|   | 
Details
   web
Records
Author Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam, M.P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; Ledvina, M.; Wen, A.M.; Steinmetz, N.F.; Cigler, P.;
Title Fluorescent nanodiamonds embedded in biocompatible translucent shells Type A1 Journal article
Year 2014 Publication Small Abbreviated Journal Small
Volume 10 Issue 6 Pages 1106-1115
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 1020-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000333538000012 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 79 Open Access Not_Open_Access
Notes 262348 ESMI; Hercules; FWO Approved Most recent IF: 8.643; 2014 IF: 8.368
Call Number UA @ lucian @ c:irua:115566 Serial 1234
Permanent link to this record
 

 
Author Vlasov, I.I.; Shenderova, O.; Turner, S.; Lebedev, O.I.; Basov, A.A.; Sildos, I.; Rähn, M.; Shiryaev, A.A.; Van Tendeloo, G.
Title Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond Type A1 Journal article
Year 2010 Publication Small Abbreviated Journal Small
Volume 6 Issue 5 Pages 687-694
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract An efficient method to investigate the microstructure and spatial distribution of nitrogen and nitrogen-vacancy (N-V) defects in detonation nanodiamond (DND) with primary particle sizes ranging from approximately 3 to 50 nm is presented. Detailed analysis reveals atomic nitrogen concentrations as high as 3 at% in 50% of diamond primary particles with sizes smaller than 6 nm. A non-uniform distribution of nitrogen within larger primary DND particles is also presented, indicating a preference for location within the defective central part or at twin boundaries. A photoluminescence (PL) spectrum with well-pronounced zero-phonon lines related to the N-V centers is demonstrated for the first time for electron-irradiated and annealed DND particles at continuous laser excitation. Combined Raman and PL analysis of DND crystallites dispersed on a Si substrate leads to the conclusion that the observed N-V luminescence originates from primary particles with sizes exceeding 30 nm. These findings demonstrate that by manipulation of the size/nitrogen content in DND there are prospects for mass production of nanodiamond photoemitters based on bright and stable luminescence from nitrogen-related defects.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000275972400013 Publication Date 2010-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810;1613-6829; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 84 Open Access
Notes Esteem 026019 Approved Most recent IF: 8.643; 2010 IF: 7.336
Call Number UA @ lucian @ c:irua:82364 Serial 2341
Permanent link to this record
 

 
Author Gengler, R.Y.N.; Toma, L.M.; Pardo, E.; Lloret, F.; Ke, X.; Van Tendeloo, G.; Gournis, D.; Rudolf, P.
Title Prussian blue analogues of reduced dimensionality Type A1 Journal article
Year 2012 Publication Small Abbreviated Journal Small
Volume 8 Issue 16 Pages 2532-2540
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is built up by means of a modified Langmuir-Blodgett technique, where the PBA is synthesized from precursors in a self-limited reaction on a clay mineral surface. The focus of this work is understanding the magnetic properties of the PBAs in different periodic, low-dimensional arrangements, and the influence of the “on surface” synthesis on the final properties and dimensionality of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000307390300012 Publication Date 2012-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 17 Open Access
Notes Approved Most recent IF: 8.643; 2012 IF: 7.823
Call Number UA @ lucian @ c:irua:101104 Serial 2736
Permanent link to this record
 

 
Author Wang, Y.; Belén Serrano, A.; Sentosun, K.; Bals, S.; Liz-Marzán, L.M.
Title Stabilization and encapsulation of gold nanostars mediated by dithiols Type A1 Journal article
Year 2015 Publication Small Abbreviated Journal Small
Volume 11 Issue 11 Pages 4314-4320
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface chemistry plays a pivotal role in regulating the morphology of nanoparticles, maintaining colloidal stability, and mediating the interaction with target analytes toward practical applications such as surface-enhanced Raman scattering (SERS)-based sensing and imaging. The use of a binary ligand mixture composed of 1,4-benzenedithiol (BDT) and hexadecyltrimethylammonium chloride (CTAC) to provide gold nanostars with long-term stability is reported. This is despite BDT being a bifunctional ligand, which usually leads to bridging and loss of colloidal stability. It is found however that neither BDT nor CTAC alone are able to provide sufficient colloidal and chemical stability. BDT-coated Au nanostars are additionally used as seeds to direct the encapsulation with a gold outer shell, leading to the formation of unusual nanostructures including semishell-coated gold nanostars, which are characterized by high-resolution electron microscopy and electron tomography. Finally, BDT is exploited as a probe to reveal the enhanced local electric fields in the different nanostructures, showing that the semishell configuration provides significantly high SERS signals as compared to other coreshell configurations obtained during seeded growth, including full shells.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000360852900009 Publication Date 2015-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 36 Open Access OpenAccess
Notes 267867 Plasmaquo; 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643; 2015 IF: 8.368
Call Number c:irua:127571 Serial 3136
Permanent link to this record
 

 
Author Goris, B.; van Huis, M.A.; Bals, S.; Zandbergen, H.W.; Manna, L.; Van Tendeloo, G.
Title Thermally induced structural and morphological changes of CdSe/CdS octapods Type A1 Journal article
Year 2012 Publication Small Abbreviated Journal Small
Volume 8 Issue 6 Pages 937-942
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Branched nanostructures are of great interest because of their promising optical and electronic properties. For successful and reliable integration in applications such as photovoltaic devices, the thermal stability of the nanostructures is of major importance. Here the different domains (CdSe cores, CdS pods) of the heterogeneous octapods are shown to have different thermal stabilities, and heating is shown to induce specific shape changes. The octapods are heated from room temperature to 700 °C, and investigated using (analytical and tomographic) transmission electron microscopy (TEM). At low annealing temperatures, pure Cd segregates in droplets at the outside of the octapods, indicating non-stochiometric composition of the octapods. Furthermore, the tips of the pods lose their faceting and become rounded. Further heating to temperatures just below the sublimation temperature induces growth of the zinc blende core at the expense of the wurtzite pods. At higher temperatures, (500700 °C), sublimation of the octapods is observed in real time in the TEM. Three-dimensional tomographic reconstructions reveal that the four pods pointing into the vacuum have a lower thermal stability than the four pods that are in contact with the support.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000301718800021 Publication Date 2012-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 20 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 8.643; 2012 IF: 7.823
Call Number UA @ lucian @ c:irua:95040 Serial 3633
Permanent link to this record
 

 
Author Grodzińska, D.; Evers, W.H.; Dorland, R.; van Rijssel, J.; van Huis, M.A.; Meijerink, A.; de Mello Donegá, C.; Vanmaekelbergh, D.
Title Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots Type A1 Journal article
Year 2011 Publication Small Abbreviated Journal Small
Volume 7 Issue 24 Pages 3493-3501
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The optical properties of PbSe/CdSe core/shell quantum dots with core sizes smaller than 4 nm in the 5300 K range are reported. The photoluminescence spectra show two peaks, which become increasingly separated in energy as the core diameter is reduced below 4 nm. It is shown that these peaks are due to intrinsic exciton transitions in each quantum dot, rather than emission from different quantum dot sub-ensembles. Most likely, the energy separation between the peaks is due to inter-valley coupling between the L-points of PbSe. The temperature dependence of the relative intensities of the peaks implies that the two emitting states are not in thermal equilibrium and that dark exciton states must play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000298298300012 Publication Date 2011-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 23 Open Access
Notes Approved Most recent IF: 8.643; 2011 IF: 8.349
Call Number UA @ lucian @ c:irua:94371 Serial 3781
Permanent link to this record
 

 
Author Zheng, G.; de Marchi, S.; Lopez-Puente, V.; Sentosun, K.; Polavarapu, L.; Perez-Juste, I.; Hill, E.H.; Bals, S.; Liz-Marzan, L.M.; Pastoriza-Santos, I.; Perez-Juste, J.
Title Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility Type A1 Journal article
Year 2016 Publication Small Abbreviated Journal Small
Volume 12 Issue 12 Pages 3935-3943
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hybrid nanostructures composed of metal nanoparticles and metal-organic frameworks (MOFs) have recently received increasing attention toward various applications due to the combination of optical and catalytic properties of nanometals with the large internal surface area, tunable crystal porosity and unique chemical properties of MOFs. Encapsulation of metal nanoparticles of well-defined shapes into porous MOFs in a core-shell type configuration can thus lead to enhanced stability and selectivity in applications such as sensing or catalysis. In this study, the encapsulation of single noble metal nanoparticles with arbitrary shapes within zeolitic imidazolate-based metal organic frameworks (ZIF-8) is demonstrated. The synthetic strategy is based on the enhanced interaction between ZIF-8 nanocrystals and metal nanoparticle surfaces covered by quaternary ammonium surfactants. High resolution electron microscopy and tomography confirm a complete core-shell morphology. Such a well-defined morphology allowed us to study the transport of guest molecules through the ZIF-8 porous shell by means of surface-enhanced Raman scattering by the metal cores. The results demonstrate that even molecules larger than the ZIF-8 aperture and pore size may be able to diffuse through the framework and reach the metal core.
Address Departamento de Quiimica Fisica, Universidade de Vigo, 36310, Vigo, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000383375500006 Publication Date 2016-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 140 Open Access OpenAccess
Notes This work was supported by the Spanish Ministerio de Economía y Competitividad (MAT2013-45168-R) and the Xunta de Galicia/FEDER (Grant No. GPC2013-006; INBIOMED-FEDER “Unha maneira de facer Europa”). L.M.L.-M. acknowledges funding from the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement No. 312184, SACS). S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). The authors thank Prof. Paolo Fornasiero for the nitrogen adsorption measurements. E.H.H. acknowledges the Spanish MINECO for a Juan de la Cierva fellowship. S.D.M. acknowledges the support from CsF/CNPq-Brazil fellowship.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643
Call Number c:irua:133953 Serial 4083
Permanent link to this record
 

 
Author Nord, M.; Semisalova, A.; Kákay, A.; Hlawacek, G.; MacLaren, I.; Liersch, V.; Volkov, O.M.; Makarov, D.; Paterson, G.W.; Potzger, K.; Lindner, J.; Fassbender, J.; McGrouther, D.; Bali, R.
Title Strain Anisotropy and Magnetic Domains in Embedded Nanomagnets Type A1 Journal article
Year 2019 Publication Small Abbreviated Journal Small
Volume Issue Pages 1904738
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000495563400001 Publication Date 2019-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 2 Open Access
Notes Deutsche Forschungsgemeinschaft, BA5656/1‐1 ; Engineering and Physical Sciences Research Council, EP/M009963/1 ; Approved Most recent IF: 8.643
Call Number EMAT @ emat @c:irua:164059 Serial 5376
Permanent link to this record
 

 
Author Mychinko, M.; Skorikov, A.; Albrecht, W.; Sánchez‐Iglesias, A.; Zhuo, X.; Kumar, V.; Liz‐Marzán, L.M.; Bals, S.
Title The Influence of Size, Shape, and Twin Boundaries on Heat‐Induced Alloying in Individual Au@Ag Core–Shell Nanoparticles Type A1 Journal article
Year 2021 Publication Small Abbreviated Journal Small
Volume Issue Pages 2102348
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Environmental conditions during real-world application of bimetallic core–shell nanoparticles (NPs) often include the use of elevated temperatures, which are known to cause elemental redistribution, in turn significantly altering the properties of these nanomaterials. Therefore, a thorough understanding of such processes is of great importance. The recently developed combination of fast electron tomography with in situ heating holders is a powerful approach to investigate heat-induced processes at the single NP level, with high spatial resolution in 3D. In combination with 3D finite-difference diffusion simulations, this method can be used to disclose the influence of various NP parameters on the diffusion dynamics in Au@Ag core–shell systems. A detailed study of the influence of heating on atomic diffusion and alloying for Au@Ag NPs with varying core morphology and crystallographic details is carried out. Whereas the core shape and aspect ratio of the NPs play a minor role, twin boundaries are found to have a strong influence on the elemental diffusion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000673326600001 Publication Date 2021-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.643 Times cited 8 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO) and European Commission (grant 731019, EUSMI and grant 26019, ESTEEM). This work was performed under the Maria de Maeztu Units of Excellence Programme-Grant No. MDM-2017-0720, Ministry of Science and Innovation.; sygmaSB Approved Most recent IF: 8.643
Call Number EMAT @ emat @c:irua:179856 Serial 6804
Permanent link to this record
 

 
Author Yan, L.; Niu, H.J.; Duong, G.V.; Suchomel, M.R.; Bacsa, J.; Chalker, P.R.; Hadermann, J.; Van Tendeloo, G.; Rosseinsky, M.J.
Title Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth artificial interfaces in complex unit cells Type A1 Journal article
Year 2011 Publication Chemical science Abbreviated Journal Chem Sci
Volume 2 Issue 2 Pages 261-272
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The (AO)(ABO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3, but low-temperature layer-by-layer thin film methods allow the preparation of materials with thicker perovskite blocks, exploiting high surface mobility and lattice matching with the substrate. This paper describes the growth of an n = 6 member CaO[(CSMO)2(LCMO)2 (CSMO)2] in which the six unit cell perovskite block is sub-divided into two central La0.67Ca0.33MnO3 (LCMO) and two terminal Ca0.85Sm0.15MnO3 (CSMO) layers to allow stabilization of the rock salt layer and variation of the transition metal charge.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000286327600010 Publication Date 2010-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 16 Open Access
Notes Approved Most recent IF: 8.668; 2011 IF: 7.525
Call Number UA @ lucian @ c:irua:88652 Serial 300
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.;
Title Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
Year 2014 Publication Chemical science Abbreviated Journal Chem Sci
Volume 5 Issue 4 Pages 1599-1610
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000332467400044 Publication Date 2014-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 24 Open Access
Notes Approved Most recent IF: 8.668; 2014 IF: 9.211
Call Number UA @ lucian @ c:irua:117064 Serial 1045
Permanent link to this record
 

 
Author Lieberman, C.M.; Filatov, A.S.; Wei, Z.; Rogachev, A.Y.; Abakumov, A.M.; Dikarev, E.V.
Title Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors Type A1 Journal article
Year 2015 Publication Chemical science Abbreviated Journal Chem Sci
Volume 6 Issue 6 Pages 2835-2842
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel series of mixed-valent, heteroleptic transition metal diketonates that can be utilized as prospective single-source precursors for the low-temperature preparation of oxide materials are reported. The first mixed-valent iron beta-diketonates with different Fe-III/Fe-II ratios have been synthesized by applying the mixed-ligand approach. Based on nearly quantitative reaction yields and analysis of iron-oxygen bonds, these compounds were formulated as [Fe-III(acac)(3)][Fe-II(hfac)(2)] (1) and [Fe-II(hfac)(2)][Fe-III(acac)(3)][Fe-II(hfac)(2)] (2). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated Fe-II centers chelated by two hfac (hexafluoroacetylacetonate) ligands with electron-withdrawing substituents maintain bridging interactions with oxygen atoms of electron-donating acac (acetylacetonate) groups that chelate the neighboring Fe-III atoms. Switching the ligands on Fe-III and Fe-II atoms in starting reagents resulted in the instant ligand exchange between iron centers and in yet another polynuclear homometallic diketonate [Fe-II(hfac)(2)][Fe-III(acac)(2)(hfac)][Fe-II(hfac)(2)] (3) that adheres to the same bonding pattern as in complexes 1 and 2. The proposed synthetic methodology has been extended to design heterometallic diketonates with different M : M' ratios. Homometallic parent molecules have been used as templates to obtain heterometallic mixed-valent [Fe-III(acac)(3)][Mn-II(hfac)(2)] (4) and [Ni-II(hfac)(2)] – [Fe-III(acac)(3)][Ni-II(hfac)(2)] (5) complexes. The combination of two different diketonate ligands with electron-donating and electron-withdrawing substituents was found to be crucial for maintaining the above mixed-valent heterometallic assemblies. Theoretical investigation of two possible “isomers”, [Fe-III(acac)(3)][Mn-II(hfac)(2)] (4) and [Mn-III(acac)(3)][Fe-II(hfac)(2)] (40) provided an additional support for the metal site assignment giving a preference of 9.78 kcal mol(-1) for the molecule 4. Heterometallic complexes obtained in the course of this study have been found to act as effective single-source precursors for the synthesis of mixed-transition metal oxide materials MxM2-xO3 and MxMi-xO. The title highly volatile precursors can be used for the low-temperature preparation of both amorphous and crystalline heterometallic oxides in the form of thin films or nanosized particles that are known to operate as efficient catalysts in oxygen evolution reaction.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000353223100021 Publication Date 2015-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 13 Open Access
Notes Approved Most recent IF: 8.668; 2015 IF: 9.211
Call Number c:irua:126031 Serial 2092
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M.
Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
Year 2010 Publication Chemical science Abbreviated Journal Chem Sci
Volume 1 Issue 6 Pages 751-762
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000283939200013 Publication Date 2010-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 12 Open Access
Notes Approved Most recent IF: 8.668; 2010 IF: NA
Call Number UA @ lucian @ c:irua:85823 Serial 3517
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations Type A1 Journal article
Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
Volume 7 Issue 7 Pages 5280-5286
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomistic simulations can in principle provide an unbiased description of all mechanisms, intermediates, and products of complex chemical processes. However, due to the severe time scale limitation of conventional simulation techniques, unrealistically high simulation temperatures are usually applied, which are a poor approximation of most practically relevant low-temperature applications. In this work, we demonstrate the direct observation at the atomic scale of the pyrolysis and oxidation of n-dodecane at temperatures as low as 700 K through the use of a novel simulation technique, collective variable-driven hyperdynamics (CVHD). A simulated timescale of up to 39 seconds is reached. Product compositions and dominant mechanisms are found to be strongly temperature-dependent, and are consistent with experiments and kinetic models. These simulations provide a first atomic-level look at the full dynamics of the complicated fuel combustion process at industrially relevant temperatures and time scales, unattainable by conventional molecular dynamics simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380893900059 Publication Date 2016-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 22 Open Access
Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), funded by the Hercules Foundation and the Flemish Government – department EWI. The authors would also like to thank S. Banerjee for assisting with the interpretation of the experimental results. Approved Most recent IF: 8.668
Call Number c:irua:134577 c:irua:135670 Serial 4105
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
Title Atomistic simulations of graphite etching at realistic time scales Type A1 Journal article
Year 2017 Publication Chemical science Abbreviated Journal Chem Sci
Volume 8 Issue 10 Pages 7160-7168
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale

limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411730500055 Publication Date 2017-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 3 Open Access OpenAccess
Notes DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 8.668
Call Number PLASMANT @ plasmant @c:irua:145519 Serial 4707
Permanent link to this record
 

 
Author Bueken, B.; Van Velthoven, N.; Willhammar, T.; Stassin, T.; Stassen, I.; Keen, D.A.; Baron, G.V.; Denayer, J.F.M.; Ameloot, R.; Bals, S.; De Vos, D.; Bennett, T.D.
Title Gel-based morphological design of zirconium metal-organic frameworks Type A1 Journal article
Year 2017 Publication Chemical science Abbreviated Journal Chem Sci
Volume 8 Issue 8 Pages 3939-3948
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X – H, NH2, NO2, (OH)(2)), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N-2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000400553000077 Publication Date 2017-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 168 Open Access OpenAccess
Notes ; B. B., T. S. and I. S. acknowledge the FWO Flanders (doctoral and post-doctoral grants). T. W. acknowledges a post-doctoral grant from the Swedish Research Council. T. D. B. acknowledges the Royal Society (University Research Fellowship) and Trinity Hall (University of Cambridge) for funding. S. B. and D. D. V. are grateful for funding by Belspo (IAP 7/05 P6/27) and by the FWO Flanders. D. D. V. further acknowledges funding from the European Research Council (project H-CCAT). S. B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors acknowledge Arnau Carne and Shuhei Furukawa for assistance with supercritical CO<INF>2</INF> extraction, and Charles Ghesquiere for assistance in synthesis. ; Ecas_Sara Approved Most recent IF: 8.668
Call Number UA @ lucian @ c:irua:152643UA @ admin @ c:irua:152643 Serial 5143
Permanent link to this record
 

 
Author Van Velthoven, N.; Waitschat, S.; Chavan, S.M.; Liu, P.; Smolders, S.; Vercammen, J.; Bueken, B.; Bals, S.; Lillerud, K.P.; Stock, N.; De Vos, D.E.
Title Single-site metal-organic framework catalysts for the oxidative coupling of arenes via C-H/C-H activation Type A1 Journal article
Year 2019 Publication Chemical science Abbreviated Journal Chem Sci
Volume 10 Issue 10 Pages 3616-3622
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract C-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (e.g. o-xylene) via C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction. Notably, a threefold higher TON could be achieved for palladium loaded MOF-808 due to increased catalyst stability and the heterogeneous catalyst could efficiently be reused, resulting in a cumulative TON of 1218 after three runs. Additionally, the palladium single-atom active sites on MOF-808 were successfully identified by Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000463759100017 Publication Date 2019-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 68 Open Access OpenAccess
Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no. [720996]. N. V. V., S. S., J. V., B. B. and D. E. D. V. thank the FWO for funding (SB, Aspirant and postdoctoral grants). The electron microscopy work was supported by FWO funding G038116. D. E. D. V. is grateful for KU Leuven support in the frame of the CASAS Metusalem project and a C3 type project. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Johnson Matthey and S. Bennett are gratefully acknowledged for providing Smopex-102. ; Approved Most recent IF: 8.668
Call Number UA @ admin @ c:irua:159403 Serial 5259
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K.
Title Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders Type A1 Journal article
Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
Volume Issue Pages 1-7
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We report on a wearable fingertip sensor for on-the-spot identification of cocaine and its cutting agents in street samples. Traditionally, on-site screening is performed by means of colour tests which are difficult to interpret and lack selectivity. By presenting the distinct voltammetric response of cocaine, cutting agents, binary mixtures of cocaine and street samples in solution and powder street samples, we were able to elucidate the electrochemical fingerprint of all these compounds. The new electrochemical concept holds considerable promise as an on-site screening method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371021900094 Publication Date 2016-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.668 Times cited 37 Open Access
Notes ; The authors acknowledge BELSPO for funding the APTADRU project (BR/314/PI/ APTADRU). ; Approved Most recent IF: 8.668
Call Number UA @ admin @ c:irua:130404 Serial 5591
Permanent link to this record
 

 
Author Bai, J.; Wang, J.T.-W.; Rubio, N.; Protti, A.; Heidari, H.; Elgogary, R.; Southern, P.; Al-Jamal, W.' T.; Sosabowski, J.; Shah, A.M.; Bals, S.; Pankhurst, Q.A.; Al-Jamal, K.T.
Title Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid TumoursIn Vivo Type A1 Journal article
Year 2016 Publication Theranostics Abbreviated Journal Theranostics
Volume 6 Issue 6 Pages 342-356
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Triple-modal imaging magnetic nanocapsules, encapsulating hydrophobic superparamagnetic iron oxide nanoparticles, are formulated and used to magnetically target solid tumours after intravenous administration in tumour-bearing mice. The engineered magnetic polymeric nanocapsules m-NCs are ~200 nm in size with negative Zeta potential and shown to be spherical in shape. The loading efficiency of superparamagnetic iron oxide nanoparticles in the m-NC was ~100%. Up to ~3- and ~2.2-fold increase in tumour uptake at 1 and 24 h was achieved, when a static magnetic field was applied to the tumour for 1 hour. m-NCs, with multiple imaging probes (e.g. indocyanine green, superparamagnetic iron oxide nanoparticles and indium-111), were capable of triple-modal imaging (fluorescence/magnetic resonance/nuclear imaging) in vivo. Using triple-modal imaging is to overcome the intrinsic limitations of single modality imaging and provides complementary information on the spatial distribution of the nanocarrier within the tumour. The significant findings of this study could open up new research perspectives in using novel magnetically-responsive nanomaterials in magnetic-drug targeting combined with multi-modal imaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377797200005 Publication Date 2015-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1838-7640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.712 Times cited 54 Open Access OpenAccess
Notes The authors would like to thank Prof Robert Hider (King's College London) for useful discussion on the chemical functionalization of the polymers, Mr William Luckhurst (King's College London) on the technical help of AFM measurements and Mr Andrew Cakebread (King's College London) on his technical help of ICP-MS measurements. J.B. acknowledges funding from King's-China Scholarship Council (CSC). J.W. and N.R. acknowledge funding from Biotechnology and Biological Sciences Research Council (BB/J008656/1) and Associated International Cancer Research (12-1054). K.T.AJ. acknowledges funding from EU FP7-ITN Marie-Curie Network programme RADDEL (290023). S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 8.712
Call Number c:irua:130058 Serial 3995
Permanent link to this record
 

 
Author Le, T.-S.; Nguyen, P.-D.; Ngo, H.H.; Bui, X.-T.; Dang, B.-T.; Diels, L.; Bui, H.-H.; Nguyen, M.-T.; Le Quang, D.-T.
Title Two-stage anaerobic membrane bioreactor for co-treatment of food waste and kitchen wastewater for biogas production and nutrients recovery Type A1 Journal article
Year 2022 Publication Chemosphere Abbreviated Journal Chemosphere
Volume 309 Issue 1 Pages 136537-136539
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasi-bility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m- 3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 degrees C. Results showed that specific methane production of UASB was 249 +/- 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m- 3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side -stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 mu m) in the ultra -filtration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866470600004 Publication Date 2022-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 8.8
Call Number UA @ admin @ c:irua:191557 Serial 7347
Permanent link to this record
 

 
Author Reynaud, M.; Rousse, G.; Abakumov, A.M.; Sougrati, M.T.; Van Tendeloo, G.; Chotard, J.-N.; Tarascon, J.-M.
Title Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2\cdot4H2O Type A1 Journal article
Year 2014 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 2 Issue 8 Pages 2671-2680
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Mineralogy offers a large database to search for Li- or Na-based compounds having suitable structural features for acting as electrode materials, LiFePO4 being one example. Here we further explore this avenue and report on the electrochemical properties of the bloedite type compounds Na2M(SO4)(2)center dot 4H(2)O (M = Mg, Fe, Co, Ni, Zn) and their dehydrated phases Na2M(SO4)(2) (M = Fe, Co), whose structures have been solved via complementary synchrotron X-ray diffraction, neutron powder diffraction and transmission electron microscopy. Among these compounds, the hydrated and anhydrous iron-based phases show electrochemical activity with the reversible release/uptake of 1 Na+ or 1 Li+ at high voltages of similar to 3.3 V vs. Na+/Na-0 and similar to 3.6 V vs. Li+/Li-0, respectively. Although the reversible capacities remain lower than 100 mA h g(-1), we hope this work will stress further the importance of mineralogy as a source of inspiration for designing eco-efficient electrode materials.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000331247500031 Publication Date 2013-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 56 Open Access
Notes Approved Most recent IF: 8.867; 2014 IF: 7.443
Call Number UA @ lucian @ c:irua:115807 Serial 659
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Van Tendeloo, G.; Martens, J.A.
Title Hematite iron oxide nanorod patterning inside COK-12 mesochannels as an efficient visible light photocatalyst Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 19884-19891
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The uniform dispersion of functional oxide nanoparticles on the walls of ordered mesoporous silica to tailor optical, electronic, and magnetic properties for biomedical and environmental applications is a scientific challenge. Here, we demonstrate homogeneous confined growth of 5 nanometer-sized hematite iron oxide (α-Fe2O3) inside mesochannels of ordered mesoporous COK-12 nanoplates. The three-dimensional inclusion of the α-Fe2O3 nanorods in COK-12 particles is studied using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray (EDX) spectroscopy and electron tomography. High resolution imaging and EDX spectroscopy provide information about the particle size, shape and crystal phase of the loaded α-Fe2O3 material, while electron tomography provides detailed information on the spreading of the nanorods throughout the COK-12 host. This nanocomposite material, having a semiconductor band gap energy of 2.40 eV according to diffuse reflectance spectroscopy, demonstrates an improved visible light photocatalytic degradation activity with rhodamine 6G and 1-adamantanol model compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362041300033 Publication Date 2015-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 9 Open Access
Notes L.H.W. and S.T. thank the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N) and under contract number G004613N . J.A.M gratefully acknowledge financial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:132567 Serial 3959
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Cott, D.J.; Bals, S.; Detavernier, C.
Title Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 2642-2649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Porous metal oxides with nano-sized features attracted intensive interest in recent decades due to their high surface area which is essential for many applications, e.g. Li ion batteries, photocatalysts, fuel cells and dye-sensitized solar cells. Various approaches have so far been investigated to synthesize porous nanostructured metal oxides, including self-assembly and template-assisted synthesis. For the latter approach, forests of carbon nanotubes are considered as particularly promising templates, with respect to their one-dimensional nature and the resulting high surface area. In this work, we systematically investigate the formation of porous metal oxides (Al2O3, TiO2, V2O5 and ZnO) with different morphologies using atomic layer deposition on multi-walled carbon nanotubes followed by post-deposition calcination. X-ray diffraction, scanning electron microscopy accompanied by X-ray energy dispersive spectroscopy and transmission electron microscopy were used for the investigation of morphological and structural transitions at the micro- and nano-scale during the calcination process. The crystallization temperature and the surface coverage of the metal oxides and the oxidation temperature of the carbon nanotubes were found to produce significant influence on the final morphology.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000348990500019 Publication Date 2014-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 23 Open Access OpenAccess
Notes Fwo; 239865 Cocoon; 335078 Colouratoms; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:125298 Serial 2673
Permanent link to this record
 

 
Author Zalfani, M.; van der Schueren, B.; Hu, Z.-Y.; Rooke, J.C.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title Novel 3DOM BiVO4/TiO2nanocomposites for highly enhanced photocatalytic activity Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 21244-21256
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Novel 3DOM BiVO4/TiO2 nanocomposites with intimate contact were for the first time synthesized by a hydrothermal method in order to elucidate their visible-light-driven photocatalytic performances. BiVO4 nanoparticles and 3DOM TiO2 inverse opal were fabricated respectively. These materials were characterized by XRD, XPS, SEM, TEM, N2 adsorption–desorption and UV-vis diffuse (UV-vis) and photoluminescence spectroscopies. As references for comparison, a physical mixture of BiVO4 nanoparticles and 3DOM TiO2 inverse opal powder (0.08 : 1), and a BiVO4/P25 TiO2 (0.08 : 1) nanocomposite made also by the hydrothermal method were prepared. The photocatalytic performance of all the prepared materials was evaluated by the degradation of rhodamine B (RhB) as a model pollutant molecule under visible light irradiation. The highly ordered 3D macroporous inverse opal structure can provide more active surface areas and increased mass transfer because of its highly accessible 3D porosity. The results show that 3DOM BiVO4/TiO2 nanocomposites possess a highly prolonged lifetime and increased separation of visible light generated charges and extraordinarily high photocatalytic activity. Owing to the intimate contact between BiVO4 and large surface area 3DOM TiO2, the photogenerated high energy charges can be easily transferred from BiVO4 to the 3DOM TiO2 support. BiVO4 nanoparticles in the 3DOM TiO2 inverse opal structure act thus as a sensitizer to absorb visible light and to transfer efficiently high energy electrons to TiO2 to ensure long lifetime of the photogenerated charges and keep them well separated, owing to the direct band gap of BiVO4 of 2.4 eV, favourably positioned band edges, very low recombination rate of electron–hole pairs and stability when coupled with photocatalysts, explaining the extraordinarily high photocatalytic performance of 3DOM BiVO4/TiO2 nanocomposites. It is found that larger the amount of BiVO4 in the nanocomposite, longer the duration of photogenerated charge separation and higher the photocatalytic activity. This work can shed light on the development of novel visible light responsive nanomaterials for efficient solar energy utilisation by the intimate combination of an inorganic light sensitizing nanoparticle with an inverse opal structure with high diffusion efficiency and high accessible surface area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363163200049 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 88 Open Access
Notes This work was realized with the financial support of the Belgian FNRS (Fonds National de la Recherche Scientifique). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is a member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of the University of Namur thanks to Dr P. Louette. This work was also supported by Changjiang Scholars and the Innovative Research Team (IRT1169) of the Ministry of Education of the People's Republic of China. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Membership at the Clare Hall and the financial support of the Department of Chemistry, University of Cambridge. G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:129476 c:irua:129476 Serial 3951
Permanent link to this record
 

 
Author Neubert, S.; Mitoraj, D.; Shevlin, S.A.; Pulisova, P.; Heimann, M.; Du, Y.; Goh, G.K.L.; Pacia, M.; Kruczała, K.; Turner, S.; Macyk, W.; Guo, Z.X.; Hocking, R.K.; Beranek, R.;
Title Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages 3127-3138
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by factors of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species on the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing “dark” redox reactions at the interface, thus improving the normally very low quantum yields of UV light-activated TiO2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)-decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 degrees C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored photocatalysts for various applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000371077300040 Publication Date 2015-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 44 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:132322 Serial 4191
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 19754-19764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000362041300018 Publication Date 2015-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 11 Open Access
Notes Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record
 

 
Author Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J.
Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages 12790-12798
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000382015100012 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 26 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:137188 Serial 4395
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Neek-Amal, M.; Hussein, I.A.; Madjet, M.E.; Peeters, F.M.
Title Large CO2 uptake on a monolayer of CaO Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 2110-2114
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer, which is found to be thermodynamically stable in its buckled form. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity (similar to 0.4 g CO2 per g adsorbent). The CaO + CO2 system shows excellent thermal stability (up to 1000 K). Moreover, the material is highly selective towards CO2 against other major greenhouse gases such as CH4 and N2O. These advantages make this material a very promising candidate for CO2 capture and storage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000395074300035 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142034 Serial 4556
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 16 Pages 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 202 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Ata, I.; Duche, D.; Gaceur, M.; Koganezawa, T.; Yoshimoto, N.; Simon, J.-J.; Escoubas, L.; Videlot-Ackermann, C.; Margeat, O.; Bals, S.; Bauerle, P.; Ackermann, J.
Title Time evolution studies of dithieno[3,2-b:2 ',3 '-d] pyrrole-based A-D-A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 1005-1013
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Solvent vapor annealing (SVA) is one of the main techniques to improve the morphology of bulk heterojunction solar cells using oligomeric donors. In this report, we study time evolution of nanoscale morphological changes in bulk heterojunctions based on a well-studied dithienopyrrole-based A-D-A oligothiophene (dithieno[3,2-b: 2',3'-d] pyrrole named here 1) blended with [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) to increase photocurrent density by combining scanning transmission electron microscopy and low-energy-loss spectroscopy. Our results show that SVA transforms the morphology of 1 : PC71BM blends by a three-stage mechanism: highly intermixed phases evolve into nanostructured bilayers that correspond to an optimal blend morphology. Additional SVA leads to completely phaseseparated micrometer-sized domains. Optical spacers were used to increase light absorption inside optimized 1 : PC71BM blends leading to solar cells of 7.74% efficiency but a moderate photocurrent density of 12.3 mA cm (-2). Quantum efficiency analyses reveal that photocurrent density is mainly limited by losses inside the donor phase. Indeed, optimized 1 : PC71BM blends consist of large donor-enriched domains not optimal for exciton to photocurrent conversion. Shorter SVA times lead to smaller domains; however they are embedded in large mixed phases suggesting that introduction of stronger molecular packing may help us to better balance phase separation and domain size enabling more efficient bulk heterojunction solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000394430800018 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 8.867 Times cited 19 Open Access Not_Open_Access
Notes ; We acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant number: 287594). The synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2016A1568). We further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142602UA @ admin @ c:irua:142602 Serial 4695
Permanent link to this record