|   | 
Details
   web
Records
Author Tang, T.; Boenne, W.; Desmet, N.; Seuntjens, P.; Bronders, J.; van Griensven, A.
Title Quantification and characterization of glyphosate use and loss in a residential area Type A1 Journal article
Year (down) 2015 Publication The science of the total environment Abbreviated Journal
Volume 517 Issue Pages 207-214
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urban runoff can be a significant source of pesticides in urban streams. However, quantification of this source has been difficult because pesticide use by urban residents (e.g., on pavements or in gardens) is often unknown, particularly at the scale of a residential catchment. Proper quantification and characterization of pesticide loss via urban runoff require sound information on the use and occurrence of pesticides at hydrologically-relevant spatial scales, involving various hydrological conditions. We conducted a monitoring study in a residential area (9.5 ha, Flanders, Belgium) to investigate the use and loss of a widely-used herbicide (glyphosate) and its major degradation product (aminomethylphosphonic acid, AMPA). The study covered 13 rainfall events over 67 days. Overall, less than 0.5% of glyphosate applied was recovered from the storm drain outflow in the catchment. Maximum detected concentrations were 6.1 mu g/L and 5.8 mu g/L for glyphosate and AMPA, respectively, both of which are below the predicted no-effect concentration for surface water proposed by the Flemish environmental agency (10 mu g/L), but are above the EU drinking water standard (0.1 mu g/L). The measured concentrations and percentage loss rates can be attributed partially to the strong sorption capacity of glyphosate and low runoff potential in the study area. However, glyphosate loss varied considerably among rainfall events and event load of glyphosate mass was mainly controlled by rainfall amount, according to further statistical analyses. To obtain urban pesticide management insights, robust tools are required to investigate the loss and occurrence of pesticides influenced by various factors, particularly the hydrological and spatial factors. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352663800020 Publication Date 2015-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:125992 Serial 8431
Permanent link to this record
 

 
Author Batuk, M.; Buffiere, M.; Zaghi, A.E.; Lenaers, N.; Verbist, C.; Khelifi, S.; Vleugels, J.; Meuris, M.; Hadermann, J.
Title Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se2 solar cells Type A1 Journal article
Year (down) 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 583 Issue 583 Pages 142-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract For the development of the photovoltaic industry cheap methods for the synthesis of Cu(In,Ga)Se-2 (CIGSe) based solar cells are required. In this work, CIGSe thin films were obtained by a solution-based method using oxygen-bearing derivatives. With the aimof improving the morphology of the printed CIGSe layers, we investigated two different annealing conditions of the precursor layer, consisting of (1) a direct selenization step (reference process), and (2) a pre-treatment thermal step prior to the selenization. We showed that the use of an Air/H2S burn-out step prior to the selenization step increases the CIGSe grain size and reduces the carbon content. However, it leads to the reduction of the solar cell efficiency from 4.5% in the reference sample down to 0.5% in the annealed sample. Detailed transmission electron microscopy analysis, including high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray mapping, was applied to characterize the microstructure of the film and to determine the relationship between microstructure and the solar cell performance. We demonstrated that the relatively low efficiency of the reference solar cells is related not only to the nanosize of the CIGSe grains and presence of the pores in the CIGSe layer, but also to the high amount of secondary phases, namely, In/Ga oxide (or hydroxide) amorphous matter, residuals of organicmatter (carbon), and copper sulfide that is formed at the CIGSe/MoSe2 interface. The annealing in H2S during the burn-out step leads to the formation of the copper sulfide at all grain boundaries and surfaces in the CIGSe layer, which results in the noticeably efficiency drop. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000353812400024 Publication Date 2015-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 5 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number c:irua:126009 Serial 845
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K.
Title Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
Year (down) 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 578 Issue 578 Pages 133-138
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000351686500019 Publication Date 2015-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 41 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number c:irua:125517 Serial 3626
Permanent link to this record
 

 
Author Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.
Title Optical and photoelectrical properties of nanocrystalline indium oxide with small grains Type A1 Journal article
Year (down) 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 595 Issue 595 Pages 25-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Optical properties, spectral dependence of photoconductivity and photoconductivity decay in nanocrystalline indium oxide In2O3 are studied. A number of nanostructured In2O3 samples with various nanocrystals size are prepared by sol-gel method and characterized using various techniques. The mean nanocrystals size varies from 7 to 8 nm to 39-41 nm depending on the preparation conditions. Structural characterization of the In2O3 samples is performed by means of transmission electron microscopy and X-ray powder diffraction. The combined analysis of ultraviolet-visible absorption spectroscopy and diffuse reflectance spectroscopy shows that nanostructuring leads to the change in optical band gap: optical band gap of the In2O3 samples (with an average nanocrystal size from 7 to 41 nm) is equal to 2.8 eV. We find out the correlation between spectral dependence of photoconductivity and optical properties of nanocrystalline In2O3: sharp increase in photoconductivity was observed to begin at 2.8 eV that is equal to the optical bandgap in the In2O3 samples, and reached its maximum at 3.2-3.3 eV. The combined analysis of the slow photoconductivity decay in air, vacuum and argon, that was accurately fitted by a stretched-exponential function, and electron paramagnetic resonance (EPR) measurements shows that the kinetics of photoconductivity decay is strongly depended on the presence of oxygen molecules in the ambient of In2O3 nanocrystals. There is the quantitative correlation between EPR and photoconductivity data. Based on the obtained data we propose the model clearing up the phenomenon of permanent photoconductivity decay in nanocrystalline In2O3. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000365812400005 Publication Date 2015-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 18 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number UA @ lucian @ c:irua:130254 Serial 4219
Permanent link to this record
 

 
Author Oueslati, S.; Brammertz, G.; Buffiere, M.; ElAnzeery, H.; Touayar, O.; Koeble, C.; Bekaert, J.; Meuris, M.; Poortmans, J.
Title Physical and electrical characterization of high-performance Cu2ZnSnSe4 based thin film solar cells Type A1 Journal article
Year (down) 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 582 Issue 582 Pages 224-228
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on the electrical, optical and physical properties of Cu2ZnSnSe4 solar cells using an absorber layer fabricated by selenization of sputtered Cu, Zn and Cu10Sn90 multilayers. A maximum active-area conversion efficiency of 10.4% under AM1.5G was measured with a maximum short circuit current density of 39.7 mA/cm(2), an open circuit voltage of 394 mV and a fill factor of 66.4%. We perform electrical and optical characterization using photoluminescence spectroscopy, external quantum efficiency, current-voltage and admittance versus temperature measurements in order to derive information about possible causes for the low open circuit voltage values observed. The main defects derived from these measurements are strong potential fluctuations in the absorber layer as well as a potential barrier of the order of 133 meV at the back side contact. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000352225900048 Publication Date 2014-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 49 Open Access
Notes ; We would like to acknowledge Tom De Geyter, Greetje Godiers, and Guido Huyberechts from Flamac in Gent for sputtering of the metal layers. AGC is acknowledged for providing substrates. This research is partially funded by the Flemish government, Department Economy, Science and Innovation. ; Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number UA @ lucian @ c:irua:132504 Serial 4225
Permanent link to this record
 

 
Author Caretti, I.; Keulemans, M.; Verbruggen, S.W.; Lenaerts, S.; Van Doorslaer, S.
Title Light-induced processes in plasmonic Gold/TiO2 photocatalysts studied by electron paramagnetic resonance Type A1 Journal article
Year (down) 2015 Publication Topics in catalysis Abbreviated Journal Top Catal
Volume 58 Issue 12 Pages 776-782
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract X-band and W-band continuous-wave (CW) electron paramagnetic resonance (EPR) was used to study in situ light-induced (LI) mechanisms in commercial P90 titania (90 % anatase/10 % rutile) compared to plasmon-enhanced Au-P90 photocatalyst. These materials were excited using UV and 532 nm visible light to generate different excitation states and distinguish pure charge separation from plasmon-assisted resonance processes. Up to nine different photoinduced species of trapped electrons and holes were identified. LI CW EPR of P90 is presented for the first time, showing a UV excitation response similar to the well-known mixed-phase P25 titania. It is shown that incorporation of Au nanoparticles in Au-P90 and formation of a Schottky junction affects the charge separation state of the catalyst under UV light. Moreover, Au impregnation activated P90 through plasmon hot electron injection under visible light excitation (plasmonic sensitization effect). In general, EPR proved to be crucial to determine the different photoexciation paths and reactions that regulate plasmonic photocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000360011200008 Publication Date 2015-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1022-5528 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.486 Times cited 22 Open Access
Notes ; IC and SVD acknowledge the Research Foundation-Flanders (FWO) for financial support (Grant G.0687.13). SV thanks FWO for financial support through a postdoctoral fellowship and MK acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) for financial support (Ph.D. Grant). ; Approved Most recent IF: 2.486; 2015 IF: 2.365
Call Number UA @ admin @ c:irua:127413 Serial 5968
Permanent link to this record
 

