toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J.
  Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language English Wos 001174840900001 Publication Date 2024-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.6 Times cited Open Access Not_Open_Access
  Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466
  Call Number EMAT @ emat @c:irua:204354 Serial 8997
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
  Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
  Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia
  Volume 250 Issue Pages 116186
  Keywords A1 Journal Article; CMT
  Abstract
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos Publication Date 2024-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6462 ISBN Additional Links
  Impact Factor 6 Times cited Open Access
  Notes Research Foundation Flanders; Approved Most recent IF: 6; 2024 IF: 3.747
  Call Number UA @ lucian @ CMT Serial 9116
Permanent link to this record
 

 
Author Vlasov, E.; Heyvaert, W.; Ni, B.; Van Gordon, K.; Girod, R.; Verbeeck, J.; Liz-Marzán, L.M.; Bals, S.
  Title High-Throughput Morphological Chirality Quantification of Twisted and Wrinkled Gold Nanorods Type A1 Journal Article
  Year 2024 Publication ACS Nano Abbreviated Journal ACS Nano
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos Publication Date 2024-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links
  Impact Factor 17.1 Times cited Open Access
  Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.) and from MCIN/AEI/10.13039/501100011033 (Grant PID2020-117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021-097588 to K.V.G.). Funded by the European Union under Project 101131111 − DELIGHT, JV acknowledges the eBEAM project supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07- 2020: emerging paradigms and communities. Approved Most recent IF: 17.1; 2024 IF: 13.942
  Call Number EMAT @ emat @ Serial 9121
Permanent link to this record
 

 
Author Zhou, R.; Neek-Amal, M.; Peeters, F.M.; Bai, B.; Sun, C.
  Title Interlink between Abnormal Water Imbibition in Hydrophilic and Rapid Flow in Hydrophobic Nanochannels Type A1 Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
  Volume 132 Issue 18 Pages 184001
  Keywords A1 Journal Article; CMT
  Abstract Nanoscale extension and refinement of the Lucas-Washburn model is presented with a detailed analysis of recent experimental data and extensive molecular dynamics simulations to investigate rapid water flow and water imbibition within nanocapillaries. Through a comparative analysis of capillary rise in hydrophilic nanochannels, an unexpected reversal of the anticipated trend, with an abnormal peak, of imbibition length below the size of 3 nm was discovered in hydrophilic nanochannels, surprisingly sharing the same physical origin as the well-known peak observed in flow rate within hydrophobic nanochannels. The extended imbibition model is applicable across diverse spatiotemporal scales and validated against simulation results and existing experimental data for both hydrophilic and hydrophobic
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos Publication Date 2024-04-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007 ISBN Additional Links
  Impact Factor 8.6 Times cited 1 Open Access
  Notes We gratefully acknowledge the financial support pro- vided by the National Natural Science Foundation of China (Projects No. 52488201 and No. 52222606). Part of this project was supported by the Flemish Science Foundations (FWO-Vl) and the Iranian National Science Foundation (No. 4025061 and No. 4021261). Approved Most recent IF: 8.6; 2024 IF: 8.462
  Call Number UA @ lucian @ Serial 9122
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
  Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal Article
  Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.
  Volume 24 Issue 18 Pages 5625-5630
  Keywords A1 Journal Article; CMT
  Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos Publication Date 2024-05-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links
  Impact Factor 10.8 Times cited Open Access
  Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712
  Call Number UA @ lucian @ Serial 9123
Permanent link to this record
 

