|   | 
Details
   web
Records
Author Milošević, M.V.; Peeters, F.M.; Jankó, B.
Title Vortex manipulation in superconducting films with tunable magnetic topology Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue (up) 2 Pages 024001-024001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a combination of the phenomenological GinzburgLandau theory and micromagnetic simulations, we study properties of a superconducting film with an array of soft magnetic dots on top. An external in-plane magnetic field gradually drives the magnets from an out-of-plane or magnetic vortex state to an in-plane single-domain state, which changes spatially the distribution of the superconducting condensate. If induced by the magnets, the vortexantivortex molecules exhibit rich transitions as a function of the applied in-plane field. At the same time, we show how the magnetic dots act as very effective dynamic pinning centers for vortices in an applied perpendicular magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900002 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 8 Open Access
Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the JSPS/ESF-NES program, the bilateral project between Flanders and the USA, NSF NIRT, ECS-0609249, and the Institute for Theoretical Sciences. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88731 Serial 3870
Permanent link to this record
 

 
Author Romaguera, A.R. de C.; Doria, M.M.; Peeters, F.M.
Title Vortex pattern in a nanoscopic cylinder Type A1 Journal article
Year 2007 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 460 Issue (up) 2 Pages 1234-1235
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000249870600244 Publication Date 2007-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 1 Open Access
Notes Approved Most recent IF: 1.404; 2007 IF: 1.079
Call Number UA @ lucian @ c:irua:65698 Serial 3876
Permanent link to this record
 

 
Author Masenelli-Varlot, K.; Malchere, A.; Ferreira, J.; Heidari Mezerji, H.; Bals, S.; Messaoudi, C.; Garrido, S.M.
Title Wet-STEM tomography : principles, potentialities and limitations Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue (up) 2 Pages 366-375
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The characterization of biological and inorganic materials by determining their three-dimensional structure in conditions closer to their native state is a major challenge of technological research. Environmental scanning electron microscopy (ESEM) provides access to the observation of hydrated samples in water environments. Here, we present a specific device for ESEM in the scanning transmission electron microscopy mode, allowing the acquisition of tilt-series suitable for tomographic reconstructions. The resolution which can be obtained with this device is first determined. Then, we demonstrate the feasibility of tomography on wet materials. The example studied here is hydrophilic mesoporous silica (MCM-41). Finally, the minimum thickness of water which can be detected is calculated from Monte Carlo simulations and compared with the resolution expected in the tomograms.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000337304700005 Publication Date 2014-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 9 Open Access OpenAccess
Notes IAP-PAI; European Research Council under the 7th Framework Program (FP7); ERC grant no. 335078-COLOURATOMS.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:118411 Serial 3915
Permanent link to this record
 

 
Author Sels, D.; Brosens, F.; Magnus, W.
Title Wigner distribution functions for complex dynamical systems : a path integral approach Type A1 Journal article
Year 2013 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A
Volume 392 Issue (up) 2 Pages 326-335
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Starting from Feynmans Lagrangian description of quantum mechanics, we propose a method to construct explicitly the propagator for the Wigner distribution function of a single system. For general quadratic Lagrangians, only the classical phase space trajectory is found to contribute to the propagator. Inspired by Feynmans and Vernons influence functional theory we extend the method to calculate the propagator for the reduced Wigner function of a system of interest coupled to an external system. Explicit expressions are obtained when the external system consists of a set of independent harmonic oscillators. As an example we calculate the propagator for the reduced Wigner function associated with the CaldeiraLegett model.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000311135200004 Publication Date 2012-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4371; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.243 Times cited 9 Open Access
Notes ; ; Approved Most recent IF: 2.243; 2013 IF: 1.722
Call Number UA @ lucian @ c:irua:101414 Serial 3921
Permanent link to this record
 

 
Author Maccato, C.; Simon, Q.; Carraro, G.; Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Zinc and copper oxides functionalized with metal nanoparticles : an insight into their nano-organization Type A1 Journal article
Year 2012 Publication Journal of advanced microscopy research Abbreviated Journal
Volume 7 Issue (up) 2 Pages 84-90
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag/ZnO and Au/CuxO (x = 1, 2) nanocomposites supported on Si(100) and polycrystalline Al2O3 were synthesised by hybrid approaches, combining chemical vapor deposition (either thermal or plasma-assisted) of host oxide matrices and subsequent radio frequency-sputtering of guest metal particles. The influence of the adopted synthetic parameters on the nanocomposite morphological and compositional features was investigated by field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Results confirm the synthesis of ZnO and CuxO nanoarchitectures, characterized by a tailored morphology and an intimate metal/oxide contact. A careful control of the processing conditions enabled a fine tuning of the mutual constituent distribution, opening thus attractive perspectives for the engineering of advanced nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2012-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-7573;2156-7581; ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Esteem Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:105298 Serial 3932
Permanent link to this record
 

 
Author Hamon, C.; Novikov, S.M.; Scarabelli, L.; Solís, D.M.; Altantzis, T.; Bals, S.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M.
Title Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals Type A1 Journal article
Year 2015 Publication ACS Photonics Abbreviated Journal Acs Photonics
Volume 2 Issue (up) 2 Pages 1482-1488
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Gold nanorod supercrystals have been widely employed for the detection of relevant bioanalytes with detection limits ranging from nano- to picomolar levels,

confirming the promising nature of these structures for biosensing. Even though a relationship between the height of the supercrystal (i.e., the number of stacked nanorod layers)and the enhancement factor has been proposed, no systematic

study has been reported. In order to tackle this problem, we prepared gold nanorod supercrystals with varying numbers of stacked layers and analyzed them extensively by atomic force microscopy, electron microscopy and surface enhanced Raman scattering. The experimental results were compared to numerical

simulations performed on real-size supercrystals composed of thousands of nanorod building blocks. Analysis of the hot spot distribution in the simulated supercrystals showed the presence of standing waves that were distributed at different depths, depending on the number of layers in each supercrystal. On the basis of these theoretical results, we interpreted the experimental

data in terms of analyte penetration into the topmost layer only, which indicates that diffusion to the interior of the supercrystals would be crucial if the complete field enhancement produced by the stacked nanorods is to be exploited. We propose that our conclusions will be of high relevance in the design of next generation plasmonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363435600013 Publication Date 2015-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.756 Times cited 70 Open Access OpenAccess
Notes The authors are thankful to Dr. Luis Yate for assistance with sample preparation. This work was supported by the European Research Council (ERC Advanced Grant #267867 Plasmaquo and ERC Starting Grant #335078 Colouratom) and the Spanish Ministerio de Economía y Competitividad (MAT2013-46101-R). D.M.S., J.M.T., and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Economiá y Competitividad (MAT2014-58201-C2-1-R, MAT2014-58201- C2-2-R, Project TACTICA), from the ERDF and the Galician Regional Government under Projects CN2012/279 and CN2012/260 (AtlantTIC) and the Plan I2C (2011−2015), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura Project IB13185).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.756; 2015 IF: NA
Call Number c:irua:129458 Serial 3978
Permanent link to this record
 

 
Author Yao, X.; Cao, S.; Zhang, X.P.; Schryvers, D.
Title Microstructural Characterization and Transformation Behavior of Porous Ni50.8Ti49.2 Type P1 Proceeding
Year 2015 Publication Materials Today: Proceedings Abbreviated Journal
Volume 2 Issue (up) 2 Pages S833-S836
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract Porous Ni50.8Ti49.2 bulk material was prepared by powder metallurgy sintering. Solid solution and aging treatments were applied to improve the phase homogeneity and phase transformation behavior. Scanning and transmission electron microscopy, aided by energy dispersive X-ray analysis, were used to study the microstructure and chemical phase content of the alloys. In-situ cooling was carried out to observe the phase transformation behavior. As-received material contains dispersed Ni2Ti4O particles while Ni4Ti3 precipitates appear after aging. Close to pore edges, the latter have a preferential orientation due to the induced stress fields in the matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371032100081 Publication Date 2015-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7853 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes The author gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a scholarship and the Key Project of the Natural Science Foundation of Guangdong Province under grant No. S2013020012805. Approved Most recent IF: NA
Call Number c:irua:129980 Serial 3989
Permanent link to this record
 

 
Author De Keukeleere, K.; Cayado, P.; Meledin, A.; Vallès, F.; De Roo, J.; Rijckaert, H.; Pollefeyt, G.; Bruneel, E.; Palau, A.; Coll, M.; Ricart, S.; Van Tendeloo, G.; Puig, T.; Obradors, X.; Van Driessche, I.
Title Superconducting YBa2Cu3O7-δNanocomposites Using Preformed ZrO2Nanocrystals: Growth Mechanisms and Vortex Pinning Properties Type A1 Journal article
Year 2016 Publication Advanced Electronic Materials Abbreviated Journal
Volume 2 Issue (up) 2 Pages 1600161
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Although high temperature superconductors are promising for power applications, the production of low-cost coated conductors with high current densities—at high magnetic fields—remains challenging. A superior superconducting YBa2Cu3O7–δ nanocomposite is fabricated via chemical solution deposition (CSD) using preformed nanocrystals (NCs). Preformed, colloidally stable ZrO2 NCs are added to the trifluoroacetic acid based precursor solution and the NCs' stability is confirmed up to 50 mol% for at least 2.5 months. These NCs tend to disrupt the epitaxial growth of YBa2Cu3O7–δ, unless a thin seed layer is applied. A 10 mol% ZrO2 NC addition proved to be optimal, yielding a critical current density JC of 5 MA cm−2 at 77 K in self-field. Importantly, this new approach results in a smaller magnetic field decay of JC(H//c) for the nanocomposite compared to a pristine film. Furthermore, microstructural analysis of the YBa2Cu3O7–δ nanocomposite films reveals that different strain generation mechanisms may occur compared to the spontaneous segregation approach. Yet, the generated nanostrain in the YBa2Cu3O7–δ nanocomposite results in an improvement of the superconducting properties similar to the spontaneous segregation approach. This new approach, using preformed NCs in CSD coatings, can be of great potential for high magnetic field applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386624100003 Publication Date 2016-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199160X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 26 Open Access
Notes This work was financially supported by a BOF research fund of Ghent University (BOF11/DOC/286), FWO Flanders (F08512), and Eurotapes, a collaborative project funded by the European Community’s Seven Framework Program (EU-FP7 NMP-LA-2012-280432). We also acknowledge MINECO and FEDER funds for MAT2014-51778-C2-1-R and the Center of Excellence award Severo Ochoa SEV-2015-0496, and SGR753 from the Generalitat of Catalunya. MC acknowledges RyC contract 2013-12448 Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:135171 Serial 4118
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T.
Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
Year 2015 Publication 2D materials Abbreviated Journal 2D Mater
Volume 2 Issue (up) 2 Pages 044002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000368936600005 Publication Date 2015-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 20 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 6.937; 2015 IF: NA
Call Number UA @ lucian @ c:irua:131602 Serial 4169
Permanent link to this record
 

 
Author Idrissi, H.; Bollinger, C.; Boioli, F.; Schryvers, D.; Cordier, P.
Title Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing Type A1 Journal article
Year 2016 Publication Science Advances Abbreviated Journal
Volume 2 Issue (up) 2 Pages e1501671-e1501671
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379620200043 Publication Date 2016-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 32 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134983 Serial 4202
Permanent link to this record
 

 
Author Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L.
Title Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates Type A1 Journal article
Year 2015 Publication Materials research express Abbreviated Journal Mater Res Express
Volume 2 Issue (up) 2 Pages 015007
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Magnesium nanoparticles (NPs) with initial size in the 10-50 nmrange were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000369978500007 Publication Date 2014-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.068 Times cited 14 Open Access Not_Open_Access
Notes ; Financial support by COST Action MP1103 'Nanostructured Materials for Solid-State Hydrogen Storage' is gratefully acknowledged. ; Approved Most recent IF: 1.068; 2015 IF: NA
Call Number UA @ lucian @ c:irua:132275 Serial 4240
Permanent link to this record
 

 
Author Yao, X.; Amin-Ahmadi, B.; Li, Y.; Cao, S.; Ma, X.; Zhang, X.-P.; Schryvers, D.
Title Optimization of Automated Crystal Orientation Mapping in a TEM for Ni4Ti3 Precipitation in All-Round SMA Type A1 Journal article
Year 2016 Publication Shape memory and superelasticity Abbreviated Journal Shap Mem Superelasticity
Volume 2 Issue (up) 2 Pages 286-297
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Automated crystal orientation and phase mapping in TEM are applied to the quantification of Ni4Ti3 precipitates in Ni–Ti shape memory alloys which will be used for the implantation of artificial sphincters operating using the all-round shape memory effect. This paper focuses on the optimization process of the technique to obtain best values for all major parameters in the acquisition of electron diffraction patterns as well as template generation. With the obtained settings, vast statistical data on nano- and microstructures essential to the operation of these shape memory devices become available.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000408743700001 Publication Date 2016-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes X. Yao gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a PhD scholarship. Research support was also provided by the Key Project of the Natural Science Foundation of Guangdong Province (S2013020012805) and the Natural Science Foundation of China under Grant No. 51401081. Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:138600 Serial 4324
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B.
Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
Year 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A
Volume 209 Issue (up) 2 Pages 265-267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303382700005 Publication Date 2011-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 3 Open Access
Notes Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:136430 Serial 4497
Permanent link to this record
 

 
Author Hacimustafaoglu, M.; Celebi, S.; Bozdemir, S.E.; Ozgur, T.; Ozcan, I.; Guray, A.; Çakir, D.
Title RSV frequency in children below 2 years hospitalized for lower respiratory tract infections Type A1 Journal article
Year 2013 Publication Turkish Journal Of Pediatrics Abbreviated Journal Turkish J Pediatr
Volume 55 Issue (up) 2 Pages 130-139
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Respiratory syncytial virus (RSV) is the most frequent agent of acute lower respiratory diseases and creates a significant burden of disease in children under 5 years all over the world. RSV causes severe lower respiratory tract infections (LRTI) that require hospitalization, especially in children <= 2 years. The aim of this study was to determine the incidence of RSV in children <= 2 years of age hospitalized for LRTI. Children <= 2 years of age hospitalized for one year for LRTI in the three largest hospitals of Bursa City Center, Turkey were evaluated. These three hospitals comprise 67.5% of all child beds in central Bursa, so this study allows us to evaluate the total disease burden and hospitalization incidence in central Bursa. Nasal swabs of the children were evaluated with RSV RespiStrip (Coris Bioconcept Organization). A total of 671 children were hospitalized for LRTI, and 254 (37.9%) had at least one hospitalization that was positive for RSV. Of all patients with LRTI, 54.8% (368/671) were hospitalized for acute bronchiolitis, while 45.2% (303/671) were hospitalized for pneumonia. Of patients with acute bronchiolitis or pneumonia, 41% (151/368) and 34% (103/303) were RSV+, respectively. Of RSV+ hospitalized children, 59.5% (151/254) were diagnosed as acute bronchiolitis and 40.5% (103/254) as pneumonia. The annual incidences of hospitalization due to LRTI, acute bronchiolitis and pneumonia were 20.5/1000, 11.2/1000 and 9.3/1000, respectively, in children <= 2 years of age. The annual incidences of hospitalization due to RSV+ LRTI, acute bronchiolitis and pneumonia were found as 7.8/1000, 4.6/1000 and 3.2/1000, respectively, in children <= 2 years of age. More than one-third of all children hospitalized with LRTI (38.3%, n=257) were in the 0-3 months age group. Compared to other age groups, RSV positivity was highest in that age group for acute bronchiolitis (57%), pneumonia (39.5%) and also total children with LRTI (47.9%). RSV is a very important cause of lower respiratory infections in children <= 2 years of age and occurred most frequently in those 0-3 months of age in our study. Since there is no other study assessing the annual hospitalization incidence of RSV+ LRTIs in one city in Turkey, our study has unique importance for providing valuable statistical data about RSV+ LRTIs.
Address
Corporate Author Thesis
Publisher Place of Publication Ankara Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0041-4301 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.32 Times cited Open Access
Notes Approved Most recent IF: 0.32; 2013 IF: 0.339
Call Number UA @ lucian @ c:irua:128325 Serial 4606
Permanent link to this record
 

 
Author Gillis, S.; Jaykka, J.; Milošević, M.V.
Title Vortex states in mesoscopic three-band superconductors Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue (up) 2 Pages 024512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using multicomponent Ginzburg-Landau simulations, we show a plethora of vortex states possible in mesoscopic three-band superconductors. We find that mesoscopic confinement stabilizes chiral states, with nontrivial phase differences between the band condensates, as the ground state of the system. As a consequence, we report the broken-symmetry vortex states, the chiral states where vortex cores in different band condensates do not coincide (split-core vortices), as well as fractional-flux vortex states with broken time-reversal symmetry.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333653800001 Publication Date 2014-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO). Critical remarks of Lucia Komendova are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:128885 Serial 4611
Permanent link to this record
 

 
Author Semkina, A.S.; Abakumov, M.A.; Abakumov, A.M.; Nukolova, N.V.; Chekhonin, V.P.
Title Relationship between the Size of Magnetic Nanoparticles and Efficiency of MRT Imaging of Cerebral Glioma in Rats Type A1 Journal article
Year 2016 Publication Bulletin of experimental biology and medicine Abbreviated Journal B Exp Biol Med+
Volume 161 Issue (up) 2 Pages 292-295
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract BSA-coated Fe3O4 nanoparticles with different hydrodynamic diameters (36 +/- 4 and 85 +/- 10 nm) were synthesized, zeta potential and T2 relaxivity were determined, and their morphology was studied by transmission electron microscopy. Studies on rats with experimental glioma C6 showed that smaller nanoparticles more effectively accumulated in the tumor and circulated longer in brain vessels. Optimization of the hydrodynamic diameter improves the efficiency of MRT contrast agent.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000380118500022 Publication Date 2016-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-4888 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.456 Times cited 5 Open Access
Notes Approved Most recent IF: 0.456
Call Number UA @ lucian @ c:irua:144707 Serial 4684
Permanent link to this record
 

 
Author Orlova, N.V.; Kuopanportti, P.; Milošević, M.V.
Title Skyrmionic vortex lattices in coherently coupled three-component Bose-Einstein condensates Type A1 Journal article
Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A
Volume 94 Issue (up) 2 Pages 023617
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show numerically that a harmonically trapped and coherently Rabi-coupled three-component Bose-Einstein condensate can host unconventional vortex lattices in its rotating ground state. The discovered lattices incorporate square and zig-zag patterns, vortex dimers and chains, and doubly quantized vortices, and they can be quantitatively classified in terms of a skyrmionic topological index, which takes into account the multicomponent nature of the system. The exotic ground-state lattices arise due to the intricate interplay of the repulsive density-density interactions and the Rabi couplings as well as the ubiquitous phase frustration between the components. In the frustrated state, domain walls in the relative phases can persist between some components even at strong Rabi coupling, while vanishing between others. Consequently, in this limit the three-component condensate effectively approaches a two-component condensate with only density-density interactions. At intermediate Rabi coupling strengths, however, we face unique vortex physics that occurs neither in the two-component counterpart nor in the purely density-density-coupled three-component system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381303800006 Publication Date 2016-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926;2469-9934; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 16 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO). P. K. acknowledges financial support from the Emil Aaltonen Foundation, the Finnish Cultural Foundation, the Magnus Ehrnrooth Foundation, and the Technology Industries of Finland Centennial Foundation. The authors thank R. P. Anderson, E. Babaev, I. O. Cherednikov, V. R. Misko, T. P. Simula, and J. Tempere for useful comments and discussions. ; Approved Most recent IF: 2.925
Call Number UA @ lucian @ c:irua:144673 Serial 4688
Permanent link to this record
 

 
Author Dutta, S.; Sankaran, K.; Moors, K.; Pourtois, G.; Van Elshocht, S.; Bommels, J.; Vandervorst, W.; Tokei, Z.; Adelmann, C.
Title Thickness dependence of the resistivity of platinum-group metal thin films Type A1 Journal article
Year 2017 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 122 Issue (up) 2 Pages 025107
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, and Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5 nm due to a weaker thickness dependence of the resistivity. Based on experimentally determined mean linear distances between grain boundaries as well as ab initio calculations of the electron mean free path, the data for Ru, Ir, and Cu were modeled within the semiclassical Mayadas-Shatzkes model [Phys. Rev. B 1, 1382 (1970)] to assess the combined contributions of surface and grain boundary scattering to the resistivity. For Ru, the modeling results indicated that surface scattering was strongly dependent on the surrounding material with nearly specular scattering at interfaces with SiO2 or air but with diffuse scattering at interfaces with TaN. The dependence of the thin film resistivity on the mean free path is also discussed within the Mayadas-Shatzkes model in consideration of the experimental findings. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000405663800038 Publication Date 2017-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 42 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:145213 Serial 4729
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M.
Title Foundations of modelling of nonequilibrium low-temperature plasmas Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue (up) 2 Pages 023002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma–surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425688600001 Publication Date 2018-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 17 Open Access OpenAccess
Notes The authors would like to thank A Tejero-Del-Caz and A Berthelot for their technical contributions in writing the manuscript. This work was partially funded by Portuguese FCT —Fundação para a Ciência e a Tecnologia, under projects UID/ FIS/50010/2013, PTDC/FISPLA/1243/2014 (KIT-PLAS- MEBA) and PTDC/FIS-PLA/1420/2014 (PREMiERE). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:149391 Serial 4810
Permanent link to this record
 

 
Author Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C.
Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue (up) 2 Pages 024001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424520100001 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 19 Open Access OpenAccess
Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813
Permanent link to this record
 

 
Author Li, L.; Liao, Z.; Gauquelin, N.; Minh Duc Nguyen; Hueting, R.J.E.; Gravesteijn, D.J.; Lobato, I.; Houwman, E.P.; Lazar, S.; Verbeeck, J.; Koster, G.; Rijnders, G.
Title Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) substrate Type A1 Journal article
Year 2018 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 5 Issue (up) 2 Pages 1700921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Due to its physical properties gallium-nitride (GaN) is gaining a lot of attention as an emerging semiconductor material in the field of high-power and high-frequency electronics applications. Therefore, the improvement in the performance and/or perhaps even extension in functionality of GaN based devices would be highly desirable. The integration of ferroelectric materials such as lead-zirconate-titanate (PbZrxTi1-xO3) with GaN has a strong potential to offer such an improvement. However, the large lattice mismatch between PZT and GaN makes the epitaxial growth of Pb(Zr1-xTix)O-3 on GaN a formidable challenge. This work discusses a novel strain relaxation mechanism observed when MgO is used as a buffer layer, with thicknesses down to a single unit cell, inducing epitaxial growth of high crystallinity Pb(Zr0.52Ti0.48)O-3 (PZT) thin films. The epitaxial PZT films exhibit good ferroelectric properties, showing great promise for future GaN device applications.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000423173800005 Publication Date 2017-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 15 Open Access Not_Open_Access
Notes ; L.L., Z.L.L., and N.G. contributed equally to this work. L.L. acknowledges financial support from Nano Next NL (Grant no. 7B 04). The authors acknowledge NXP for providing the GaN/AlGaN/Si (111) wafer. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and J.V. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) project 42/FA070100/6088 “nieuwe eigenschappen in complexe Oxides.” N.G. acknowledges the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432) which partly funded this study. ; Approved Most recent IF: 4.279
Call Number UA @ lucian @ c:irua:148427UA @ admin @ c:irua:148427 Serial 4872
Permanent link to this record
 

 
Author Loo, R.; Arimura, H.; Cott, D.; Witters, L.; Pourtois, G.; Schulze, A.; Douhard, B.; Vanherle, W.; Eneman, G.; Richard, O.; Favia, P.; Mitard, J.; Mocuta, D.; Langer, R.; Collaert, N.
Title Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures Type A1 Journal article
Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
Volume 7 Issue (up) 2 Pages P66-P72
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Epitaxially grown ultra-thin Si layers are often used to passivate Ge surfaces in the high-k gate module of (strained) Ge FinFET and Gate All Around devices. We use Si4H10 as Si precursor as it enables epitaxial Si growth at temperatures down to 330 degrees. C-V characteristics of blanket capacitors made on Ge virtual substrates point to the presence of an optimal Si thickness. In case of compressively strained Ge fin structures, the Si growth results in non-uniform and high strain levels in the strained Ge fin. These strain levels have been calculated for different shapes of the Ge fin and in function of the grown Si thickness. The high strain is the driving force for potential (unwanted) Ge surface reflow during Si deposition. The Ge surface reflow is strongly affected by the strength of the H-passivation during Si-capping and can be avoided by carefully selected process conditions. (C) The Author(s) 2018. Published by ECS.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000425215200010 Publication Date 2018-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 5 Open Access OpenAccess
Notes Approved Most recent IF: 1.787
Call Number UA @ lucian @ c:irua:149326 Serial 4933
Permanent link to this record
 

 
Author Peymanirad, F.; Singh, S.K.; Ghorbanfekr-Kalashami, H.; Novoselov, K.S.; Peeters, F.M.; Neek-Amal, M.
Title Thermal activated rotation of graphene flake on graphene Type A1 Journal article
Year 2017 Publication 2D materials Abbreviated Journal 2D Mater
Volume 4 Issue (up) 2 Pages 025015
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about similar to 4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA-or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than 2 degrees. Our results are in agreement with recent experiments.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000424399600005 Publication Date 2017-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 16 Open Access
Notes ; We would like to acknowledge Annalisa Fasolino and MM van Wijk for providing us with the implemented parameters of REBO-KC [5] in LAMMPS. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation. ; Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:149364 Serial 4984
Permanent link to this record
 

 
Author Bhat, S.G.; Gauquelin, N.; Sebastian, N.K.; Sil, A.; Béché, A.; Verbeeck, J.; Samal, D.; Kumar, P.S.A.
Title Orthorhombic vs. hexagonal epitaxial SrIrO3 thin films : structural stability and related electrical transport properties Type A1 Journal article
Year 2018 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 122 Issue (up) 2 Pages 28003
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metastable orthorhombic SrIrO3 (SIO) is an arch-type spin-orbit coupled material. We demonstrate here a controlled growth of relatively thick (200 nm) SIO films that transform from bulk “6H-type” structure with monoclinic distortion to an orthorhombic lattice by controlling growth temperature. Extensive studies based on high-resolution X-ray diffraction and transmission electron microscopy infer a two distinct structural phases of SIO. Electrical transport reveals a weak temperature-dependent semi-metallic character for both phases. However, the temperature-dependent Hall-coefficient for the orthorhombic SIO exhibits a prominent sign change, suggesting a multiband character in the vicinity of E-F. Our findings thus unravel the subtle structure-property relation in SIO epitaxial thin films. Copyright (C) EPLA, 2018
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000435517300001 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access Not_Open_Access
Notes ; SGB and DS acknowledge useful discussions with E. P. Houwman, University of Twente, on X-ray diffraction. DS would like to thank H. Takagi, Max-Planck Institute for Solid State Research, Stuttgart, for the fruitful discussion on the transport properties of SIO thin films. SGB and NKS thank A. Aravind, Bishop Moore College, Mavelikara, for his valuable inputs while depositing the thin films of SIO. SGB, NKS and PSAK acknowledge Nano Mission Council, Department of Science & Technology, India, for the funding. DS acknowledges the financial support from Max-Planck Society through MaxPlanck Partner Group. NG, AB and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G093417N. ; Approved Most recent IF: 1.957
Call Number UA @ lucian @ c:irua:152074UA @ admin @ c:irua:152074 Serial 5034
Permanent link to this record
 

 
Author Fridman, A.; Lin, A.; Miller, V.; Bekeschus, S.; Wende, K.; Weltmann, K.-D.
Title The plasma treatment unit : an attempt to standardize cold plasma treatment for defined biological effects Type A1 Journal article
Year 2018 Publication Plasma medicine Abbreviated Journal
Volume 8 Issue (up) 2 Pages 195-201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma bioscience and medicine are both rapidly growing fields. Their aim is to utilize cold physical plasmas for desired biological outcomes in medicine, biotechnology, agriculture, and general hygienic purposes. Great success has been achieved in many applications with individually designed plasma sources and plasma parameters. Although lab and application-specific tuning of plasmas is a great advantage of this technology, standardized units to define plasma treatments are required to facilitate comparison of the effects found by different researchers who do not use the same plasma sources. By drawing conclusions from over a century of plasma biomedical research, we propose that all researchers adopt the use of a standardized value, the plasma treatment unit (PTU), to describe the biological effects of different cold plasma sources and treatment regimens. It quantifies a key plasma effector in biological systems as an indicator and may provide the foundation for an analogous and clinically relevant unit in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:155652 Serial 5123
Permanent link to this record
 

 
Author Bogaerts, A.
Title Editorial Catalysts: Special Issue on Plasma Catalysis Type Editorial
Year 2019 Publication Catalysts Abbreviated Journal Catalysts
Volume 9 Issue (up) 2 Pages 196
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, and CH4 conversion into higher hydrocarbons or oxygenates [...]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460702200090 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159153 Serial 5166
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Samaee, V.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D.
Title In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires Type A1 Journal article
Year 2019 Publication Shape memory and superelasticity Abbreviated Journal Shap. Mem. Superelasticity
Volume 5 Issue (up) 2 Pages 154-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In-situ transmission electron microscopy tensile straining is used to study the stress induced martensitic transformation in Ni50.8Ti49.2. Two microwire samples with different heat treatment are investigated from which one single crystal and three polycrystalline TEM specimens, the latter with micro- and nano-size grains, have been produced. The measured Young’s modulus for all TEM specimens is around 70 GPa, considerably higher than the averaged 55 GPa of the original microwire sample. The height of the superelastic stress plateau shows an inverse relationship with the specimen thickness for the polycrystalline specimens. Martensite starts nucleating within the elastic region of the stress–strain curve and on the edges of the specimens while also grain boundaries act as nucleation sites in the polycrystalline specimens. When a martensite plate reaches a grain boundary in the polycrystalline specimen, it initiates the transformation in the neighboring grain at the other side of the grain boundary. In later stages martensite plates coalesce at higher loads in the stress plateau. In highly strained specimens, residual martensite remains after release.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472940200002 Publication Date 2019-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Saeid Pourbabak likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. This work was also made possible through the AUHA13009 Grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:159989 Serial 5177
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W.
Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.
Volume 2 Issue (up) 2 Pages 4067-4074
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477917700006 Publication Date 2019-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 32 Open Access OpenAccess
Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Carrier transport in two-dimensional topological insulator nanoribbons in the presence of vacancy defects Type A1 Journal article
Year 2019 Publication 2D materials Abbreviated Journal 2D Mater
Volume 6 Issue (up) 2 Pages 025011
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the non-equilibrium Green's function formalism, we study carrier transport through imperfect two-dimensional (2D) topological insulator (TI) ribbons. In particular, we investigate the effect of vacancy defects on the carrier transport in 2D TI ribbons with hexagonal lattice structure. To account for the random distribution of the vacancy defects, we present a statistical study of varying defect densities by stochastically sampling different defect configurations. We demonstrate that the topological edge states of TI ribbons are fairly robust against a high concentration (up to 2%) of defects. At very high defect densities, we observe an increased inter-edge interaction, mediated by the localisation of the edge states within the bulk region. This effect causes significant back-scattering of the, otherwise protected, edge-states at very high defect concentrations (>2%), resulting in a loss of conduction through the TI ribbon. We discuss how this coherent vacancy scattering can be used to our advantage for the development of TI-based transistors. We find that there is an optimal concentration of vacancies yielding an ON-OFF current ratio of up to two orders of magnitude. Finally, we investigate the importance of spin-orbit coupling on the robustness of the edge states in the TI ribbon and show that increased spin-orbit coupling could further increase the ON-OFF ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457856400002 Publication Date 2019-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 3 Open Access
Notes ; This material is based in part upon work supported by the National Science Foundation under Grant Number 1710066. The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:157464 Serial 5198
Permanent link to this record
 

 
Author Leliaert, J.; Gypens, P.; Milošević, M.V.; Van Waeyenberge, B.; Mulkers, J.
Title Coupling of the skyrmion velocity to its breathing mode in periodically notched nanotracks Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue (up) 2 Pages 024003
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A thorough understanding of the skyrmion motion through nanotracks is a prerequisite to realize the full potential of spintronic applications like the skyrmion racetrack memory. One of the challenges is to place the data, i.e. skyrmions, on discrete fixed positions, e.g. below a read or write head. In the domain-wall racetrack memory, one proposed solution to this problem was patterning the nanotrack with notches. Following this approach, this paper reports on the skyrmion mobility through a nanotrack with periodic notches (constrictions) made using variations in the chiral Dzyaloshinskii-Moriya interaction. We observe that such notches induce a coupling between the mobility and the skyrmion breathing mode, which manifests itself as velocity-dependent oscillations of the skyrmion diameter and plateaus in which the velocity is independent of the driving force. Despite the fact that domain walls are far more rigid objects than skyrmions, we were able to perform an analogous study and, surprisingly, found even larger plateaus of constant velocity. For both systems it is straightforward to tune the velocity at these plateaus by changing the design of the notched nanotrack geometry, e.g. by varying the distance between the notches. Therefore, the notch-induced coupling between the excited modes and the mobility could offer a strategy to stabilize the velocity against unwanted perturbations in racetrack-like applications. In the last part of the paper we focus on the low-current mobility regimes, whose very rich dynamics at nonzero temperatures are very similar to the operating principle of recently developed probabilistic logic devices. This proves that the mobility of nanomagnetic structures through a periodically modulated track is not only interesting from a fundamental point of view, but has a future in many spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449169100001 Publication Date 2018-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access
Notes ; This work is supported by Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL acknowledges his postdoctoral fellowships by the Ghent University special research fund (BOF) and FWO-Vlaanderen. The authors gratefully acknowledge the support of NVIDIA Corporation through donation of Titan Xp and Titan V GPU cards used for this research. ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:155359 Serial 5202
Permanent link to this record