 
Author Bertrand, L.; Schoeeder, S.; Anglos, D.; Breese, M.B.H.; Janssens, K.; Moini, M.; Simon, A.
Title Mitigation strategies for radiation damage in the analysis of ancient materials Type A1 Journal article
Year (down) 2015 Publication Trends in analytical chemistry Abbreviated Journal Trac-Trend Anal Chem
Volume 66 Issue Pages 128-145
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The study of materials in cultural heritage artifacts and micro-samples benefits from diagnostic techniques based on intense radiation sources, such as synchrotrons, ion-beam accelerators and lasers. While most of the corresponding techniques are classified as non-destructive, investigation with photons or charged particles entails a number of fundamental processes that may induce changes in materials. These changes depend on irradiation parameters, properties of materials and environmental factors. In some cases, radiation-induced damage may be detected by visual inspection. When it is not, irradiation may still lead to atomic and molecular changes resulting in immediate or delayed alteration and bias of future analyses. Here we review the effects of radiation reported on a variety of cultural heritage materials and describe the usual practice for assessing short-term and long-term effects. This review aims to raise awareness and encourage subsequent research activities to limit radiation side effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352248200020 Publication Date 2014-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-9936 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.442 Times cited 35 Open Access
Notes ; We wish to acknowledge the support of this initiative by the International Atomic Energy Agency. We gratefully thank Professor Manfred Schreiner of the Institute of Natural Sciences and Technology in the Arts (Akademie den bildenden Kunst, Vienna, Austria) for helpful discussions and insights on this work. We thank all colleagues who accepted to have their work reproduced in this review. IPANEMA at Synchrotron SOLEIL, the Hungarian Academy of Science and IESL-FORTH were supported within the Research Infrastructure program CHARISMA of the 7th Framework Programme of the EU (Grant Agreement no. 228330). MM's contribution is based upon work supported by the National Science Foundation under Grant numbers CHE 1241672 and CHE 1440849. We thank Chris McGlinchey and Lauren Klein (Museum of Modern Art, New York, USA) for their critical rereading of the manuscript. ; Approved Most recent IF: 8.442; 2015 IF: 6.472
Call Number UA @ admin @ c:irua:124627 Serial 5729
Permanent link to this record
 

 
Author de Backer, A.; Martinez, G.T.; MacArthur, K.E.; Jones, L.; Béché, A.; Nellist, P.D.; Van Aert, S.
Title Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 56-61
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000351237800008 Publication Date 2014-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 29 Open Access
Notes 312483 Esteem2; 278510 Vortex; Fwo G039311; G006410; G037413; esteem2ta; ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:123927 c:irua:123927 Serial 753
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J.
Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 158 Issue 158 Pages 81-88
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361574800011 Publication Date 2015-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access OpenAccess
Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126675 c:irua:126675 Serial 988
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A.
Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800006 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 11 Open Access
Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Van Aert, S.
Title Optimal experimental design for nano-particle atom-counting from high-resolution STEM images Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 46-55
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the present paper, the principles of detection theory are used to quantify the probability of error for atom-counting from high resolution scanning transmission electron microscopy (HR STEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom-counting using the expression for the probability of error. We show that for very thin objects LAADF is optimal and that for thicker objects the optimal inner detector angle increases.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000351237800007 Publication Date 2014-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 24 Open Access
Notes 312483 Esteem2; Fwo G039311; G037413; esteem2_jra2 Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:123926 c:irua:123926 Serial 2481
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Kurttepeli, M.; van Oers, C.J.; Cool, P.; Bals, S.; Batenburg, K.J.; Sijbers, J.
Title Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 148 Issue 148 Pages 10-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)
Abstract Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm POre REconstruction and Segmentation is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000345973000002 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 7 Open Access OpenAccess
Notes Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:119083 Serial 2672
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Juchtmans, R.; Van Boxem, R.; Mazilu, M.; Verbeeck, J.
Title Prospects for versatile phase manipulation in the TEM : beyond aberration correction Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 85-93
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose׳s legacy in aberration correction and electron optics in general would open an exciting field of research and applications.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000351237800012 Publication Date 2014-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 19 Open Access
Notes 278510 Vortex; Fwo; 312483 Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:121405 c:irua:121405UA @ admin @ c:irua:121405 Serial 2731
Permanent link to this record
 

 
Author Martinez, G.T.; Jones, L.; de Backer, A.; Béché, A.; Verbeeck, J.; Van Aert, S.; Nellist, P.D.
Title Quantitative STEM normalisation : the importance of the electron flux Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 159 Issue 159 Pages 46-58
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Annular dark-field (ADF) scanning transmission electron microscopy (STEM) has become widely used in quantitative studies based on the opportunity to directly compare experimental and simulated images. This comparison merely requires the experimental data to be normalised and expressed in units of fractional beam-current. However, inhomogeneities in the response of electron detectors can complicate this normalisation. The quantification procedure becomes both experiment and instrument specific, requiring new simulations for the particular response of each instrument's detector, and for every camera-length used. This not only impedes the comparison between different instruments and research groups, but can also be computationally very time consuming. Furthermore, not all image simulation methods allow for the inclusion of an inhomogeneous detector response. In this work, we propose an alternative method for normalising experimental data in order to compare these with simulations that consider a homogeneous detector response. To achieve this, we determine the electron flux distribution reaching the detector by means of a camera-length series or a so-called atomic column cross-section averaged convergent beam electron diffraction (XSACBED) pattern. The result is then used to determine the relative weighting of the detector response. Here we show that the results obtained by this new electron flux weighted (EFW) method are comparable to the currently used method, while considerably simplifying the needed simulation libraries. The proposed method also allows one to obtain a metric that describes the quality of the detector response in comparison with the ideal detector response.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000366220000006 Publication Date 2015-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 27 Open Access
Notes 246791 Countatoms; 278510 Vortex; 312483 Esteem2; Fwo G036815; G036915; G037413; G004413; esteem2ta ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:127293 c:irua:127293UA @ admin @ c:irua:127293 Serial 2762
Permanent link to this record
 

 
Author van Aarle, W.; Palenstijn, W.J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K.J.; Sijbers, J.
Title The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 157 Issue 157 Pages 35-47
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract We present the ASTRA Toolbox as an open platform for 3D image reconstruction in tomography. Most of the software tools that are currently used in electron tomography offer limited flexibility with respect to the geometrical parameters of the acquisition model and the algorithms used for reconstruction. The ASTRA Toolbox provides an extensive set of fast and flexible building blocks that can be used to develop advanced reconstruction algorithms, effectively removing these limitations. We demonstrate this flexibility, the resulting reconstruction quality, and the computational efficiency of this toolbox by a series of experiments, based on experimental dual-axis tilt series.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000361002400005 Publication Date 2015-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 562 Open Access OpenAccess
Notes The authors acknowledge financial support from the iMinds ICONMetroCT project,the IWT SBO Tom Food project and from the Netherlands Organisation for Scientific Research (NWO),Project no. 639.072.005. Networking support was provided by the EXTREMA COST Action MP 1207. Sara Bals acknowledges financial support from the European Research Council (ERC Starting Grant #335078 COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:127834 Serial 3974
Permanent link to this record
 

 
Author Lobato, I.; Van Dyck, D.
Title MULTEM : a new multislice program to perform accurate and fast electron diffraction and imaging simulations using graphics processing units with CUDA Type A1 Journal article
Year (down) 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 9-17
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The main features and the GPU implementation of the MULTEM program are presented and described. This new program performs accurate and fast multislice simulations by including higher order expansion of the multislice solution of the high energy Schrodinger equation, the correct subslicing of the three-dimensional potential and top-bottom surfaces. The program implements different kinds of simulation for CTEM, STEM, ED, PED, CBED, ADF-TEM and ABF-HC with proper treatment of the spatial and temporal incoherences. The multislice approach described here treats the specimen as amorphous material which allows a straightforward implementation of the frozen phonon approximation. The generalized transmission function for each slice is calculated when is needed and then discarded. This allows us to perform large simulations that can include millions of atoms and keep the computer memory requirements to a reasonable level. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800003 Publication Date 2015-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 32 Open Access
Notes Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number UA @ lucian @ c:irua:127848 Serial 4209
Permanent link to this record
 

 
Author Danthurebandara, M.; Van Passel, S.; Vanderreydt, I.; Van Acker, K.
Title Environmental and economic performance of plasma gasification in Enhanced Landfill Mining Type A1 Journal article
Year (down) 2015 Publication Waste Management Abbreviated Journal Waste Manage
Volume 45 Issue Pages 458-467
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper describes an environmental and economic assessment of plasma gasification, one of the viable candidates for the valorisation of refuse derived fuel from Enhanced Landfill Mining. The study is based on life cycle assessment and life cycle costing. Plasma gasification is benchmarked against conventional incineration, and the study indicates that the process could have significant impact on climate change, human toxicity, particulate matter formation, metal depletion and fossil depletion. Flue gas emission, oxygen usage and disposal of residues (plasmastone) are the major environmental burdens, while electricity production and metal recovery represent the major benefits. Reductions in burdens and improvements in benefits are found when the plasmastone is valorised in building materials instead of landfilling. The study indicates that the overall environmental performance of plasma gasification is better than incineration. The study confirms a trade-off between the environmental and economic performance of the discussed scenarios. Net electrical efficiency and investment cost of the plasma gasification process and the selling price of the products are the major economic drivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364796800050 Publication Date 2015-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.03 Times cited 12 Open Access
Notes ; The authors would like to acknowledge the funding of this study by the IWT-O&O ELFM project 'Closing the Circle & Enhanced Landfill Mining as part of the Transition to Sustainable Materials Management' and the valuable discussions with Group Machiels and VITO (Belgium). ; Approved Most recent IF: 4.03; 2015 IF: 3.220
Call Number UA @ admin @ c:irua:129875 Serial 6197
Permanent link to this record
 

 
Author Danthurebandara, M.; Van Passel, S.; Vanderreydt, I.; Van Acker, K.
Title Assessment of environmental and economic feasibility of Enhanced Landfill Mining Type A1 Journal article
Year (down) 2015 Publication Waste Management Abbreviated Journal Waste Manage
Volume 45 Issue Pages 434-447
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract This paper addresses the environmental and economic performance of Enhanced Landfill Mining (ELFM). Based on life cycle assessment and life cycle costing, a detailed model is developed and is applied to a case study, i.e. the first ELFM project in Belgium. The environmental and economic analysis is performed in order to study the valorisation of different waste types in the landfill, such as municipal solid waste, industrial waste and total waste. We found that ELFM is promising for the case study landfill as greater environmental benefits are foreseen in several impact categories compared to the landfills current situation (the Do-nothing scenario). Among the considered processes, the thermal treatment process dominates both the environmental and economic performances of ELFM. Improvements in the electrical efficiency of thermal treatment process, the calorific value of refuse derived fuel and recovery efficiencies of different waste fractions lead the performance of ELFM towards an environmentally sustainable and economically feasible direction. Although the environmental and economic profiles of ELFM will differ from case to case, the results of this analysis can be used as a benchmark for future ELFM projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364796800048 Publication Date 2015-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.03 Times cited 30 Open Access
Notes ; The authors would like to acknowledge the funding of this study by the IWT-O&O ELFM project 'Closing the Circle & Enhanced Landfill Mining as part of the Transition to Sustainable Materials Management' and the valuable discussions with Group Machiels (Belgium). ; Approved Most recent IF: 4.03; 2015 IF: 3.220
Call Number UA @ admin @ c:irua:129878 Serial 6156
Permanent link to this record
 

 
Author Dubois, M.; Hoogmartens, R.; Van Passel, S.; Van Acker, K.; Vanderreydt, I.
Title Innovative market-based policy instruments for waste management : a case study on shredder residues in Belgium Type A1 Journal article
Year (down) 2015 Publication Waste Management & Research Abbreviated Journal Waste Manage Res
Volume 33 Issue 10 Pages 886-893
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract In an increasingly complex waste market, market-based policy instruments, such as disposal taxes, can give incentives for sustainable progress while leaving flexibility for innovation. However, implementation of disposal taxes is often criticised by domestic waste handlers that fear to be outcompeted by competitors in other countries. The article discusses three innovative market-based instruments that limit the impact on international competitiveness: Tradable recycling credits, refunded disposal taxes and differentiated disposal taxes. All three instruments have already been implemented for distinct environmental policies in Europe. In order to illustrate how these instruments can be used for waste policy, the literature review is complemented with a case study on shredder residues from metal-containing waste streams in Belgium. The analysis shows that a conventional disposal tax remains the most efficient, simple and transparent instrument. However, if international competition is a significant issue or if political support is weak, refunded and differentiated disposal taxes can have an added value as second-best instruments. Tradable recycling credits are not an appropriate instrument for use in small waste markets with market power. In addition, refunded taxes create similar incentives, but induce lower transactions costs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000361818000004 Publication Date 2015-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-242x; 1096-3669 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.803 Times cited 1 Open Access
Notes ; The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The research has been funded by the Flemish Government through the policy research centres programme. ; Approved Most recent IF: 1.803; 2015 IF: 1.297
Call Number UA @ admin @ c:irua:129876 Serial 6217
Permanent link to this record
 

 
Author Adam, N.; Leroux, F.; Knapen, D.; Bals, S.; Blust, R.
Title The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios Type A1 Journal article
Year (down) 2015 Publication Water research Abbreviated Journal Water Res
Volume 68 Issue 68 Pages 249-261
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Veterinary physiology and biochemistry
Abstract In this study, the uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna was tested. Daphnids were exposed during 10 days to sublethal concentrations of ZnO and CuO nanoparticles and corresponding metal salts (ZnCl2 and CuCl2.2H2O), after which they were transferred to unexposed medium for another 10 days. At different times during the exposure and none-exposure, the total and internal zinc or copper concentration of the daphnids was determined and the nanoparticles were localized in the organism using electron microscopy. The exposure concentrations were characterized by measuring the dissolved, nanoparticle and aggregated fraction in the medium. The results showed that the ZnO nanoparticles quickly dissolved after addition to the medium. Contrarily, only a small fraction (corresponding to the dissolved metal salt) of the CuO nanoparticles dissolved, while most of these nanoparticles formed large aggregates. Despite an initial increase in zinc and copper concentration during the first 48 hour to 5 day exposure, the body concentration reached a plateau level that was comparable for the ZnO nanoparticles and ZnCl2, but much higher for the CuO nanoparticles (with visible aggregates accumulating in the gut) than CuCl2.2H2O. During the remaining exposure and subsequent none-exposure phase, the zinc and copper concentration decreased fast to concentrations comparable with the unexposed daphnids. The results indicate that D. magna can regulate its internal zinc and copper concentration after exposure to ZnO and CuO nanoparticles, similar as after exposure to metal salts. The combined dissolution, accumulation and toxicity results confirm that the toxicity of ZnO and CuO nanoparticles is caused by the dissolved fraction. Keywords nano; zinc; copper; dissolution; aggregation; electron microscopy
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000347756900022 Publication Date 2014-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.942 Times cited 51 Open Access OpenAccess
Notes ; The authors would like to thank Valentine Mubiana and Steven Joosen (Sphere, UA) for performing the ICP-MS and ICP-OES measurements and Prof. Dr. Gustaaf Van Tendeloo for making the collaboration between the EMAT and Sphere group possible. This study is part of the ENNSATOX-project, which was funded by the EU (NMP4-SL-2009-229244). The authors report no conflicts of interest. ; Approved Most recent IF: 6.942; 2015 IF: 5.528
Call Number c:irua:119366 c:irua:119366 Serial 3822
Permanent link to this record
 

 
Author Vandersteen, G.; Schneidewind, U.; Anibas, C.; Schmidt, C.; Seuntjens, P.; Batelaan, O.
Title Determining groundwater-surface water exchange from temperature-time series : combining a local polynomial method with a maximum likelihood estimator Type A1 Journal article
Year (down) 2015 Publication Water resources research Abbreviated Journal
Volume 51 Issue 2 Pages 922-939
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The use of temperature-time series measured in streambed sediments as input to coupled water flow and heat transport models has become standard when quantifying vertical groundwater-surface water exchange fluxes. We develop a novel methodology, called LPML, to estimate the parameters for 1-D water flow and heat transport by combining a local polynomial (LP) signal processing technique with a maximum likelihood (ML) estimator. The LP method is used to estimate the frequency response functions (FRFs) and their uncertainties between the streambed top and several locations within the streambed from measured temperature-time series data. Additionally, we obtain the analytical expression of the FRFs assuming a pure sinusoidal input. The estimated and analytical FRFs are used in an ML estimator to deduce vertical groundwater-surface water exchange flux and its uncertainty as well as information regarding model quality. The LPML method is tested and verified with the heat transport models STRIVE and VFLUX. We demonstrate that the LPML method can correctly reproduce a priori known fluxes and thermal conductivities and also show that the LPML method can estimate averaged and time-variable fluxes from periodic and nonperiodic temperature records. The LPML method allows for a fast computation of exchange fluxes as well as model and parameter uncertainties from many temperature sensors. Moreover, it can utilize a broad frequency spectrum beyond the diel signal commonly used for flux calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000351401200009 Publication Date 2014-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1397; 0043-137x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:125492 Serial 7797
Permanent link to this record
 

 
Author Saha, S.; Badhe, N.; Seuntjens, D.; Vlaeminck, S.E.; Biswas, R.; Nandy, T.
Title Effective carbon and nutrient treatment solutions for mixed domestic-industrial wastewater in India Type A1 Journal article
Year (down) 2015 Publication Water science and technology Abbreviated Journal
Volume 72 Issue 4 Pages 651-657
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The present study evaluates effectiveness of up-flow anaerobic sludge blanket (UASB) reactor followed by two post-anaerobic treatment options, namely free-surface, up-flow constructed wetland (FUP-CW) and oxygen-limited anaerobic nitrification/denitrification (OLAND) processes in treating sewage from the peri-urban areas in India receiving illegal industrial infiltrations. The UASB studies yielded robust results towards fluctuating strength of sewage and consistently removed 87-98% chemical oxygen demand (COD) at a hydraulic retention time of 1.5-2 d. The FUP-CW removed 68.5 +/- 13% COD, 68 +/- 3% NH4+-N, 38 +/- 5% PO43--P, 97.6 +/- 5% suspended particles and 97 +/- 13% fecal coliforms. Nutrient removal was found to be limiting in FUP-CW, especially in winter. Nitrogen removal in the OLAND process were 100 times higher than the FUP-CW process. Results show that UASB followed by FUP-CW can be an excellent, decentralized sewage treatment option, except during winter when nutrient removal is limited in FUP-CW. Hence, the study proposes bio-augmentation of FUP-CW with OLAND biomass for overall improvement in the performance of UASB followed by FUP-CW process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000359387200019 Publication Date 2015-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:127775 Serial 7840
Permanent link to this record
 

 
Author Sahin, H.; Leenaerts, O.; Singh, S.K.; Peeters, F.M.
Title Graphane Type A1 Journal article
Year (down) 2015 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci
Volume 5 Issue 5 Pages 255-272
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomically thin crystals have recently been the focus of attention, in particular, after the synthesis of graphene, a monolayer hexagonal crystal structure of carbon. In this novel material class, the chemically derived graphenes have attracted tremendous interest. It was shown that, although bulk graphite is a chemically inert material, the surface of single layer graphene is rather reactive against individual atoms. So far, synthesis of several graphene derivatives have been reported such as hydrogenated graphene graphane' (CH), fluorographene (CF), and chlorographene (CCl). Moreover, the stability of bromine and iodine covered graphene were predicted using computational tools. Among these derivatives, easy synthesis, insulating electronic behavior and reversibly tunable crystal structure of graphane make this material special for future ultra-thin device applications. This overview surveys structural, electronic, magnetic, vibrational, and mechanical properties of graphane. We also present a detailed overview of research efforts devoted to the computational modeling of graphane and its derivatives. Furthermore recent progress in synthesis techniques and possible applications of graphane are reviewed as well. WIREs Comput Mol Sci 2015, 5:255-272. doi: 10.1002/wcms.1216 For further resources related to this article, please visit the . Conflict of interest: The authors have declared no conflicts of interest for this article.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352862700001 Publication Date 2015-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-0876; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 14.016 Times cited 54 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. H. Sahin is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 14.016; 2015 IF: 11.885
Call Number c:irua:125996 Serial 1366
Permanent link to this record
 

 
Author Cabal, A.; Schalm, O.; Eyskens, P.; Willems, P.; Harth, A.; van Espen, P.
Title Comparison of x-ray absorption and emission techniques for the investigation of paintings Type A1 Journal article
Year (down) 2015 Publication X-ray spectrometry Abbreviated Journal
Volume 44 Issue 3 Pages 141-148
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Four x-ray techniques: computed radiography, emission radiography, energy-resolved radiography and imaging x-ray fluorescence were compared using four mock-up panel paintings. The paintings have different stratigraphy and pigments and are representative for different historical periods. One of the paintings has a hidden underlying painting. The type of pigments used mainly influences the information obtained by both the emission and absorption measurements; high-Z white pigment and high-Z color pigments giving the best contrast. Each of the techniques revealed interesting aspects of the paintings, but none of them could reveal the hidden painting to a satisfactory level. Due to the statistical quality of the spectral data, x-ray fluorescence gives elemental images with high contrast. The radiographic images are better to reveal the internal structure. Imaging x-ray fluorescence and energy-resolved radiography measurements can be done simultaneously, and the combination has the highest potential for the study of complex multilayer paintings. Copyright (c) 2015 John Wiley & Sons, Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353644500010 Publication Date 2015-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:126016 Serial 7698
Permanent link to this record
 

 
Author Romero-Pastor, J.; Garcia-Porras, A.; Van Grieken, R.; Potgieter-Vermaak, S.; Coll-Conesa, J.; Cardell, C.
Title New insights in technology characterization of medieval Valencia glazes Type A1 Journal article
Year (down) 2015 Publication X-ray spectrometry Abbreviated Journal
Volume 44 Issue 6 Pages 426-435
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract This study shows the first Raman microscopy (RM) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) characterization of two 14th and 15th century lead-glazed and luster ceramics from the Manises and Paterna workshops (Valencia, Spain) produced after the Aragon Christian conquest of the Iberian Peninsula (14th century). According to experts, these coetaneous ceramics were most probably involved in a process of technological transfer from the Islamic area of Southeast Spain to the Christian area of Valencia (East Spain) at the beginning of the 14th century; later on, the celebrated Manises and Paterna workshops were formed. Although these ceramics have been studied widely in terms of production technology (ceramic body, glazes and luster) using an array of diverse analytical techniques, until now, an RM study has not been carried out. This paper presents results regarding the complex chemical composition of the glaze and luster coloring agents, and the quality of color manufacturing processes, elucidating firing conditions via spectral components analysis (i.e., Q(n) for stretching/bending components) and polymerization index (Ip), emphasizing chronology and pigment technology changes between both Valencian workshops. Coloring agents identified in glazes and lusters were cobalt present in blue glazes, copper in greenish glazes, copper and cobalt in the turquoise glaze, and pyrolusite in black glazes. Tin oxyde was used as an opacifier in white glazes. Two luster manufacture recipes were recognized mainly based on copper and silver compounds. Calculated firing temperatures were up to 1000 degrees C for white glazes and up to 600 degrees C for luster and color glazes. Copyright (c) 2015 John Wiley & Sons, Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363279600002 Publication Date 2015-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:129445 Serial 8300
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A.
Title Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
Year (down) 2014 Publication 2D materials Abbreviated Journal 2D Mater
Volume 1 Issue 1 Pages 011010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353649900011 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 49 Open Access
Notes Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:126032 Serial 1048
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization Type A1 Journal article
Year (down) 2014 Publication 2D materials Abbreviated Journal 2D Mater
Volume 1 Issue Pages 021004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a(0) = 4.62 angstrom and a buckling of d(0) = 0.92 angstrom. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of v(F) = 0.97 x 10(6) m s(-1); including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353650400004 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 58 Open Access
Notes Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:134432 Serial 4530
Permanent link to this record
 

 
Author Li, D.Y.; Zeng, Y.J.; Batuk, D.; Pereira, L.M.C.; Ye, Z.Z.; Fleischmann, C.; Menghini, M.; Nikitenko, S.; Hadermann, J.; Temst, K.; Vantomme, A.; Van Bael, M.J.; Locquet, J.P.; Van Haesendonck, C.;
Title Relaxor ferroelectricity and magnetoelectric coupling in ZnOCo nanocomposite thin films : beyond multiferroic composites Type A1 Journal article
Year (down) 2014 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 6 Issue 7 Pages 4737-4742
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract ZnOCo nanocomposite thin films are synthesized by combination of pulsed laser deposition of ZnO and Co ion implantation. Both superparamagnetism and relaxor ferroelectricity as well as magnetoelectric coupling in the nanocomposites have been demonstrated. The unexpected relaxor ferroelectricity is believed to be the result of the local lattice distortion induced by the incorporation of the Co nanoparticles. Magnetoelectric coupling can be attributed to the interaction between the electric dipole moments and the magnetic moments, which are both induced by the incorporation of Co. The introduced ZnOCo nanocomposite thin films are different from conventional strain-mediated multiferroic composites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334572800018 Publication Date 2014-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 21 Open Access
Notes Approved Most recent IF: 7.504; 2014 IF: 6.723
Call Number UA @ lucian @ c:irua:117063 Serial 2864
Permanent link to this record
 

 
Author Benito, P.; de Nolf, W.; Nuyts, G.; Janssens, K.; et al.
Title Role of coating-metallic support interaction in the properties of electrosynthesized Rh-based structured catalysts Type A1 Journal article
Year (down) 2014 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 4 Issue 10 Pages 3779-3790
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Rh-structured catalysts for the catalytic partial oxidation of CH4 to syngas were prepared by electrosynthesis of Rh-containing hydrotalcite-type (HT) compounds on FeCrAlloy foams followed by calcination at 900 degrees C. During the calcination the simultaneous decomposition of the layered HT structure and formation of the protective FeCrAlloy outer shell in alumina occurred. Here, we studied the role of the coating-metallic support interaction in the properties of the catalysts after calcination, H-2 reduction, and catalytic tests, by a combination of electron (FEG-SEM/EDS) and synchrotron X-ray (XRF/XRPD and XRF/XANES) microscopic techniques. The characterization of crystalline phases in the metallic support and coating and distribution of Rh active species was carried out on several samples prepared by modifying the Rh content in the electrolytic solution (Rh/Mg/Al = 11.0/70.0/19.0, 5.0/70.0/25.0, 0/70.0/30.0 atomic ratio). A sample was also prepared with no aluminum in the electrolytic solution (Rh/Mg/Al = 13.6/86.4/0.0 atomic ratio) and calcined at 550 and 900 degrees C. The interaction between the elements of the metallic support and the catalytic coating increased the film adhesion during the thermal treatment and catalytic tests and modified the catalyst crystalline phases. A chemical reaction between Al corning from the foam and Mg in the coating occurred during calcination at high temperature leading to the formation of spinel phases in which rhodium is solved, together with some Rh2O3 and Rh. The metallic support was oxidized forming the corundum scale and chromium oxides, moreover t-Al2O3 was identified. For the Rh11.0Mg70.0Al19.0 catalyst the inclusion of Rh in the spinel phase decreased its reducibility in the H-2 pretreatment. The reduction continued during catalytic tests by feeding diluted CH4/O-2/He gas mixtures, evidenced by the catalyst activation. While under concentrated gas mixtures the deactivation occurred, probably by oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345735200053 Publication Date 2014-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 13 Open Access
Notes ; The authors thank the scientists who assisted during the conducted experiments: D. Grolimund and C. N. Borca for the mu XRF/XRPD experiments performed at MicroXAS Beamline of SLS, M. Janousch for the mu XRF/XANES experiments at Phoenix Beamline of the SLS, M. Salome for the mu XRE/XANES experiments at ID21 Beamline of the ESRF, and I. Guerra for the FEG-SEM/EDS experiments at Granada University. Thanks must go to Porvair for supplying FeCrAlloy foams. The financial support from the Ministero per l'Istruzione, l'Universita e la Ricerca (MIUR, Roma, I) is gratefully acknowledged. ; Approved Most recent IF: 10.614; 2014 IF: 9.312
Call Number UA @ admin @ c:irua:122215 Serial 5820
Permanent link to this record
 

 
Author Kundu, P.; Turner, S.; Van Aert, S.; Ravishankar, N.; Van Tendeloo, G.
Title Atomic structure of quantum gold nanowires : quantification of the lattice strain Type A1 Journal article
Year (down) 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 1 Pages 599-606
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000330542900061 Publication Date 2013-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 20 Open Access
Notes FWO; Countatoms; Hercules Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:113856 Serial 199
Permanent link to this record