 
Author Albrechts, M.; Tsonev, I.; Bogaerts, A.
  Title Investigation of O atom kinetics in O2plasma and its afterglow Type A1 Journal Article
  Year 2024 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.
  Volume 33 Issue 4 Pages 045017
  Keywords A1 Journal Article; oxygen plasma, pseudo-1D plug-flow kinetic model, O atoms, low-pressure validation, atmospheric pressure microwave torch; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract We have developed a comprehensive kinetic model to study the O atom kinetics in an O<sub>2</sub>plasma and its afterglow. By adopting a pseudo-1D plug-flow formalism within the kinetic model, our aim is to assess how far the O atoms travel in the plasma afterglow, evaluating its potential as a source of O atoms for post-plasma gas conversion applications. Since we could not find experimental data for pure O<sub>2</sub>plasma at atmospheric pressure, we first validated our model at low pressure (1–10 Torr) where very good experimental data are available. Good agreement between our model and experiments was achieved for the reduced electric field, gas temperature and the densities of the dominant neutral species, i.e. O<sub>2</sub>(a), O<sub>2</sub>(b) and O. Subsequently, we confirmed that the chemistry set is consistent with thermodynamic equilibrium calculations at atmospheric pressure. Finally, we investigated the O atom densities in the O<sub>2</sub>plasma and its afterglow, for which we considered a microwave O<sub>2</sub>plasma torch, operating at a pressure between 0.1 and 1 atm, for a flow rate of 20 slm and an specific energy input of 1656 kJ mol<sup>−1</sup>. Our results show that for both pressure conditions, a high dissociation degree of ca. 92% is reached within the discharge. However, the O atoms travel much further in the plasma afterglow for<italic>p</italic>= 0.1 atm (9.7 cm) than for<italic>p</italic>= 1 atm (1.4 cm), attributed to the longer lifetime (3.8 ms at 0.1 atm vs 1.8 ms at 1 atm) resulting from slower three-body recombination kinetics, as well as a higher volumetric flow rate.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos 001209453500001 Publication Date 2024-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.8 Times cited Open Access
  Notes This research was supported by the Horizon Europe Framework Program ‘Research and Innovation Actions’ (RIA), Project CANMILK (Grant No. 101069491). Approved Most recent IF: 3.8; 2024 IF: 3.302
  Call Number PLASMANT @ plasmant @c:irua:205920 Serial 9125
Permanent link to this record
 

 
Author Guerrero, R.M.; Lemir, I.D.; Carrasco, S.; Fernández-Ruiz, C.; Kavak, S.; Pizarro, P.; Serrano, D.P.; Bals, S.; Horcajada, P.; Pérez, Y.
  Title Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH2Catalysts for Selective Olefin Hydrogenation under Ambient Conditions Type A1 Journal Article
  Year 2024 Publication ACS Applied Materials & Interfaces Abbreviated Journal ACS Appl. Mater. Interfaces
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal–organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m–3·day–1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m–3·day–1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos Publication Date 2024-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links
  Impact Factor 9.5 Times cited Open Access
  Notes The authors gratefully acknowledge financial support from “Comunidad de Madrid” and European Regional Development Fund-FEDER through the project HUB MADRID+CIRCULAR; the State Research Agency (MCIN/AEI /10.13039/501100011033) through the grant with reference number CEX2019-000931-M received in the 2019 call for “Severo Ochoa Centres of Excellence” and “María de Maeztu Units of Excellence” of the State Programme for Knowledge Generation and Scientific and Technological Strengthening of the R&D&I System; and MICIU through the project “NAPOLION” (PID2022-139956OB-I00). S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181124N). Approved Most recent IF: 9.5; 2024 IF: 7.504
  Call Number EMAT @ emat @ Serial 9126
Permanent link to this record
 

 
Author Leinders, G.; Grendal, O.G.; Arts, I.; Bes, R.; Prozheev, I.; Orlat, S.; Fitch, A.; Kvashnina, K.; Verwerft, M.
  Title Refinement of the uranium dispersion corrections from anomalous diffraction Type A1 Journal Article
  Year 2024 Publication Journal of Applied Crystallography Abbreviated Journal J Appl Cryst
  Volume 57 Issue 2 Pages 284-295
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The evolution of the uranium chemical state in uranium compounds, principally in the oxides, is of concern in the context of nuclear fuel degradation under storage and repository conditions, and in accident scenarios. The U–O system shows complicated phase relations between single-valence uranium dioxide (UO<sub>2</sub>) and different mixed-valence compounds (<italic>e.g.</italic>U<sub>4</sub>O<sub>9</sub>, U<sub>3</sub>O<sub>7</sub>and U<sub>3</sub>O<sub>8</sub>). To try resolving the electronic structure associated with unique atomic positions, a combined application of diffraction and spectroscopic techniques, such as diffraction anomalous fine structure (DAFS), can be considered. Reported here is the application of two newly developed routines for assessing a DAFS data set, with the aim of refining the uranium X-ray dispersion corrections. High-resolution anomalous diffraction data were acquired from polycrystalline powder samples of UO<sub>2</sub>(containing tetravalent uranium) and potassium uranate (KUO<sub>3</sub>, containing pentavalent uranium) using synchrotron radiation in the vicinity of the U<italic>L</italic><sub>3</sub>edge (17.17 keV). Both routines are based on an iterative refinement of the dispersion corrections, but they differ in either using the intensity of a selection of reflections or doing a full-pattern (Rietveld method) refinement. The uranium dispersion corrections obtained using either method are in excellent agreement with each other, and they show in great detail the chemical shifts and differences in fine structure expected for tetravalent and pentavalent uranium. This approach may open new possibilities for the assessment of other, more complicated, materials such as mixed-valence compounds. Additionally, the DAFS methodology can offer a significant resource optimization because each data set contains both structural (diffraction) and chemical (spectroscopy) information, which can avoid the requirement to use multiple experimental stations at synchrotron sources.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos 001208800100008 Publication Date 2024-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1600-5767 ISBN Additional Links UA library record; WoS full record
  Impact Factor 6.1 Times cited Open Access
  Notes FPS Economy, SF-CORMOD; Approved Most recent IF: 6.1; 2024 IF: 2.495
  Call Number EMAT @ emat @c:irua:206011 Serial 9127
Permanent link to this record
 

 
Author Van Gordon, K.; Ni, B.; Girod, R.; Mychinko, M.; Bevilacqua, F.; Bals, S.; Liz‐Marzán, L.M.
  Title Single Crystal and Pentatwinned Gold Nanorods Result in Chiral Nanocrystals with Reverse Handedness Type A1 Journal Article
  Year 2024 Publication Angewandte Chemie International Edition Abbreviated Journal Angew Chem Int Ed
  Volume Issue Pages
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract Handedness is an essential attribute of chiral nanocrystals, having a major influence on their properties. During chemical growth, the handedness of nanocrystals is usually tuned by selecting the corresponding enantiomer of chiral molecules involved in asymmetric growth, often known as chiral inducers. We report that, even using the same chiral inducer enantiomer, the handedness of chiral gold nanocrystals can be reversed by using Au nanorod seeds with either single crystalline or pentatwinned structure. This effect holds for chiral growth induced both by amino acids and by chiral micelles. Although it was challenging to discern the morphological handedness for<italic>L</italic>‐cystine‐directed particles, even using electron tomography, both cases showed circular dichroism bands of opposite sign, with nearly mirrored chiroptical signatures for chiral micelle‐directed growth, along with quasi‐helical wrinkles of inverted handedness. These results expand the chiral growth toolbox with an effect that might be exploited to yield a host of interesting morphologies with tunable optical properties.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos Publication Date 2024-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851 ISBN Additional Links
  Impact Factor 16.6 Times cited Open Access
  Notes Ana Sánchez-Iglesias is acknowledged for support in the synthesis of pentatwinned gold nanorods. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.), from MCIN/AEI/10.13039/501100011033 (Grant PID2020- 117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021- 097588 to K.V.G.), and by KU Leuven (C14/22/085). This work has been funded by the European Union under Project 101131111—DELIGHT. Funding for open access charge: Universidade de Vigo/ CRUE-CISUG. Approved Most recent IF: 16.6; 2024 IF: 11.994
  Call Number EMAT @ emat @ Serial 9129
Permanent link to this record
 

 
Author Cioni, M.; Delle Piane, M.; Polino, D.; Rapetti, D.; Crippa, M.; Arslan Irmak, E.; Van Aert, S.; Bals, S.; Pavan, G.M.
  Title Sampling real-time atomic dynamics in metal nanoparticles by combining experiments, simulations, and machine learning Type A1 Journal article
  Year 2024 Publication Advanced Science Abbreviated Journal
  Volume Issue Pages 1-13
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic-resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state-of-the-art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark-field scanning transmission electron microscopy enables the acquisition of ten high-resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allow resolving the real-time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions. Experimental and computational techniques are bridged to unveil atomic dynamics in gold nanoparticles (NPs), using annular dark-field scanning transmission electron microscopy and molecular dynamics simulations informed by machine learning. The approach provides unprecedented insights into the real-time structural behaviors of NPs, merging state-of-the-art techniques to accurately characterize their dynamics under realistic conditions. image
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos 001206888000001 Publication Date 2024-04-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record
  Impact Factor 15.1 Times cited Open Access
  Notes This work was supported by the funding received by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 818776- DYNAPOL, no. 770887 PICOMETRICS and no. 815128 REALNANO). The authors also acknowledge the computational resources provided by the Swiss National Supercomputing Center (CSCS), by CINECA, and the Research Foundation Flanders (FWO, Belgium) G.0346.21N. Approved Most recent IF: 15.1; 2024 IF: 9.034
  Call Number UA @ admin @ c:irua:205442 Serial 9171
Permanent link to this record
 

 
Author Arisnabarreta, N.; Hao, Y.; Jin, E.; Salame, A.; Muellen, K.; Robert, M.; Lazzaroni, R.; Van Aert, S.; Mali, K.S.; De Feyter, S.
  Title Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO₂ reduction Type A1 Journal article
  Year 2024 Publication Advanced energy materials Abbreviated Journal
  Volume Issue Pages
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos 001177577200001 Publication Date 2024-02-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record
  Impact Factor 27.8 Times cited Open Access
  Notes N.A. acknowledges a postdoctoral fellowship from the Research Foundation- Flanders (FWO) via grant 12ZS623N. S.D.F. acknowledges support from FWO (G0A4120N, G0H2122N, G0A5U24N), KU Leuven Internal Funds (grants C14/18/06, C14/19/079, C14/23/090), European Union under the Horizon Europe grant 101046231 (FantastiCOF), and M-ERA.NET via FWO (G0K9822N). S.D.F., K.M., Y.H., R.L., and S.V.A. were thankful to the FWO and FNRS for the financial support through the EOS program (grant 30489208, 40007495). Research in Mons was also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif- CÉCI, and by the Walloon Region (ZENOBE and LUCIA Tier-1 supercomputers). E.J. appreciated the support from the Alexander von Humboldt Foundation, the Max Planck Society, the FLAG-ERA Grant OPERA by DFG 437130745, the National Natural Science Foundation of China (22288101), and the 111 Project (B17020). Partial financial support to M.R. from the Institut Universitaire de France (IUF) was warmly thanked. Approved Most recent IF: 27.8; 2024 IF: 16.721
  Call Number UA @ admin @ c:irua:204856 Serial 9172
Permanent link to this record
 

 
Author Tong, J.; Fu, Y.; Domaretskiy, D.; Della Pia, F.; Dagar, P.; Powell, L.; Bahamon, D.; Huang, S.; Xin, B.; Costa Filho, R.N.; Vega, L.F.; Grigorieva, I.V.; Peeters, F.M.; Michaelides, A.; Lozada-Hidalgo, M.
  Title Control of proton transport and hydrogenation in double-gated graphene Type A1 Journal Article
  Year 2024 Publication Nature Abbreviated Journal Nature
  Volume 630 Issue 8017 Pages 619-624
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
  Abstract The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor–insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriersand various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metalsor chemically functionalizing the lattice. But these techniques can compromise other properties, such as ion selectivity or mechanical stability. Here we show that independent control of the electric field,<italic>E</italic>, at around 1 V nm<sup>−1</sup>, and charge-carrier density,<italic>n</italic>, at around 1 × 10<sup>14</sup> cm<sup>−2</sup>, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on–off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of<italic>E</italic>and<italic>n</italic>, which is a new technique for the study of 2D electrode–electrolyte interfaces.
  Address
  Corporate Author Thesis
  Publisher (up) Place of Publication Editor
  Language Wos Publication Date 2024-06-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0028-0836 ISBN Additional Links
  Impact Factor 64.8 Times cited Open Access
  Notes This work was supported by UKRI (EP/X017745: M.L.-H; EP/X035891: A.M.), the Directed Research Projects Program of the Research and Innovation Center for Graphene and 2D Materials at Khalifa University (RIC2D-D001: M.L.-H., L.F.V. and D.B.), The Royal Society (URF\R1\201515: M.L.-H.) and the European Research Council (101071937: A.M.). Part of this work was supported by the Flemish Science Foundation (FWO-Vl, G099219N). A.M. acknowledges access to the UK national high-performance computing service (ARCHER2). Approved Most recent IF: 64.8; 2024 IF: 40.137
  Call Number CMT @ cmt @ Serial 9247
Permanent link to this record
 

 
Author Peeters, F.M.; de Boeck, J.
  Title Hybrid magnetic-semiconductor nanostructures Type H3 Book chapter
  Year 1999 Publication Abbreviated Journal
  Volume Issue Pages 345-426
  Keywords H3 Book chapter; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher (up) Academic Press Place of Publication New York Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:24150 Serial 1520
Permanent link to this record
 

 
Author Parizel, P.M.; Corthouts, B.; Snoeckx, A.; de Backer, J.; de Backer, W.
  Title Klinische semiologie en radiologie Type H3 Book chapter
  Year 2007 Publication Abbreviated Journal
  Volume Issue Pages 133-146
  Keywords H3 Book chapter; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract
  Address
  Corporate Author Thesis
  Publisher (up) Acco Place of Publication Leuven Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:63801 Serial 1765
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
  Title Comment on “Chiral tunneling in trilayer graphene” [Appl. Phys. Lett. 100, 163102 (2012)] Type Editorial
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 101 Issue 22 Pages 226101-1
  Keywords Editorial; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher (up) Amer inst physics Place of Publication Melville Editor
  Language Wos 000311967000107 Publication Date 2012-11-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 7 Open Access
  Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:105999 Serial 408
Permanent link to this record
 

 
Author Silhanek, A.V.; van de Vondel, J.; Moshchalkov, V.V.; Metlushko, V.; Ilic, B.; Misko, V.R.; Peeters, F.M.
  Title Comment on “Transverse rectification in superconducting thin films with arrays of asymmetric defects” Type Editorial
  Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 92 Issue 17 Pages
  Keywords Editorial; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher (up) Amer inst physics Place of Publication Melville Editor
  Language Wos 000255524000100 Publication Date 2008-05-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 20 Open Access
  Notes Approved Most recent IF: 3.411; 2008 IF: 3.726
  Call Number UA @ lucian @ c:irua:68867 Serial 412
Permanent link to this record
 

 
Author Baelus, B.J.; Kanda, A.; Peeters, F.M.; Ootuka, Y.; Kadowaki
  Title Different temperature dependence of the phase boundary for multivortex and giant vortex states in mesoscopic superconductors Type P1 Proceeding
  Year 2006 Publication AIP conference proceedings T2 – 24th International Conference on Low Temperature Physics (LT24), AUG 10-17, 2005, Orlando, FL Abbreviated Journal
  Volume Issue Pages 743-744
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract Within the framework of the nonlinear Ginzburg-Landau theory, we calculated the full phase diagram for a superconducting disk with radius R = 4 (T = 0) and we studied the behavior of the penetration and expulsion fields as a function of temperature for multivortex and giant vortex states.
  Address
  Corporate Author Thesis
  Publisher (up) Amer inst physics Place of Publication Melville Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume 850 Series Issue Part a-b Edition
  ISSN 0-7354-0347-3; 0094-243x ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:103642 Serial 696
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Senger, R.T.; Sahin, H.
  Title Nanoribbons: From fundamentals to state-of-the-art applications Type A1 Journal article
  Year 2016 Publication Applied physics reviews Abbreviated Journal Appl Phys Rev
  Volume 3 Issue 3 Pages 041302
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Atomically thin nanoribbons (NRs) have been at the forefront of materials science and nanoelectronics in recent years. State-of-the-art research on nanoscale materials has revealed that electronic, magnetic, phononic, and optical properties may differ dramatically when their one-dimensional forms are synthesized. The present article aims to review the recent advances in synthesis techniques and theoretical studies on NRs. The structure of the review is organized as follows: After a brief introduction to low dimensional materials, we review different experimental techniques for the synthesis of graphene nanoribbons (GNRs) with their advantages and disadvantages. In addition, theoretical investigations on width and edge-shape-dependent electronic and magnetic properties, functionalization effects, and quantum transport properties of GNRs are reviewed. We then devote time to the NRs of the transition metal dichalcogenides (TMDs) family. First, various synthesis techniques, E-field-tunable electronic and magnetic properties, and edge-dependent thermoelectric performance of NRs of MoS2 and WS2 are discussed. Then, strongly anisotropic properties, growth-dependent morphology, and the weakly width-dependent bandgap of ReS2 NRs are summarized. Next we discuss TMDs having a T-phase morphology such as TiSe2 and stable single layer NRs of mono-chalcogenides. Strong edge-type dependence on characteristics of GaS NRs, width-dependent Seebeck coefficient of SnSe NRs, and experimental analysis on the stability of ZnSe NRs are reviewed. We then focus on the most recently emerging NRs belonging to the class of transition metal trichalcogenides which provide ultra-high electron mobility and highly anisotropic quasi-1D properties. In addition, width-, edge-shape-, and functionalization-dependent electronic and mechanical properties of blackphosphorus, a monoatomic anisotropic material, and studies on NRs of group IV elements (silicene, germanene, and stanene) are reviewed. Observation of substrate-independent quantum well states, edge and width dependent properties, the topological phase of silicene NRs are reviewed. In addition, H-2 concentration-dependent transport properties and anisotropic dielectric function of GeNRs and electric field and strain sensitive I-V characteristics of SnNRs are reviewed. We review both experimental and theoretical studies on the NRs of group III-V compounds. While defect and N-termination dependent conductance are highlighted for boron nitride NRs, aluminum nitride NRs are of importance due to their dangling bond, electric field, and strain dependent electronic and magnetic properties. Finally, superlattice structure of NRs of GaN/AlN, Si/Ge, G/BN, and MoS2/WS2 is reviewed. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher (up) Amer inst physics Place of Publication Melville Editor
  Language Wos 000390443800013 Publication Date 2016-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.667 Times cited 63 Open Access
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges the support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through Project No. 114F397. F.M.P. was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 13.667
  Call Number UA @ lucian @ c:irua:140299 Serial 4457
Permanent link to this record
 

 
Author Zografos, O.; Dutta, S.; Manfrini, M.; Vaysset, A.; Sorée, B.; Naeemi, A.; Raghavan, P.; Lauwereins, R.; Radu, I.P.
  Title Non-volatile spin wave majority gate at the nanoscale Type A1 Journal article
  Year 2017 Publication AIP advances T2 – 61st Annual Conference on Magnetism and Magnetic Materials (MMM), OCT 31-NOV 04, 2016, New Orleans, LA Abbreviated Journal Aip Adv
  Volume 7 Issue 5 Pages 056020
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract A spin wave majority fork-like structure with feature size of 40 nm, is presented and investigated, through micromagnetic simulations. The structure consists of three merging out-of-plane magnetization spin wave buses and four magneto-electric cells serving as three inputs and an output. The information of the logic signals is encoded in the phase of the transmitted spin waves and subsequently stored as direction of magnetization of the magneto-electric cells upon detection. The minimum dimensions of the structure that produce an operational majority gate are identified. For all input combinations, the detection scheme employed manages to capture the majority phase result of the spin wave interference and ignore all reflection effects induced by the geometry of the structure. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  Address
  Corporate Author Thesis
  Publisher (up) Amer inst physics Place of Publication Melville Editor
  Language Wos 000402797100177 Publication Date 2017-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.568 Times cited 13 Open Access
  Notes ; ; Approved Most recent IF: 1.568
  Call Number UA @ lucian @ c:irua:144288 Serial 4673
Permanent link to this record
 

 
Author Vishwakarma, M.; Thota, N.; Karakulina, O.; Hadermann, J.; Mehta, B.R.
  Title Role of graphene inter layer on the formation of the MoS2 – CZTS interface during growth Type P1 Proceeding
  Year 2018 Publication (icc-2017) Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.
  Address
  Corporate Author Thesis
  Publisher (up) Amer inst physics Place of Publication Melville Editor
  Language Wos 000436313003046 Publication Date 2018-05-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume 1953 Series Issue Edition
  ISSN 978-0-7354-1648-2; 0094-243x; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access OpenAccess
  Notes ; The authors acknowledge support provided by DST project. M.V. acknowledges IIT Delhi for MHRD fellowship. Prof. B. R. Mehta acknowledges the support of the Schlumberger chair professorship. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:153203 Serial 5126
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B.
  Title Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 93 Issue 93 Pages 247401
  Keywords Editorial; Condensed Matter Theory (CMT)
  Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.
  Address
  Corporate Author Thesis
  Publisher (up) Amer physical soc Place of Publication College pk Editor
  Language Wos 000377802200009 Publication Date 2016-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes ; ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:134601 Serial 4151
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M.
  Title Comment on “Impurity spectra of graphene under electric and magnetic fields” Type Editorial
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 20 Pages 207403
  Keywords Editorial; Condensed Matter Theory (CMT)
  Abstract In a recent paper [Phys. Rev. B 89, 155403 (2014)], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge vertical bar alpha vertical bar = 0.5 and, to obtain correct results for alpha > 0.5, a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of alpha.
  Address
  Corporate Author Thesis
  Publisher (up) Amer physical soc Place of Publication College pk Editor
  Language Wos 000433288800015 Publication Date 2018-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 5 Open Access
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:152042UA @ admin @ c:irua:152042 Serial 5017
Permanent link to this record
 

 
Author Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M.;
  Title Au@Ag nanoparticles : halides stabilize {100} facets Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 4 Issue 13 Pages 2209-2216
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.
  Address
  Corporate Author Thesis
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000321809500018 Publication Date 2013-06-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.353 Times cited 131 Open Access
  Notes 267867 Plasmaquo; 246791 COUNTATOMS; 262348 ESMI; FWO Approved Most recent IF: 9.353; 2013 IF: 6.687
  Call Number UA @ lucian @ c:irua:109811 Serial 204
Permanent link to this record
 

 
Author Berends, A.C.; Rabouw, F.T.; Spoor, F.C.M.; Bladt, E.; Grozema, F.C.; Houtepen, A.J.; Siebbeles, L.D.A.; de Donega, C.M.
  Title Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 7 Issue 7 Pages 3503-3509
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Luminescent copper indium sulfide (CIS) nanocrystals are a potential solution to the toxicity issues associated with Cd- and Pb-based nanocrystals. However, the development of high-quality CIS nanocrystals has been complicated by insufficient knowledge of the electronic structure and of the factors that lead to luminescence quenching. Here we investigate the exciton decay pathways in CIS nanocrystals using time resolved photoluminescence and transient absorption spectroscopy. Core-only CIS nanocrystals with low quantum yield are compared to core/shell nanocrystals (CIS/ZnS and CIS/CdS) with higher quantum yield. Our measurements support the model of photoluminescence by radiative recombination of a conduction band electron with a localized hole. Moreover, we find that photoluminescence quenching in low-quantum-yield nanocrystals involves initially uncoupled decay pathways for the electron and hole. The electron decay pathway determines whether the exciton recombines radiatively or nonradiatively. The development of high-quality CIS nanocrystals should therefore focus on the elimination of electron traps.
  Address
  Corporate Author Thesis
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000382603300037 Publication Date 2016-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.353 Times cited 67 Open Access
  Notes Approved Most recent IF: 9.353
  Call Number UA @ lucian @ c:irua:135715 Serial 4308
Permanent link to this record
 

 
Author Sathiya, M.; Thomas, J.; Batuk, D.; Pimenta, V.; Gopalan, R.; Tarascon, J.-M.
  Title Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-Ion cells based on P2-NaxMO2 electrodes Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 29 Issue 14 Pages 5948-5956
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Sodium ion battery technology is gradually advancing and can be viewed as a viable alternative to lithium ion batteries in niche applications. One of the promising positive electrode candidates is P2 type layered sodium transition metal oxide, which offers attractive sodium ion conductivity. However, the reversible capacity of P2 phases is limited by the inability to directly synthesize stoichiometric compounds with a sodium to transition metal ratio equal to 1. To alleviate this issue, we report herein the in situ synthesis of P2-NaxO2 (x <= 0.7, M = transition metal ions)-Na2CO3 composites. We find that sodium carbonate acts as a sacrificial salt, providing Na+ ion to increase the reversible capacity of the P2 phase in sodium ion full cells, and also as a useful additive that stabilizes the formation of P2 over competing P3 phases. We offer a new phase diagram for tuning the synthesis of the P2 phase under various experimental conditions and demonstrate, by in situ XRD analysis, the role of Na2CO3 as a sodium reservoir in full sodium ion cells. These results provide insights into the practical use of P2 layered materials and can be extended to a variety of other layered phases.
  Address
  Corporate Author Thesis
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000406573200026 Publication Date 2017-07-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 26 Open Access Not_Open_Access
  Notes ; M.S., J.T., and R.G. acknowledge the financial support received from the Department of Science and Technology (DST-SERC), Government of India under the funding from the TRC Grant Agreement No. AI/1/65/ARCI/2014. The authors are thankful to Dr. Sundararajan, Chairman, TRC and Dr. G. Padmanabham, Director, ARCI for helpful discussions. Initial microscopy analysis by Dr. M. B. Sahana, Dr. Prabu, and Mr. Ravi Gautham of ARCI are greatly acknowledged. The elemental analysis by Dr. Domitille Giaume, IRCP – ENSCP, Chimie Paris Tech, Paris is greatly acknowledged. ; Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:145759 Serial 4740
Permanent link to this record
 

 
Author Yang, C.; Laberty-Robert, C.; Batuk, D.; Cibin, G.; Chadwick, A.V.; Pimenta, V.; Yin, W.; Zhang, L.; Tarascon, J.-M.; Grimaud, A.
  Title Phosphate ion functionalization of perovskite surfaces for enhanced oxygen evolution reaction Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 8 Issue 15 Pages 3466-3472
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Recent findings revealed that surface oxygen can participate in the oxygen evolution reaction (OER) for the most active catalysts, which eventually triggers a new mechanism for which the deprotonation of surface intermediates limits the OER activity. We propose in this work a “dual strategy” in which tuning the electronic properties of the oxide, such as La1-xSrxCoO3-delta, can be dissociated from the use of surface functionalization with phosphate ion groups (P-i) that enhances the interfacial proton transfer. Results show that the P-i functionalized La0.5Sr0.5CoO3-delta gives rise to a significant enhancement of the OER activity when compared to La0.5Sr0.5Co3-delta and LaCoO3. We further demonstrate that the P-i surface functionalization selectivity enhances the activity when the OER kinetics is limited by the proton transfer. Finally, this work suggests that tuning the catalytic activity by such a “dual approach” may be a new and largely unexplored avenue for the design of novel high-performance catalysts.
  Address
  Corporate Author Thesis
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000407191300003 Publication Date 2017-07-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.353 Times cited 31 Open Access OpenAccess
  Notes ; C.Y., J.-M.T., D.B., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. ; Approved Most recent IF: 9.353
  Call Number UA @ lucian @ c:irua:145730 Serial 4747
Permanent link to this record
 

 
Author Arias-Duque, C.; Bladt, E.; Munoz, M.A.; Hernandez-Garrido, J.C.; Cauqui, M.A.; Rodriguez-Izquierdo, J.M.; Blanco, G.; Bals, S.; Calvino, J.J.; Perez-Omil, J.A.; Yeste, M.P.
  Title Improving the redox response stability of ceria-zirconia nanocatalysts under harsh temperature conditions Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 29 Issue 29 Pages 9340-9350
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract <script type='text/javascript'>document.write(unpmarked('By depositing ceria on the surface of yttrium stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 degrees C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 degrees C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 degrees C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.'));
  Address
  Corporate Author Thesis
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000415911600047 Publication Date 2017-10-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 20 Open Access OpenAccess
  Notes ; Financial support from MINECO/FEDER (Project ref: MAT2013-40823-R), Junta de Andalucia (FQM334 and FQM110), and EU FP7 (ESTEEM2) are acknowledged. E.B. and S.B. acknowledges financial support from European Research Council (ERC- Starting Grant #33S078-COLOURA-TOM). J.C.H.-G. acknowledges support from the Ramon y Cajal Fellowships Program of MINECO (RYC-2012-10004). ; Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:147706UA @ admin @ c:irua:147706 Serial 4880
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G.
  Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 29 Issue 20 Pages 8901-8913
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));
  Address
  Corporate Author Thesis
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000413884900037 Publication Date 2017-09-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess
  Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:147432 Serial 4886
Permanent link to this record
 

 
Author Pimenta, V.; Sathiya, M.; Batuk, D.; Abakumov, A.M.; Giaume, D.; Cassaignon, S.; Larcher, D.; Tarascon, J.-M.
  Title Synthesis of Li-Rich NMC : a comprehensive study Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 29 Issue 23 Pages 9923-9936
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract <script type='text/javascript'>document.write(unpmarked('Li-rich NMC are considered nowadays as one of the most promising candidates for high energy density cathodes. One significant challenge is nested in adjusting their synthesis conditions to reach optimum electrochemical performance, but no consensus has been reached yet on the ideal synthesis protocol. Herein, we revisited the elaboration of Li-rich NMC electrodes by focusing on the science involved through each synthesis steps using carbonate Ni0.1625Mn0.675Co0.1625CO3 precursor coprecipitation combined with solid state synthesis. We demonstrated the effect of precursors concentration on the kinetics of the precipitation reaction and provided clues to obtain spherically agglomerated NMC carbonates of different sizes. Moreover, we highlighted the strong impact of the Li2CO3/NMC carbonate ratio on the morphology and particles size of Li-rich NMC and subsequently on their electrochemical performance. Ratio of 1.35 was found to reproducibly give the best performance with namely a first discharge capacity of 269 mAh g(-1) and capacity retention of 89.6% after 100 cycles. We hope that our results, which reveal how particle size, morphology, and phase composition affect the materials electrochemical performance, will help in reconciling literature data while providing valuable fundamental information for up scaling approaches.'));
  Address
  Corporate Author Thesis
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000418206600010 Publication Date 2017-11-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 23 Open Access Not_Open_Access
  Notes ; The authors acknowledge the French Research Network on Electrochemical Energy Storage (RS2E). V.P and J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. The authors are thankful to Dr. G. Rousse for the help on Rietveld refinements. ; Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:148530 Serial 4899
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M.
  Title Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 30 Issue 30 Pages 2400-2413
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.
  Address
  Corporate Author Thesis
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000430023700027 Publication Date 2018-03-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 85 Open Access OpenAccess
  Notes ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466
  Call Number UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: