mr. Surajit Sutar (imec) for his help during sample electrical characterization, and Patrick Verdonck for lab processing. Jean-François de Marneffe thank Prof. Simone Napolitano from the Free University of Brussels for useful discussions on irreversibly adsorbed polymer layers, and Cédric Huyghebaert (imec) for his continuous support in the framework of the Graphene FET Flagship core project. All authors acknowledge the support of imec’s pilot line and materials characterization and analysis (MCA) group, namely Jonathan Ludwig, Stefanie Sergeant, Thomas Nuytten, Olivier Richard, and Thierry Conard. Finally, Daniil Marinov thank Mikhail Krishtab (imec/KU Leuven) for his help in selecting the optimal plasma etch system for this work. Part of this project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 649953. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:175871 Serial 6671  
Permanent link to this record
 

 
Author Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W. url  doi
openurl 
  Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
  Year (down) 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue Pages acsnano.0c09746  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634569100101 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 10 Open Access OpenAccess  
  Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:175872 Serial 6673  
Permanent link to this record
 

 
Author Jardali, F.; Van Alphen, S.; Creel, J.; Ahmadi Eshtehardi, H.; Axelsson, M.; Ingels, R.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title NOxproduction in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation Type A1 Journal article
  Year (down) 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 4 Pages 1748-1757  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The fast growing world population demands food to survive, and nitrogen-based fertilizers are essential to ensure sufficient food production. Today, fertilizers are mainly produced from non-sustainable fossil fuels<italic>via</italic>the Haber–Bosch process, leading to serious environmental problems. We propose here a novel rotating gliding arc plasma, operating in air, for direct NO<sub>x</sub>production, which can yield high nitrogen content organic fertilizers without pollution associated with ammonia emission. We explored the efficiency of NO<sub>x</sub>production in a wide range of feed gas ratios, and for two arc modes: rotating and steady. When the arc is in steady mode, record-value NO<sub>x</sub>concentrations up to 5.5% are achieved which are 1.7 times higher than the maximum concentration obtained by the rotating arc mode, and with an energy consumption of 2.5 MJ mol<sup>−1</sup>(or<italic>ca.</italic>50 kW h kN<sup>−1</sup>);<italic>i.e.</italic>the lowest value so far achieved by atmospheric pressure plasma reactors. Computer modelling, using a combination of five different complementary approaches, provides a comprehensive picture of NO<sub>x</sub>formation in both arc modes; in particular, the higher NO<sub>x</sub>production in the steady arc mode is due to the combined thermal and vibrationally-promoted Zeldovich mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000629630600021 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, GoF9618n 30505023 ; H2020 European Research Council, 810182 ; This research was supported by a Bilateral Project with N2 Applied, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182 – SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. We also thank J.-L. Liu for the RGA design, L. Van ‘t dack and K. Leyssens for MS calibration and practical support, and K. Van ‘t Veer for the fruitful discussions on plasma kinetic modelling and for calculating the electron energy losses. Approved Most recent IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:176022 Serial 6678  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Critical behavior of the ferromagnets CrI₃, CrBr₃, and CrGeTe₃ and the antiferromagnet FeCl₂ : a detailed first-principles study Type A1 Journal article
  Year (down) 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the Curie temperature of layered ferromagnets, chromium tri-iodide (CrI3), chromium tri-bromide (CrBr3), chromium germanium tri-telluride (CrGeTe3), and the Ned temperature of a layered antiferromagnet iron di-chloride (FeCl2), using first-principles density functional theory calculations and Monte Carlo simulations. We develop a computational method to model the magnetic interactions in layered magnetic materials and calculate their critical temperature. We provide a unified method to obtain the magnetic exchange parameters (J) for an effective Heisenberg Hamiltonian from first principles, taking into account both the magnetic ansiotropy as well as the out-of-plane interactions. We obtain the magnetic phase change behavior, in particular the critical temperature, from the susceptibility and the specific-heat, calculated using the three-dimensional Monte Carlo (METROPOLIS) algorithm. The calculated Curie temperatures for ferromagnetic materials (CrI3, CrBr3, and CrGeTe3), match well with experimental values. We show that the interlayer interaction in bulk CrI3 with R (3) over bar stacking is significantly stronger than the C2/m stacking, in line with experimental observations. We show that the strong interlayer interaction in R (3) over bar CrI3 results in a competition between the in-plane and the out-of-plane magnetic easy axes. Finally, we calculate the Ned temperature of FeCl2 to be 47 +/- 8 K and show that the magnetic phase transition in FeCl2 occurs in two steps with a high-temperature intralayer ferromagnetic phase transition and a low-temperature interlayer antiferromagnetic phase transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000609012000002 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes ; The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency Grant No. HDTRA1-18-1-0018. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176081 Serial 6686  
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Chaves, A.; Sena, S.H.R.; Farias, G.A.; Van Duppen, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Effect of zitterbewegung on the propagation of wave packets in ABC-stacked multilayer graphene : an analytical and computational approach Type A1 Journal article
  Year (down) 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 9 Pages 095503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials. The main features of the zitterbewegung (trembling motion) of wave packets in graphene are demonstrated and are found to depend not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Moreover, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599465000001 Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 5 Open Access OpenAccess  
  Notes ; Discussions with D J P de Sousa and J M Pereira Jr are gratefully acknowledged. This work was financially supported by the Brazilian Council for Research (CNPq), under the PQ and PRONEX/FUNCAP programs, and by CAPES. One of us (BVD) is supported by the FWO-Vl. DRC is supported by CNPq Grant Nos. 310019/2018-4 and 437067/2018-1. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:174953 Serial 6687  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.; Kim, D.; Mortazavi, B. pdf  doi
openurl 
  Title Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer : a first-principles study Type A1 Journal article
  Year (down) 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 540 Issue 1 Pages 148289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Latest synthesis of ZnSb monolayer, encouraged us to conduct density functional theory (DFT) simulations in order to study the structural, magnetic, electronic/optical and mechanical features of the sp2-hybridized honeycomb ZnSb monolayer (ML-ZnSb) and bilayer (BL-ZnSb). Our structural optimizations reveal that ML-ZnSb is an anisotropic hexagonal structure while BL-ZnSb is composed of shifted ZnSb layers which are covalently binded. ML-ZnSb is found to be a ferromagnetic metal, in contrast BL-ZnSb has a non-magnetic indirect band gap semiconducting ground state. For the in-plane polarization, first absorption peak of ML-ZnSb and BL-ZnSb confirm the absorbance of the light within the infrared domain wand visible range, respectively. Moreover, our results reveal that the layer-layer chemical bonding in BL-ZnSb significantly enhances the mechanical response of ML-ZnSb whose in-plane stiness is the smallest among all 2D materials (2DM). Notably, the strong in-plane anisotropy of ML-ZnSb in its stiness reduces in BL-ZnSb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599883200005 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. B.M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174956 Serial 6688  
Permanent link to this record
 

 
Author Ceyhan, E.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. doi  openurl
  Title Electronic and magnetic properties of single-layer FeCl₂ with defects Type A1 Journal article
  Year (down) 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The formation of lattice defects and their effect on the electronic properties of single-layer FeCl2 are investigated by means of first-principles calculations. Among the vacancy defects, namely mono-, di-, and three-Cl vacancies and mono-Fe vacancy, the formation of mono-Cl vacancy is the most preferable. Comparison of two different antisite defects reveals that the formation of the Fe-antisite defect is energetically preferable to the Cl-antisite defect. While a single Cl vacancy leads to a 1 mu(B) decrease in the total magnetic moment of the host lattice, each Fe vacant site reduces the magnetic moment by 4 mu(B). However, adsorption of an excess Cl atom on the surface changes the electronic structure to a ferromagnetic metal or to a ferromagnetic semiconductor depending on the adsorption site without changing the ferromagnetic state of the host lattice. Both Cl-antisite and Fe-antisite defected domains change the magnetic moment of the host lattice by -1 mu(B) and +3 mu(B), respectively. The electronic ground state of defected structures reveals that (i) single-layer FeCl2 exhibits half-metallicity under the formation of vacancy and Cl-antisite defects; (ii) ferromagnetic metallicity is obtained when a single Cl atom is adsorbed on upper-Cl and Fe sites, respectively; and (iii) ferromagnetic semiconducting behavior is found when a Cl atom is adsorbed on a lower-Cl site or a Fe-antisite defect is formed. Simulated scanning electron microscope images show that atomic-scale identification of defect types is possible from their electronic charge density. Further investigation of the periodically Fe-defected structures reveals that the formation of the single-layer FeCl3 phase, which is a dynamically stable antiferromagnetic semiconductor, is possible. Our comprehensive analysis on defects in single-layer FeCl2 will complement forthcoming experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000606969400002 Publication Date 2021-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access Not_Open_Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and by Flemish Supercomputer Center (VSC). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176039 Serial 6689  
Permanent link to this record
 

 
Author Jalali, H.; Khoeini, F.; Peeters, F.M.; Neek-Amal, M. doi  openurl
  Title Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes Type A1 Journal article
  Year (down) 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 2 Pages 922-929  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using electrochemical methods a profound enhancement of the capacitance of electric double layer capacitor electrodes was reported when water molecules are strongly confined into the two-dimensional slits of titanium carbide MXene nanosheets [A. Sugahara et al., Nat. Commun., 2019, 10, 850]. We study the effects of hydration on the dielectric properties of nanoconfined water and supercapacitance properties of the cation intercalated MXene. A model for the electric double layer capacitor is constructed where water molecules are strongly confined in two-dimensional slits of MXene. We report an abnormal dielectric constant and polarization of nano-confined water between MXene layers. We found that by decreasing the ionic radius of the intercalated cations and in a critical hydration shell radius the capacitance of the system increases significantly (similar or equal to 200 F g(-1)) which can be interpreted as a negative permittivity. This study builds a bridge between the fundamental understanding of the dielectric properties of nanoconfined water and the capability of using MXene films for supercapacitor technology, and in doing so provides a solid theoretical support for recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610368100035 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 7 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:176141 Serial 6690  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Magnetic properties and critical behavior of magnetically intercalated WSe₂ : a theoretical study Type A1 Journal article
  Year (down) 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 2 Pages 025009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transition metal dichalcogenides, intercalated with transition metals, are studied for their potential applications as dilute magnetic semiconductors. We investigate the magnetic properties of WSe2 doped with third-row transition metals (Co, Cr, Fe, Mn, Ti and V). Using density functional theory in combination with Monte Carlo simulations, we obtain an estimate of the Curie or Neel temperature. We find that the magnetic ordering is highly dependent on the dopant type. While Ti and Cr-doped WSe2 have a ferromagnetic ground state, V, Mn, Fe and Co-doped WSe2 are antiferromagnetic in their ground state. For Fe doped WSe2, we find a high Curie-temperature of 327 K. In the case of V-doped WSe2, we find that there are two distinct magnetic phase transitions, originating from a frustrated in-plane antiferromagnetic exchange interaction and a ferromagnetic out-of-plane interaction. We calculate the formation energy and reveal that, in contrast to earlier reports, the formation energy is positive for the intercalated systems studied here. We also show that in the presence of W-vacancies, it becomes favorable for Ti, Fe, and Co to intercalate in WSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000601127600001 Publication Date 2020-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 1 Open Access OpenAccess  
  Notes ; The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This material is based upon work supported by the National Science Foundation under Grant No. 1802166. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This work was supported by IMEC's Industrial Affiliation Program. Peter D Reyntjens acknowledges support by the Eugene McDermott Fellowship program, under Grant Number 201806. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:174951 Serial 6692  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Hoat, D.M.; Shahrokhi, M.; Fadlallah, M.M.; Shojaei, F.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  doi
openurl 
  Title MoSi₂N₄ single-layer : a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties Type A1 Journal article
  Year (down) 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue 15 Pages 155303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Very recently, the 2D form of MoSi2N4 has been successfully fabricated (Hong et al 2020 Science 369 670). Motivated by these recent experimental results, we investigate the structural, mechanical, thermal, electronic and optical properties of the MoSi2N4 monolayer. The mechanical study confirms the stability of the MoSi2N4 monolayer. The Young's modulus decreases by similar to 30%, while the Poisson's ratio increases by similar to 30% compared to the corresponding values of graphene. In addition, the MoSi2N4 monolayer's work function is very similar to that of phosphorene and MoS2 monolayers. The electronic structure shows that the MoSi2N4 monolayer is an indirect semiconductor with a band gaps of 1.79 (2.35) eV using the GGA (HSE06) functional. The thermoelectric performance of the MoSi2N4 monolayer has been revealed and a figure of merit slightly larger than unity at high temperatures is calculated. The optical analysis shows that the first absorption peak for in-plane polarization is located in the visible range of the spectrum, therefore, the MoSi2N4 monolayer is a promising candidate for advanced optoelectronic nanodevices. In summary, the fascinating MoSi2N4 monoloayer is a promising 2D material for many applications due to its unique physical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613849300001 Publication Date 2021-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2015M2B2A4033123). Computational resources were provided by the Flemish Supercomputer Center (VSC) and TUBITAK ULAKBIM, High Performance and Grid Computing Center (Tr-Grid e-Infrastructure). ; Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:176167 Serial 6693  
Permanent link to this record
 

 
Author Lavor, I.R.; Cavalcante, L.S.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Probing the structure and composition of van der Waals heterostructures using the nonlocality of Dirac plasmons in the terahertz regime Type A1 Journal article
  Year (down) 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 1 Pages 015014  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment. We show that this can be used to probe the structure and composition of van der Waals heterostructures (vdWh) put underneath a single graphene layer. In order to do so, we assess vdWh composed of hexagonal boron nitride and different types of transition metal dichalcogenides (TMDs). By performing realistic simulations that account for the contribution of each layer of the vdWh separately and including the importance of the substrate phonons, we show that one can achieve single-layer resolution by investigating the nonlocal nature of the Dirac plasmon-polaritons. The composition of the vdWh stack can be inferred from the plasmon-phonon coupling once it is composed by more than two TMD layers. Furthermore, we show that the bulk character of TMD stacks for plasmonic screening properties in the terahertz regime is reached only beyond 100 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582820500001 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 4 Open Access OpenAccess  
  Notes ; This work was financially supported by the Brazilian Council for Research (CNPq), Brazilian National Council for the Improvement of Higher Education (CAPES) and by the Research Foundation Flanders (FWO) through a postdoctoral fellowship to B.V.D. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:173507 Serial 6696  
Permanent link to this record
 

 
Author Jiang, J.; Wang, Y.-L.; Milošević, M.V.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H. url  doi
openurl 
  Title Reversible ratchet effects in a narrow superconducting ring Type A1 Journal article
  Year (down) 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the ratchet effect in a narrow pinning-free superconductive ring based on time-dependent Ginzburg-Landau (TDGL) equations. Voltage responses to external dc and ac currents at various magnetic fields are studied. Due to asymmetric barriers for flux penetration and flux exit in the ring-shaped superconductor, the critical current above which the flux-flow state is reached, as well as the critical current for the transition to the normal state, are different for the two directions of applied current. These effects cooperatively cause ratchet signal reversal at high magnetic fields, which has not been reported to date in a pinning-free system. The ratchet signal found here is larger than those induced by asymmetric pinning potentials. Our results also demonstrate the feasibility of using mesoscopic superconductors to employ a superconducting diode effect in versatile superconducting devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604821500003 Publication Date 2021-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access OpenAccess  
  Notes ; We are grateful to G. Berdiyorov for useful suggestions and comments. Q.-H.C. thanks Beiyi Zhu for helpful discussions during the early stage of this work. This work is supported in part by the National Key Research and Development Program of China, Grants No. 2017YFA0303002 (Q.-H.C. and J.J.), and No. 2018YFA0209002 (Y.-L.W.), and the National Natural Science Foundation of China Grants No. 11834005, No. 11674285, No. 61771235, and No. 61727805. Z.-L.X. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering and the National Science Foundation under Grant No. DMR-1901843. F.M.P. and M.V.M. acknowledge support by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:174984 Serial 6697  
Permanent link to this record
 

 
Author Kahraman, Z.; Baskurt, M.; Yagmurcukardes, M.; Chaves, A.; Sahin, H. pdf  doi
openurl 
  Title Stable Janus TaSe₂ single-layers via surface functionalization Type A1 Journal article
  Year (down) 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 538 Issue Pages 148064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculations are performed in order to investigate the formation of Janus structures of single layer TaSe2. The structural optimizations and phonon band dispersions reveal that the formation and stability of hydrogenated (HTaSe2), fluorinated (FTaSe2), and the one-side hydrogenated and one-side fluorinated (Janus-HTaSe2F) single-layers are feasible in terms of their phonon band dispersions. It is shown that bare metallic single-layer TaSe2 can be turned into a semiconductor as only one of its surface is functionalized while it remains as a metal via its two surfaces functionalization. In addition, the semiconducting nature of single-layers HTaSe2 and FTaSe2 and the metallic behavior of Janus TaSe2 are found to be robust under applied uniaxal strains. Further analysis on piezoelectric properties of the predicted single-layers reveal the enhanced in-plane and out of-plane piezoelectricity via formed Janus-HTaSe2F. Our study indicates that single-layer TaSe2 is a suitable host material for surface functionalization via fluorination and hydrogenation which exhibit distinctive electronic and vibrational properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595860900001 Publication Date 2020-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). HS acknowledges support from Turkiye Bilimler Akademisi -Turkish Academy of Sciences under the GEBIP program. This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174964 Serial 6699  
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization Type A1 Journal article
  Year (down) 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 551-559  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The flexoelectric and electronic properties of zig-zag graphene nanoribbons are explored under mechanical bending using state of the art first principles calculations. A linear dependence of the bending induced out of plane polarization on the applied strain gradient is found. The inferior flexoelectric properties of graphene nanoribbons can be improved by more than two orders of magnitude by hydrogen and fluorine functionalization (CH and CF nanoribbons). A large out of plane flexoelectric effect is predicted for CF nanoribbons. The origin of this enhancement lies in the electro-negativity difference between carbon and fluorine atoms, which breaks the out of plane charge symmetry even for a small strain gradient. The flexoelectric effect can be further improved by co-functionalization with hydrogen and fluorine (CHF Janus-type nanoribbon), where a spontaneous out of plane dipole moment is formed even for flat nanoribbons. We also find that bending can control the charge localization of valence band maxima and therefore enables the tuning of the hole effective masses and band gaps. These results present an important advance towards the understanding of flexoelectric and electronic properties of hydrogen and fluorine functionalized graphene nanoribbons, which can have important implications for flexible electronic applications. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500058 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 15 Open Access OpenAccess  
  Notes ; The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Flemish Science Foundation (FWO-VI). T. P. is supported by a postdoctoral research fellowship from BOF-UAntwerpen. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:175014 Serial 6700  
Permanent link to this record
 

 
Author Sanchis-Gual, R.; Susic, I.; Torres-Cavanillas, R.; Arenas-Esteban, D.; Bals, S.; Mallah, T.; Coronado-Puchau, M.; Coronado, E. url  doi
openurl 
  Title The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles Type A1 Journal article
  Year (down) 2021 Publication Chemical Communications Abbreviated Journal Chem Commun  
  Volume 57 Issue 15 Pages 1903-1906  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620719300011 Publication Date 2021-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 5 Open Access OpenAccess  
  Notes European Commission, COST Action MOLSPIN CA15128 ERC Advanced Grant Mol-2D 788222 ERC Consolidator Grant REALNANO 815128 Grant Agreement No. 731019 (EUSMI) ; Ministry of Education and Science of the Russian Federation, No. 14.W03.31.0001 ; Ministerio de Ciencia, Innovación y Universidades, Maria de Maeztu CEX2019-000919-M Project MAT2017-89993-R ; Generalitat Valenciana, PROMETEO/2017/066 iDiFEDER/2018/061 ; sygma; Approved Most recent IF: 6.319  
  Call Number EMAT @ emat @c:irua:176542 Serial 6702  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: