|   | 
Details
   web
Records
Author Lind, O.C.; de Nolf, W.; Janssens, K.; Salbu, B.
Title Micro-analytical characterisation of radioactive heterogeneities in samples from Central Asian TENORM sites Type A1 Journal article
Year 2013 Publication Journal of environmental radioactivity Abbreviated Journal J Environ Radioactiv
Volume (down) 123 Issue Pages 63-70
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The present work focuses on the use of micro-analytical techniques to demonstrate the heterogeneous distribution of radionuclides and metals in soils collected at Former Soviet Union mining sites in Central Asia. Based on digital autoradiography, radionuclides were heterogeneously distributed in soil samples collected at the abandoned uranium mining sites Kurday, Kazakhstan, Kadji Sai, Kyrgyzstan and Taboshar, Tajikistan. Using electron microscopy interfaced with X-ray microanalysis submicron – mm-sized radioactive particles and rock fragments with U, As, Se and toxic metals on the surfaces were identified in Kurday and Kadji Sai samples. Employing scanning and tomographic (3D) synchrotron radiation based micro-X-ray fluorescence (mu-SRXRF) and synchrotron radiation based micro-X-ray diffraction (mu-SRXRD) allowed us to observe the inner structure of the particles without physical sectioning. The distribution of elements in virtual crosssections demonstrated that U and a series of toxic elements were rather heterogeneously distributed also within individual radioactive TENORM particles. Compared to archived data, U in Kadji Sai particles was present as uraninite (U4O9+y or UO2+x) or Na-zippeite aNa(4)(UO2)(6)[(OH)(10)(SO4)(3)]center dot 4H(2)O), i.e. U minerals with very low solubility. The results suggested that TENORM particles can carry substantial amount of radioactivity, which can be subject to re-suspension, atmospheric transport and water transport. Thus, the potential radioecological and radioanalytical impact of radioactive particles at NORM and TENORM sites worldwide should be taken into account. The present work also demonstrates that radioecological studies should benefit from the use of advanced methods such as synchrotron radiation based techniques. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000321177200007 Publication Date 2012-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.31 Times cited 16 Open Access
Notes ; We gratefully acknowledge the support provided by the Norwegian Ministry of Foreign Affairs and the European Commission (HASYLAB proposal I-20070051 EC and II-20090184 EC). The authors are indebted to Dr. Karen Appel and Dr. Manuela Borchert, Hasylab for beamline assistance. ; Approved Most recent IF: 2.31; 2013 IF: 3.571
Call Number UA @ admin @ c:irua:109558 Serial 5710
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W.
Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume (down) 123 Issue 50 Pages 30594-30603
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000503919500061 Publication Date 2019-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:164530 Serial 5938
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V.
Title Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume (down) 123 Issue 43 Pages 26201-26210
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493865700019 Publication Date 2019-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:164664 Serial 6310
Permanent link to this record
 

 
Author Eren, I.; Ozen, S.; Sozen, Y.; Yagmurcukardes, M.; Sahin, H.
Title Vertical van der Waals heterostructure of single layer InSe and SiGe Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume (down) 123 Issue 51 Pages 31232-31237
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We present a first-principles investigation on the stability, electronic structure, and mechanical response of ultrathin heterostructures composed of single layers of InSe and SiGe. First, by performing total energy optimization and phonon calculations, we show that single layers of InSe and SiGe can form dynamically stable heterostructures in 12 different stacking types. Valence and conduction band edges of the heterobilayers form a type-I heterojunction having a tiny band gap ranging between 0.09 and 0.48 eV. Calculations on elastic-stiffness tensor reveal that two mechanically soft single layers form a heterostructure which is stiffer than the constituent layers because of relatively strong interlayer interaction. Moreover, phonon analysis shows that the bilayer heterostructure has highly Raman active modes at 205.3 and 43.7 cm(-1), stemming from the out-of-plane interlayer mode and layer breathing mode, respectively. Our results show that, as a stable type-I heterojunction, ultrathin heterobilayer of InSe/SiGe holds promise for nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505632900050 Publication Date 2019-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:165718 Serial 6332
Permanent link to this record
 

 
Author Kourmoulakis, G.; Michail, A.; Paradisanos, I.; Marie, X.; Glazov, M.M.; Jorissen, B.; Covaci, L.; Stratakis, E.; Papagelis, K.; Parthenios, J.; Kioseoglou, G.
Title Biaxial strain tuning of exciton energy and polarization in monolayer WS2 Type A1 Journal Article
Year 2023 Publication Applied Physics Letters Abbreviated Journal
Volume (down) 123 Issue 22 Pages
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract We perform micro-photoluminescence and Raman experiments to examine the impact of biaxial tensile strain on the optical properties of WS2 monolayers. A strong shift on the order of −130 meV per % of strain is observed in the neutral exciton emission at room temperature. Under near-resonant excitation, we measure a monotonic decrease in the circular polarization degree under the applied strain. We experimentally separate the effect of the strain-induced energy detuning and evaluate the pure effect coming from the biaxial strain. The analysis shows that the suppression of the circular polarization degree under the biaxial strain is related to an interplay of energy and polarization relaxation channels as well as to variations in the exciton oscillator strength affecting the long-range exchange interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001124156400003 Publication Date 2023-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access
Notes Hellenic Foundation for Research and Innovation, HFRI-FM17-3034 ; Approved Most recent IF: 4; 2023 IF: 3.411
Call Number CMT @ cmt @c:irua:202178 Serial 8991
Permanent link to this record
 

 
Author Satyawali, Y.; Seuntjens, P.; Van Roy, S.; Joris, I.; Vangeel, S.; Dejonghe, W.; Vanbroekhoven, K.
Title The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers Type A1 Journal article
Year 2011 Publication Journal of contaminant hydrology Abbreviated Journal
Volume (down) 123 Issue 3/4 Pages 83-93
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. (C) 2010 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288979100001 Publication Date 2010-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:105591 Serial 7419
Permanent link to this record
 

 
Author Van Grieken, R.; Gysels, K.; Hoornaert, S.; Joos, P.; Osán, J.; Szalóki, I.; Worobiec, A.
Title Characterisation of individual aerosol particles for atmospheric and cultural heritage studies Type A1 Journal article
Year 2000 Publication Water, air and soil pollution Abbreviated Journal
Volume (down) 123 Issue Pages 215-228
Keywords A1 Journal article; Laboratory Experimental Medicine and Pediatrics (LEMP); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000089881000020 Publication Date 2002-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-6979; 1573-2932 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:31675 Serial 7596
Permanent link to this record
 

 
Author Smits, J.; Van Grieken, R.
Title Enrichment of trace anions from water with 2,2'-diaminodiethylamine cellulose filters Type A1 Journal article
Year 1981 Publication Analytica chimica acta Abbreviated Journal
Volume (down) 123 Issue Pages 9-17
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Cellulose filters with immobilized 2,2'-diaminodiethylamine (DEN) functional groups are studied for trace anion preconcentration from aqueous solution, with subsequent x-ray fluorescence measurements. For most oxoanions with a central metal atom, nearly quantitative collection can be achieved by 10-cm2 DEN filters under the following optimized conditions: pH 36, filtration rate up to 0.5 ml cm-2 min-1, and sample volume up to 100 ml cm-2. The collection yield is independent of the trace oxoanion concentration up to at least 1.5 μmol cm-2. Although the DEN filter exhibits some selectivity towards oxoanions with a central metal atom, ionic strength affects the results; the collection efficiency is strongly depressed with salt (e.g. NaCl) concentrations above 0.01 M. The applicability of the DEN filter in anion collection is therefore limited to dilute solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1981LA22400002 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116437 Serial 7922
Permanent link to this record
 

 
Author Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M.
Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
Year 2023 Publication Applied physics letters Abbreviated Journal
Volume (down) 123 Issue 3 Pages 033102-33106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033604700003 Publication Date 2023-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 4; 2023 IF: 3.411
Call Number UA @ admin @ c:irua:198382 Serial 8823
Permanent link to this record
 

 
Author Papageorgiou, D.G.; Filippousi, M.; Pavlidou, E.; Chrissafis, K.; Van Tendeloo, G.; Bikiaris, D.
Title Effect of clay modification on structureproperty relationships and thermal degradation kinetics of \beta-polypropylene/clay composite materials Type A1 Journal article
Year 2015 Publication Journal of thermal analysis and calorimetry Abbreviated Journal J Therm Anal Calorim
Volume (down) 122 Issue 122 Pages 393-406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The influence of neat and organically modified montmorillonite on the structureproperty relationships of a β-nucleated polypropylene matrix has been thoroughly investigated. High-angle annular dark field scanning transmission electron microscopy revealed that the organic modification of clay facilitated the dispersion of the clay, while X-ray diffractograms showed the α-nucleating effect of the clays on the β-nucleated matrix. The results from tensile tests showed that the organic modification of MMT affected profoundly only the tensile strength at yield and at break. The effect of the organic modification of the clay on the thermal stability of the composites was finally evaluated by thermogravimetric analysis, where the samples filled with oMMT decomposed faster than the ones filled with neat MMT, due to the decomposition of the organic salts that were initially used for the modification of MMT. A kinetics study of the thermal degradation of the composites was also performed, in order to export additional conclusions on the activation energy of the samples.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000361431200042 Publication Date 2015-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1388-6150;1588-2926; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.953 Times cited 7 Open Access
Notes 262348 Esmi Approved Most recent IF: 1.953; 2015 IF: 2.042
Call Number c:irua:127492 Serial 805
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Free-standing Si and Ge, and Ge/Si core-shell semiconductor nanowires Type A1 Journal article
Year 2012 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics T2 – WELCOME Scientific Meeting on Hybrid Nanostructures, AUG 28-31, 2011, Torun, POLAND Abbreviated Journal Acta Phys Pol A
Volume (down) 122 Issue 2 Pages 294-298
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The properties of free-standing silicon and germanium nanowires oriented along the [110] direction are studied using different first principles methods. We show the corrections due to quasi-particles to the band structures obtained using the local-density approximation. The formation energies of B and P doped nanowires are calculated, both in the absence and presence of dangling bond defects and we link these to experimental results. Furthermore, we report on the phonon properties of pure Si and Ge nanowires, as well as Ge/Si core-shell nanowires, and discuss the differences between them.
Address
Corporate Author Thesis
Publisher Place of Publication Warszawa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;
Impact Factor 0.469 Times cited Open Access
Notes Approved Most recent IF: 0.469; 2012 IF: 0.531
Call Number UA @ lucian @ c:irua:101896 Serial 1277
Permanent link to this record
 

 
Author Lorenz, H.; Zhao, Q.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Klötzer, B.; Rameshan, C.; Penner, S.
Title Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM Type A1 Journal article
Year 2010 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
Volume (down) 122 Issue 2/3 Pages 623-629
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structure, morphology and composition of different tin oxide and germanium oxide thin film catalysts for the methanol steam reforming (MSR) reaction have been studied by a combination of (high-resolution) transmission electron microscopy, selected area electron diffraction, dark-field imaging and electron energy-loss spectroscopy. Deposition of the thin films on NaCl(0 0 1) cleavage faces has been carried out by thermal evaporation of the respective SnO2 and GeO2 powders in varying oxygen partial pressures and at different substrate temperatures. Preparation of tin oxide films in high oxygen pressures (10−1 Pa) exclusively resulted in SnO phases, at and above 473 K substrate temperature epitaxial growth of SnO on NaCl(0 0 1) leads to well-ordered films. For lower oxygen partial pressures (10−3 to 10−2 Pa), mixtures of SnO and β-Sn are obtained. Well-ordered SnO2 films, as verified by electron diffraction patterns and energy-loss spectra, are only obtained after post-oxidation of SnO films at temperatures T ≥ 673 K in 105 Pa O2. Preparation of GeOx films inevitably results in amorphous films with a composition close to GeO2, which cannot be crystallized by annealing treatments in oxygen or hydrogen at temperatures comparable to SnO/SnO2. Similarities and differences to neighbouring oxides relevant for selective MSR in the third group of the periodic system (In2O3 and Ga2O3) are also discussed with the aim of cross-correlation in formation of nanomaterials, and ultimately, also catalytic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000278637900054 Publication Date 2010-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-0584; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.084 Times cited 15 Open Access
Notes Esteem 026019 Approved Most recent IF: 2.084; 2010 IF: 2.356
Call Number UA @ lucian @ c:irua:83099 Serial 2699
Permanent link to this record
 

 
Author Gaouyat, L.; He, Z.; Colomer, J.-F.; Lambin, P.; Mirabella, F.; Schryvers, D.; Deparis, O.
Title Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets Type A1 Journal article
Year 2014 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume (down) 122 Issue Pages 303-308
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Conversion of solar energy into thermal energy helps reducing consumption of non-renewable energies. Cermets (ceramicmetal composites) are versatile materials suitable, amongst other applications, for solar selective absorbers. Although the presence of metallic Ni particles in the dielectric matrix is a prerequisite for efficient solar selective absorption in NiCrOx cermets, no clear evidence of such particles is reported so far. By combining comprehensive chemical and structural analyses, we reveal the presumed nanostructure which is at the origin of the remarkable optical properties of this cermet material. Using sputtered NiCrOx layers in a solar absorber multilayer stack on aluminium substrate allows us to achieve solar absorptance as high as α=96.1% while keeping thermal emissivity as low as ε=2.2%, both values being comparable to best values recorded so far. With the nanostructure of sputtered NiCrOx cermets eventually revealed, further optimization of solar absorbers can be anticipated and technological exploitation of cermet materials in other applications can be foreseen.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000331494200040 Publication Date 2013-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 12 Open Access
Notes Approved Most recent IF: 4.784; 2014 IF: 5.337
Call Number UA @ lucian @ c:irua:113086 Serial 2902
Permanent link to this record
 

 
Author Ferreira, W.P.; Farias, G.A.; Carmona, H.A.; Peeters, F.M.
Title Structural transitions in a classical two-dimensional molecule system Type A1 Journal article
Year 2002 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume (down) 122 Issue 12 Pages 665-669
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground state of a classical two-dimensional (2D) system with a finite number of charge particles, trapped by two positive impurity charges localized at a distance (z(0)) from the. 2D plane and separated from each other by a distance chi(p) are obtained. The impurities are allowed to carry more than one positive charge. This classical system can form a 2D-like classical molecule that exhibits structural transitions and spontaneous symmetry breaking as function of the separation between the positive charges before it transforms into two 2D-like classical atoms. We also observe structural transitions as a function of the dielectric constant of the substrate which supports the charged particles, in addition to broken symmetry states and unbinding of particles. (C) 2002 Elsevier Science Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000177129500008 Publication Date 2002-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 3 Open Access
Notes Approved Most recent IF: 1.554; 2002 IF: 1.671
Call Number UA @ lucian @ c:irua:95137 Serial 3268
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title Superexchange and electron correlations in alkali fullerides AC60, A=K, Rb, Cs Type A1 Journal article
Year 2005 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume (down) 122 Issue 6 Pages 064310-64314
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superexchange interactions in alkali fullerides AC(60) are derived for C-60 molecular ions separated by interstitial alkali-metal ions. We use a multiconfiguration approach which comprises the lowest molecular orbital states of the C-60 molecule and the excited s and d states of the alkali-metal atom A. Interactions are described by the valence bond (Heitler-London) method for a complex (C-60 – A – C-60) – with two valence electrons. The electronic charge transfer between the alkali-metal atom and a neighboring C-60 molecule is not complete. The occupation probability of excited d and s states of the alkali atom is not negligible. In correspondence with the relative positions of the C-60 molecules and A atoms in the polymer crystal, we consider 180degrees and 90degrees (angle) superexchange pathways. For the former case the ground state is found to be a spin singlet separated from a triplet at similar to20 K. For T < 20 K there appear strong spin correlations for the 180degrees superexchange pathway. The results are related to spin lattice relaxation experiments on CsC60 in the polymerized and in the quenched cubic phase. (C) 2005 American Institute of Physics.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000226918100018 Publication Date 2005-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 11 Open Access
Notes Approved Most recent IF: 2.965; 2005 IF: 3.138
Call Number UA @ lucian @ c:irua:102740 Serial 3377
Permanent link to this record
 

 
Author Khasanova, N.R.; Kovba, M.L.; Putilin, S.N.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G.
Title Synthesis, structure and properties of layered bismuthates: (Ba,K)3Bi2O7 and (Ba,K)2BiO4 Type A1 Journal article
Year 2002 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume (down) 122 Issue 3/4 Pages 189-193
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000175844000016 Publication Date 2002-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 3 Open Access
Notes Approved Most recent IF: 1.554; 2002 IF: 1.671
Call Number UA @ lucian @ c:irua:54750 Serial 3462
Permanent link to this record
 

 
Author Kneller, J.M.; Soto, R.J.; Surber, S.E.; Colomer, J.F.; Fonseca, A.; Nagy, J.B.; Van Tendeloo, G.; Pietrass, T.
Title TEM and laser-polarized 129Xe NMR characterization of oxidatively purified carbon nanotubes Type A1 Journal article
Year 2000 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume (down) 122 Issue 43 Pages 10591-10597
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multiwall carbon nanotubes are produced by decomposition of acetylene at 600 degreesC on metal catalysts supported on NaY zeolite. The support and the metal are eliminated by dissolving them in aqueous hydrofluoric acid (HF). Two methods were used to eliminate the pyrolitic carbon: oxidation in air at 500 degreesC and oxidation by potassium permanganate in acidic solution at 70 degreesC. The progress and efficacy of the purification methods are verified by TEM. The properties of the purified multiwalled carbon nanotubes are probed using C-13 and Xe-129 NMR spectroscopy under continuous-flow optical-pumping conditions. Xenon is shown to penetrate the interior of the nanotubes. A distribution of inner tube diameters gives rise to chemical shift dispersion. When the temperature is lowered, an increasing fraction of xenon resides inside the nanotubes and is not capable of exchanging with xenon in the interparticle space. In the case of the permanganate-oxidized sample, rapid xenon relaxation is attributed to interaction with residual MnO2 nanoparticles in the interior of the tubes.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000165205000011 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 53 Open Access
Notes Approved Most recent IF: 13.858; 2000 IF: 6.025
Call Number UA @ lucian @ c:irua:95741 Serial 3473
Permanent link to this record
 

 
Author Schalm, O.; Crabbé, A.; Storme, P.; Wiesinger, R.; Gambirasi, A.; Grieten, E.; Tack, P.; Bauters, S.; Kleber, C.; Favaro, M.; Schryvers, D.; Vincze, L.; Terryn, H.; Patelli, A.
Title The corrosion process of sterling silver exposed to a Na2S solution: monitoring and characterizing the complex surface evolution using a multi-analytical approach Type A1 Journal article
Year 2016 Publication Applied Physics A-Materials Science & Processing Abbreviated Journal Appl Phys A-Mater
Volume (down) 122 Issue 122 Pages 903
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract Many historical ‘silver’ objects are composed of sterling silver, a silver alloy containing small amounts of copper. Besides the dramatic impact of copper on the corrosion process, the chemical composition of the corrosion layer evolves continuously. The evolution of the surface during the exposure to a Na2S solution was monitored by means of visual observation at macroscopic level, chemical analysis at microscopic level and analysis at the nanoscopic level. The corrosion process starts with the preferential oxidation of copper, forming mixtures of oxides and sulphides while voids are being created beneath the corrosion layer. Only at a later stage, the silver below the corrosion layer is consumed. This results in the formation of jalpaite and at a later stage of acanthite. The acanthite is found inside the corrosion layer at the boundaries of jalpaite grains and as individual grains between the jalpaite grains but also as a thin film on top of the corrosion layer. The corrosion process could be described as a sequence of 5 subsequent surface states with transitions between these states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384753800033 Publication Date 2016-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links
Impact Factor 1.455 Times cited 9 Open Access
Notes The authors are grateful for the financial support by the EU-FP7 Grant PANNA No. 282998 and for the opportunity to perform SR-XPS measurements at the NanoESCA beamline of the Elettra storage ring, under the approval of the advisory Committee (Proposal No. 20135164), as well as the opportunity to perform XANES measurements at the DUBBLE beamline of the ESRF storage ring (Proposal No. 26-01-990). The authors are grateful for the financial support by the STIMPRO Project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. Grant of the Agency for Innovation by Science and Technology (IWT). We would also like to thank Peter Van den Haute for the XRD measurements that were performed at the University of Ghent. Approved Most recent IF: 1.455
Call Number EMAT @ emat @ Serial 4331
Permanent link to this record
 

 
Author Dutta, S.; Sankaran, K.; Moors, K.; Pourtois, G.; Van Elshocht, S.; Bommels, J.; Vandervorst, W.; Tokei, Z.; Adelmann, C.
Title Thickness dependence of the resistivity of platinum-group metal thin films Type A1 Journal article
Year 2017 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume (down) 122 Issue 2 Pages 025107
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, and Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5 nm due to a weaker thickness dependence of the resistivity. Based on experimentally determined mean linear distances between grain boundaries as well as ab initio calculations of the electron mean free path, the data for Ru, Ir, and Cu were modeled within the semiclassical Mayadas-Shatzkes model [Phys. Rev. B 1, 1382 (1970)] to assess the combined contributions of surface and grain boundary scattering to the resistivity. For Ru, the modeling results indicated that surface scattering was strongly dependent on the surrounding material with nearly specular scattering at interfaces with SiO2 or air but with diffuse scattering at interfaces with TaN. The dependence of the thin film resistivity on the mean free path is also discussed within the Mayadas-Shatzkes model in consideration of the experimental findings. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000405663800038 Publication Date 2017-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 42 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:145213 Serial 4729
Permanent link to this record
 

 
Author Wang, W.; Snoeckx, R.; Zhang, X.; Cha, M.S.; Bogaerts, A.
Title Modeling Plasma-based CO2and CH4Conversion in Mixtures with N2, O2, and H2O: The Bigger Plasma Chemistry Picture Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume (down) 122 Issue 16 Pages 8704-8723
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Because of the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion has become a major research area. Many investigations have already been performed regarding the single-component gases, that is, CO2 splitting and CH4 reforming, as well as for two-component mixtures, that is, dry reforming of methane

(CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps toward the influence of N2 impurities have been taken, that is, CO2/N2 and CH4/N2. In this Feature Article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2, and H2O to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable

for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes as well as for investigating the influence of N2, O2, and H2O on these processes and even to support plasma-based multireforming processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000431151200002 Publication Date 2018-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 28 Open Access OpenAccess
Notes Federaal Wetenschapsbeleid, IAP/7 ; King Abdullah University of Science and Technology; H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0383.16N G.0254.14N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:150969 Serial 4922
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Bal, K.M.; Neyts, E.C.
Title High Coke Resistance of a TiO2Anatase (001) Catalyst Surface during Dry Reforming of Methane Type A1 Journal Article
Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume (down) 122 Issue 17 Pages 9389-9396
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The resistance of a TiO2 anatase (001) surface to coke formation was studied in the context of dry reforming of methane using density functional theory (DFT) calculations. As carbon atoms act as precursors for coke formation, the resistance to coke formation can be measured by the carbon coverage of the surface. This is related to the stability of different CHx (x = 0−3) species and their rate of hydrogenation and dehydrogenation on the TiO2 surface. Therefore, we studied the reaction mechanisms and their corresponding rates as a function of the temperature for the dehydrogenation of the species on the surface. We found that the stabilities of C and CH are significantly lower than those of CH3 and CH2. The hydrogenation rates of the different species are significantly higher than the dehydrogenation rates in a temperature range of 300−1000 K. Furthermore, we found that dehydrogenation of CH3, CH2, and CH will only occur at appreciable rates starting from 600, 900, and 900 K, respectively. On the basis of these results, it is clear that the anatase (001) surface has a high coke resistance, and it is thus not likely that the surface will become poisoned by coke during dry reforming of methane. As the rate limiting step in dry reforming is the dissociative adsorption of CH4, we studied an alternative approach to thermal catalysis. We found that the temperature threshold for dry reforming is at least 700 K. This threshold temperature may be lowered by the use of plasma-catalysis, where the appreciable rates of adsorption of plasma-generated CHx radicals result in bypassing the rate limiting step of the reaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000431723700014 Publication Date 2018-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 1 Open Access OpenAccess
Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N ; Onderzoeksfonds, Universiteit Antwerpen, 32249 ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:151529c:irua:152816 Serial 5000
Permanent link to this record
 

 
Author Bhat, S.G.; Gauquelin, N.; Sebastian, N.K.; Sil, A.; Béché, A.; Verbeeck, J.; Samal, D.; Kumar, P.S.A.
Title Orthorhombic vs. hexagonal epitaxial SrIrO3 thin films : structural stability and related electrical transport properties Type A1 Journal article
Year 2018 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume (down) 122 Issue 2 Pages 28003
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metastable orthorhombic SrIrO3 (SIO) is an arch-type spin-orbit coupled material. We demonstrate here a controlled growth of relatively thick (200 nm) SIO films that transform from bulk “6H-type” structure with monoclinic distortion to an orthorhombic lattice by controlling growth temperature. Extensive studies based on high-resolution X-ray diffraction and transmission electron microscopy infer a two distinct structural phases of SIO. Electrical transport reveals a weak temperature-dependent semi-metallic character for both phases. However, the temperature-dependent Hall-coefficient for the orthorhombic SIO exhibits a prominent sign change, suggesting a multiband character in the vicinity of E-F. Our findings thus unravel the subtle structure-property relation in SIO epitaxial thin films. Copyright (C) EPLA, 2018
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000435517300001 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access Not_Open_Access
Notes ; SGB and DS acknowledge useful discussions with E. P. Houwman, University of Twente, on X-ray diffraction. DS would like to thank H. Takagi, Max-Planck Institute for Solid State Research, Stuttgart, for the fruitful discussion on the transport properties of SIO thin films. SGB and NKS thank A. Aravind, Bishop Moore College, Mavelikara, for his valuable inputs while depositing the thin films of SIO. SGB, NKS and PSAK acknowledge Nano Mission Council, Department of Science & Technology, India, for the funding. DS acknowledges the financial support from Max-Planck Society through MaxPlanck Partner Group. NG, AB and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G093417N. ; Approved Most recent IF: 1.957
Call Number UA @ lucian @ c:irua:152074UA @ admin @ c:irua:152074 Serial 5034
Permanent link to this record
 

 
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J.
Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume (down) 122 Issue 122 Pages 23129-23142
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000447471700038 Publication Date 2018-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 27 Open Access OpenAccess
Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:154731 Serial 5121
Permanent link to this record
 

 
Author van der Burgt, J.S.; Geuchies, J.J.; van der Meer, B.; Vanrompay, H.; Zanaga, D.; Zhang, Y.; Albrecht, W.; Petukhov, A.V.; Filion, L.; Bals, S.; Swart, I.; Vanmaekelbergh, D.
Title Cuboidal supraparticles self-assembled from cubic CsPbBr3 perovskite nanocrystals Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume (down) 122 Issue 122 Pages 15706-15712
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Colloidal CsPbBr3 nanocrystals (NCs) have emerged as promising candidates for various opto-electronic applications, such as light-emitting diodes, photodetectors, and solar cells. Here, we report on the self-assembly of cubic NCs from an organic suspension into ordered cuboidal supraparticles (SPs) and their structural and optical properties. Upon increasing the NC concentration or by addition of a nonsolvent, the formation of the SPs occurs homogeneously in the suspension, as monitored by in situ X-ray scattering measurements. The three-dimensional structure of the SPs was resolved through high-angle annular dark-field scanning transmission electron microscopy and electron tomography. The NCs are atomically aligned but not connected. We characterize NC vacancies on superlattice positions both in the bulk and on the surface of the SPs. The occurrence of localized atomic-type NC vacancies-instead of delocalized ones-indicates that NC-NC attractions are important in the assembly, as we verify with Monte Carlo simulations. Even when assembled in SPs, the NCs show bright emission, with a red shift of about 30 meV compared to NCs in suspension.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000439003600071 Publication Date 2018-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 60 Open Access OpenAccess
Notes ; The authors thank Dr. Rajeev Dattani and Jacques Gorini from the ID02 beamline of the ESRF for their excellent assistance during the X-ray scattering experiments. We also thank Carlo van Overbeek, P. Tim Prins, and Federico Montanarella for their support during the synchrotron experiments. The authors gratefully acknowledge Prof. Dr. Alfons van Blaaderen for fruitful discussions. D.V. acknowledges funding from NWO-CW TOPPUNT “Superficial superstructures.” J.J.G. acknowledges the joint Debye and ESRF graduate programs for the financial support. H.V. gratefully acknowledges the financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617NN). S.B. acknowledges the financial support from the European Research Council (ERC Starting grant # 335078-COLOURATOMS). Y.Z. acknowledges the financial support from the European Union's Horizon 2020 research and innovation program, under the Marie Sklodowska-Curie grant agreement #665501 through a FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship (12U4917N). W.A. acknowledges the financial support from the European Research Council under the European Unions Seventh Framework Program (FP-2007-2013)/ERC Advanced grant agreement 291667 HierarSACol. ; ecas_Sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:153161UA @ admin @ c:irua:153161 Serial 5087
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A.
Title Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO2Conversion Type A1 Journal Article
Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume (down) 122 Issue 45 Pages 25869-25881
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Supersonic flows provide a high thermodynamic

nonequilibrium, which is crucial for energy-efficient conversion of

CO 2 in microwave plasmas and are therefore of great interest.

However, the effect of the flow on the chemical reactions is poorly

understood. In this work, we present a combined flow and plasma

chemical kinetics model of a microwave CO 2 plasma in a Laval

nozzle setup. The effects of the flow field on the different dissociation

and recombination mechanisms, the vibrational distribution, and the

vibrational transfer mechanism are discussed. In addition, the effect

of experimental parameters, like position of power deposition, outlet

pressure, and specific energy input, on the CO 2 conversion and

energy efficiency is examined. The short residence time of the gas in

the plasma region, the shockwave, and the maximum critical heat,

and thus power, that can be added to the flow to avoid thermal

choking are the main obstacles to reaching high energy efficiencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451101400016 Publication Date 2018-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:155412 Serial 5070
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Jones, L.; Martinez, G.T.; Béché, A.; Nellist, P.D.
Title Control of Knock-On Damage for 3D Atomic Scale Quantification of Nanostructures: Making Every Electron Count in Scanning Transmission Electron Microscopy Type A1 Journal article
Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (down) 122 Issue 6 Pages 066101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Understanding nanostructures down to the atomic level is the key to optimizing the design of advancedmaterials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458824200008 Publication Date 2019-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 3 Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (WO.010.16N, G.0934.17N, G.0502.18N, G.0267.18N), and a grant to A. D. B. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 312483— ESTEEM2 (Integrated Infrastructure Initiative-I3) and the UK EPSRC (Grant No. EP/M010708/1). Approved Most recent IF: 8.462
Call Number EMAT @ emat @UA @ admin @ c:irua:157175 Serial 5156
Permanent link to this record
 

 
Author Müller-Caspary, K.; Grieb, T.; Müßener, J.; Gauquelin, N.; Hille, P.; Schörmann, J.; Verbeeck, J.; Van Aert, S.; Eickhoff, M.; Rosenauer, A.
Title Electrical Polarization in AlN/GaN Nanodisks Measured by Momentum-Resolved 4D Scanning Transmission Electron Microscopy Type A1 Journal article
Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (down) 122 Issue 10 Pages 106102
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the mapping of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures at unit cell resolution as a key for the correlation of optical and structural phenomena in semiconductor optoelectronics. Momentum-resolved aberration-corrected scanning transmission electron microscopy is employed as a new imaging mode that simultaneously provides four-dimensional data in real and reciprocal space. We demonstrate how internal mesoscale and atomic electric fields can be separated in an experiment, which is verified by comprehensive dynamical simulations of multiple electron scattering. A mean difference of 5.3 +- 1.5 MV/cm is found for the polarization-induced electric fields in AlN and GaN, being in accordance with dedicated simulations and photoluminescence measurements in previous publications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461067700007 Publication Date 2019-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access OpenAccess
Notes The authors gratefully acknowledge the help of Natalie Claes for analyzing the EDX data. K. M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Young Investigator Group moreSTEM under Contract No. VHNG- 1317 at Forschungszentrum Jülich in Germany. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. N. G. and J. V. acknowledge funding from the Geconcentreerde Onderzoekacties project Solarpaint of the University of Antwerp. T. G. and A. R. acknowledge support from the Deutsche Forschungsgemeinschaft (Germany) under Contract No. RO2057/8-3. This work also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Contract No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N).; Helmholtz Association, VH-NG-1317 ; Forschungszentrum Jülich; Flemish Government; Universiteit Antwerpen; Deutsche Forschungsgemeinschaft, RO2057/8-3 ; H2020 European Research Council, 770887 ; Fonds Wetenschappelijk Onderzoek, G.0368.15N ; Approved Most recent IF: 8.462
Call Number UA @ lucian @UA @ admin @ c:irua:158120 Serial 5157
Permanent link to this record
 

 
Author Badalov, S.V.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Enhanced stability of single-layer w-Gallenene through hydrogenation Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume (down) 122 Issue 49 Pages 28302-28309
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using density functional theory based first-principles calculations, the effect of surface hydrogenation on the structural, dynamical, electronic, and mechanical properties of monolayer washboard-gallenene (w-gallenene) is investigated. It is found that the dynamically stabilized strained monolayer of w-gallenene has a metallic nonmagnetic ground state. Both one-sided and two-sided hydrogenations of w-gallenene suppress its dynamical instability even when unstrained. Unlike one-sided hydrogenated monolayer w-gallenene (os-w-gallenene), two-sided hydrogenated monolayer w-gallenene (ts-w-gallenene) possesses the same crystal structure as w-gallenene. Electronic band structure calculations reveal that monolayers of hydrogenated derivatives of w-gallenene exhibit also metallic nonmagnetic ground state. Moreover, the linear-elastic constants, in-plane stiffness and Poisson ratio, are enhanced by hydrogenation, which is opposite to the behavior of other hydrogenated monolayer crystals. Furthermore, monolayer w-gallenene and ts-w-gallenene remain dynamically stable up to relatively higher biaxial strains as compared to borophene. With its enhanced dynamical stability, robust metallic character, and enhanced linear-elastic properties, hydrogenated monolayer w-gallenene is a potential candidate for nanodevice applications as a two-dimensional flexible metal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453488300053 Publication Date 2018-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work was supported by FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:156229 Serial 5210
Permanent link to this record
 

 
Author 't Hart, L.; Storme, P.; Anaf, W.; Nuyts, G.; Vanmeert, F.; Dorriné, W.; Janssens, K.; De Wael, K.; Schalm, O.
Title Monitoring the impact of the indoor air quality on silver cultural heritage objects using passive and continuous corrosion rate assessments Type A1 Journal article
Year 2016 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater
Volume (down) 122 Issue 10 Pages 923-10
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract There is a long tradition in evaluating industrial atmospheres by measuring the corrosion rate of exposed metal coupons. The heritage community also uses this method, but the interpretation of the corrosion rate often lacks clarity due to the low corrosivity in indoor museum environments. This investigation explores the possibilities and drawbacks of different silver corrosion rate assessments. The corrosion rate is determined by three approaches: (1) chemical characterization of metal coupons using analytical techniques such as electrochemical measurements, SEM-EDX, XRD, and µ-Raman spectroscopy, (2) continuous corrosion monitoring methods based on electrical resistivity loss of a corroding nm-sized metal wire and weight gain of a corroding silver coated quartz crystal, and (3) characterization of the visual degradation of the metal coupons. This study confirms that subtle differences in corrosivity between locations inside a museum can be determined on condition that the same corrosion rate assessment is used. However, the impact of the coupon orientation with respect to the prevailing direction of air circulation can be substantially larger than the impact of the coupon location.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384753800053 Publication Date 2016-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.455 Times cited 3 Open Access
Notes ; This research has been sponsored by the Belgian Federal Public Planning Service Science Policy (BELSPO) under Project Number BR/132/A6/AIRCHECQ. In this project an innovative monitoring kit is developed that continuously and simultaneously measures both environmental parameters and material behaviour, enabling the study of the cause-effect relationships. The Quanta 250 FEG microscope at the University of Antwerp was funded by the Hercules foundation of the Flemish Government. ; Approved Most recent IF: 1.455
Call Number UA @ admin @ c:irua:135511 Serial 5733
Permanent link to this record
 

 
Author van Winsen, F.; de Mey, Y.; Lauwers, L.; Van Passel, S.; Vancauteren, M.; Wauters, E.
Title Cognitive mapping : a method to elucidate and present farmers' risk perception Type A1 Journal article
Year 2013 Publication Agricultural Systems Abbreviated Journal Agr Syst
Volume (down) 122 Issue Pages 42-52
Keywords A1 Journal article
Abstract Assumptions on the perceptions of risks, made in agricultural economics literature, are recognized to be over-simplistic. For example most studies assume that risks are independent and static, while in reality most risks are interlinked and dynamic. We propose an alternative method to identify and present risk perception, closer to the actual comprehension of risk by farmers. Grounded theory is used to investigate the perceptions of risk by farmers while avoiding prior assumptions. Main findings are: (i) farmers have difficulty to rank or score probability and impact of risks in a (semi)quantitative manner; (ii) farmers attach different meanings to risk, when the focus shifts between, uncertain event, probability or value at stake and; (iii) farmers perceive risks as being interrelated. Based on these findings, we propose that farmers' risk perception can be best understood as a network of interrelated notions of uncertain events, their effects and uncertain outcomes. Furthermore, cognitive mapping is suggested to elucidate and present these networks. We test cognitive mapping, exploring dairy farmers' risk perception, and demonstrate the appropriateness of this methodology for capturing the complexity and context of perceived risk. Advantages are: (i) the qualitative approach, (ii) the focus on interrelations and context, (iii) the applicability at farm level, (iv) the farmer-driven rather than researcher-driven perspective, and (v) the elucidation of the polyvalent use of the risk concept. Cognitive maps can be used as a communication tool, a risk management tool, and a tool to stimulate bi-directional learning amongst farmers, policy makers, researchers and extension agents. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326910500005 Publication Date 2013-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.571 Times cited 27 Open Access
Notes ; We would like to acknowledge the Agency for Innovation by Science and Technology of the Flemish Government (IWT) for funding this research. Furthermore we would like to thank the anonymous reviewers for their valuable input. ; Approved Most recent IF: 2.571; 2013 IF: 2.453
Call Number UA @ admin @ c:irua:112765 Serial 6168
Permanent link to this record