|   | 
Details
   web
Records
Author Galván Moya, J.E.; Lucena, D.; Ferreira, W.P.; Peeters, F.M.
Title Magnetic particles confined in a modulated channel : structural transitions tunable by tilting a magnetic field Type A1 Journal article
Year (down) 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 89 Issue 3 Pages 032309-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground state of colloidal magnetic particles in a modulated channel are investigated as a function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential, and the commensurability factor of the system. Interestingly, we found first-and second-order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A reentrant behavior is found between two-and four-chain configurations, with continuous second-order transitions. Novel configurations are found consisting of frozen solitons of defects. By changing the orientation and/or strength of the magnetic field and/or the strength and periodicity of the substrate potential, the system transits through different phases.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000333702800015 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem programme of the Flemish government, CNPq, CAPES, FUNCAP (Pronex grant), the collaborative program CNPq-FWO-Vl, and the Brazilian program Science Without Borders CsF. Computational resources were provided by HPC infrastructure of University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:117217 Serial 1886
Permanent link to this record
 

 
Author Lucena, D.; Galván Moya, J.E.; Ferreira, W.P.; Peeters, F.M.
Title Single-file and normal diffusion of magnetic colloids in modulated channels Type A1 Journal article
Year (down) 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 89 Issue 3 Pages 032306-32309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978)] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000333646400005 Publication Date 2014-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 5 Open Access
Notes ; This work was supported by CNPq, CAPES, FUNCAP (Pronex grant), the Flemish Science Foundation (FWO-Vl), the collaborative program CNPq-FWO-Vl, and the Brazilian program Science Without Borders (CsF). D. Lucena acknowledges fruitful discussions with W. A. Munoz, V. F. Becerra, E. C. Euan-Diaz, and M. R. Masir. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:116865 Serial 3020
Permanent link to this record
 

 
Author Galván-Moya, J.E.; Altantzis, T.; Nelissen, K.; Peeters, F.M.; Grzelczak, M.; Liz-Marán, L.M.; Bals, S.; Van Tendeloo, G.
Title Self-organization of highly symmetric nanoassemblies : a matter of competition Type A1 Journal article
Year (down) 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 4 Pages 3869-3875
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The properties and applications of metallic nanoparticles are inseparably connected not only to their detailed morphology and composition but also to their structural configuration and mutual interactions. As a result, the assemblies often have superior properties as compared to individual nanoparticles. Although it has been reported that nanoparticles can form highly symmetric clusters, if the configuration can be predicted as a function of the synthesis parameters, more targeted and accurate synthesis will be possible. We present here a theoretical model that accurately predicts the structure and configuration of self-assembled gold nanoclusters. The validity of the model is verified using quantitative experimental data extracted from electron tomography 3D reconstructions of different assemblies. The present theoretical model is generic and can in principle be used for different types of nanoparticles, providing a very wide window of potential applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334990600084 Publication Date 2014-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 34 Open Access OpenAccess
Notes FWO; Methusalem; 246791 COUNTATOMS; 335078 COLOURATOM; 262348 ESMI; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:116955 Serial 2977
Permanent link to this record
 

 
Author Sobrino Fernandez, M.; Misko, V.R.; Peeters, F.M.
Title Self-assembly of Janus particles confined in a channel Type A1 Journal article
Year (down) 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 89 Issue 2 Pages 022306-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Janus particles present an important class of building blocks for directional assembly. These are compartmentalized colloids with two different hemispheres. Here, we consider a two-dimensional model of Janus disks consisting of a hydrophobic semicircle and an electro-negatively charged one. Placed in a solution, the hydrophobic sides will attract each other while the charged sides will give rise to a repulsive force. Using molecular dynamics simulations, we study the morphology of these particles when confined in a channel-like environment using a one dimensional harmonic confinement potential. The interest to this system is first of all due to the fact that it could serve as a simple model for membrane formation. Indeed, the recently synthesized new class of artificial amphiphiles, known as Janus dendrimers, were shown to self-assemble in bilayer structures mimicking biological membranes. In turn, Janus particles that combine the amphiphilicity and colloidal rigidity serve as a good model for Janus dendrimers. A variety of ordered membrane-like morphologies are found consisting of single and multiple chain configurations with different orientations of the particles with respect to each other that we summarize in a phase diagram.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000332179900009 Publication Date 2014-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and by the “Odysseus” program of the Flemish government and FWO-Vl. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:115858 Serial 2971
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M.
Title Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy Type A1 Journal article
Year (down) 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 140 Issue 7 Pages 074304-74309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C-Nc X-Nx (X = F or H). We studied GNFs with 10 < N-c < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Delta between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N-c, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000332039900020 Publication Date 2014-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 30 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 2.965; 2014 IF: 2.952
Call Number UA @ lucian @ c:irua:115857 Serial 1002
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M.
Title Vortex anomaly in low-dimensional fermionic condensates : quantum confinement breaks chirality Type A1 Journal article
Year (down) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 5 Pages 054513-54515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Chiral fermions are responsible for low-temperature properties of vortices in fermionic condensates, both superconducting (charged) and superfluid (neutral). One of the most striking consequences of this fact is that the core of a single-quantum vortex collapses at low temperatures, T -> 0 (i.e., the Kramer-Pesch effect for superconductors), due to the presence of chiral quasiparticles in the vortex-core region. We show that the situation changes drastically for fermionic condensates confined in quasi-one-dimensional and quasi-two-dimensional geometries. Here quantum confinement breaks the chirality of in-core fermions. As a result, instead of the ultimate shrinking, the core of a single-quantum vortex extends at low temperatures, and the condensate profile surprisingly mimics the multiquantum vortex behavior. Our findings are relevant for nanoscale superconductors, such as recent metallic nanoislands on silicon, and also for ultracold superfluid Fermi gases in cigar-shaped and pancake-shaped atomic traps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332396800005 Publication Date 2014-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), the Methusalem Program, and the National Science Foundation of China under Grant No. NSFC-11304134. A. A. S. acknowledges the support of Brazilian agencies CNPq and FACEPE (Grant No. APQ-0589-1.05/08). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115822 Serial 3850
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Zarenia, M.; Pereira, J.M.; Farias, G.A.; Peeters, F.M.
Title Geometry and edge effects on the energy levels of graphene quantum rings : a comparison between tight-binding and simplified Dirac models Type A1 Journal article
Year (down) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 7 Pages 075418-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a systematic study of the energy spectra of graphene quantum rings having different geometries and edge types in the presence of a perpendicular magnetic field. Results are obtained within the tight-binding (TB) and Dirac models and we discuss which features of the former can be recovered by using the approximations imposed by the latter. Energy levels of graphene quantum rings obtained by diagonalizing the TB Hamiltonian are demonstrated to be strongly dependent on the rings geometry and the microscopical structure of the edges. This makes it difficult to recover those spectra by the existing theories that are based on the continuum (Dirac) model. Nevertheless, our results show that both approaches (i.e., TB and Dirac model) may provide similar results, but only for very specific combinations of ring geometry and edge types. The results obtained by a simplified model describing an infinitely thin circular Dirac ring show good agreement with those obtained for hexagonal and rhombus armchair graphene rings within the TB model. Moreover, we show that the energy levels of a circular quantum ring with an infinite mass boundary condition obtained within the Dirac model agree with those for a ring defined by a ring-shaped staggered potential obtained within the TB model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332390000009 Publication Date 2014-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes ; This work was financially supported by CNPq, under Contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Bilateral programme between CNPq and the Flemish Science Foundation (FWO-Vl), and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115823 Serial 1328
Permanent link to this record
 

 
Author Ravi Kishore, V.V.; Partoens, B.; Peeters, F.M.
Title Electronic and optical properties of core-shell nanowires in a magnetic field Type A1 Journal article
Year (down) 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 9 Pages 095501-95512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and optical properties of zincblende nanowires are investigated in the presence of a uniform magnetic field directed along the [001] growth direction within the k . p method. We focus our numerical study on core-shell nanowires consisting of the III-V materials GaAs, AlxGa1-xAs and AlyGa1-y/0.51In0.49P. Nanowires with electrons confined in the core exhibit a Fock-Darwin-like spectrum, whereas nanowires with electrons confined in the shell show Aharonov-Bohm oscillations. Thus, by properly choosing the core and the shell materials of the nanowire, the optical properties in a magnetic field can be tuned in very different ways.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000331954500006 Publication Date 2014-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115845 Serial 998
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.;
Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
Year (down) 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 3252
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332666700010 Publication Date 2014-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 806 Open Access
Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:119247 Serial 2192
Permanent link to this record
 

 
Author Xu, P.; Dong, L.; Neek-Amal, M.; Ackerman, M.L.; Yu, J.; Barber, S.D.; Schoelz, J.K.; Qi, D.; Xu, F.; Thibado, P.M.; Peeters, F.M.;
Title Self-organized platinum nanoparticles on freestanding graphene Type A1 Journal article
Year (down) 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 3 Pages 2697-2703
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). High-resolution transmission electron microscopy revealed a homogeneous distribution of single-crystal Pt NPs that tend to exhibit a preferred orientation. Unexpectedly, the NPs were also found to be partially exposed to the vacuum with the top Pt surface raised above the graphene substrate, as deduced from atomic-scale scanning tunneling microscopy images and detailed molecular dynamics simulations. Local strain accumulation during the growth process is thought to be the origin of the NP self-organization. These findings are expected to shape future approaches in developing Pt NP catalysts for fuel cells as well as NP-functionalized graphene-based high-performance electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000333539400085 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 38 Open Access
Notes ; M.N.A. acknowledges financial support by the EU-Marie Curie IIF postdoc Fellowship/299855. F.M.P. acknowledges financial support by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. L.D. acknowledges financial support by the Taishan Overseas Scholar program (tshw20091005), the International Science & Technology Cooperation Program of China (2014DFA60150), the National Natural Science Foundation of China (51172113), the Shandong Natural Science Foundation (JQ201118), the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz), and the National Science Foundation (DMR-0821159). P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. ; Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:116881 Serial 2978
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Graphene on boron-nitride : Moiré pattern in the van der Waals energy Type A1 Journal article
Year (down) 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 4 Pages 041909-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The spatial dependence of the van der Waals (vdW) energy between graphene and hexagonal boron-nitride (h-BN) is investigated using atomistic simulations. The van der Waals energy between graphene and h-BN shows a hexagonal superlattice structure identical to the observed Moire pattern in the local density of states, which depends on the lattice mismatch and misorientation angle between graphene and h-BN. Our results provide atomistic features of the weak van der Waals interaction between graphene and BN which are in agreement with experiment and provide an analytical expression for the size of the spatial variation of the weak van der Waals interaction. We also found that the A-B-lattice symmetry of graphene is broken along the armchair direction. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331209900028 Publication Date 2014-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 61 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A was supported by the EU-Marie Curie IIF postdoctoral Fellowship/299855. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:115802 Serial 1374
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Magnetic electron focusing and tuning of the electron current with a pn-junction Type A1 Journal article
Year (down) 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 4 Pages 043719-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transverse magnetic focusing properties of graphene using a ballistic four terminal structure are investigated. The electric response is obtained using the semiclassical billiard model. The transmission exhibits pronounced peaks as a consequence of skipping orbits at the edge of the structure. When we add a pn-junction between the two probes, snake states along the pn-interface appear. Injected electrons are guided by the pn-interface to one of the leads depending on the value of the applied magnetic field. Oscillations in the resistance are found depending on the amount of particles that end up in each lead.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331210800066 Publication Date 2014-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 21 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:115801 Serial 1866
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Surface correlation effects in two-band strongly correlated slabs Type A1 Journal article
Year (down) 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 7 Pages 075601-75609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/ center to center/ surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000330719500009 Publication Date 2014-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. One of us (LC) is a postdoctoral fellow of the FWO-Vl. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115723 Serial 3395
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Neek-Amal, M.; Peeters, F.M.; van Duin, A.C.T.
Title Stabilized silicene within bilayer graphene : a proposal based on molecular dynamics and density-functional tight-binding calculations Type A1 Journal article
Year (down) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 2 Pages 024107-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Freestanding silicene is predicted to display comparable electronic properties as graphene. However, the yet synthesized silicenelike structures have been only realized on different substrates which turned out to exhibit versatile crystallographic structures that are very different from the theoretically predicted buckled phase of freestanding silicene. This calls for a different approach where silicene is stabilized using very weakly interacting surfaces. We propose here a route by using graphene bilayer as a scaffold. The confinement between the flat graphene layers results in a planar clustering of Si atoms with small buckling, which is energetically unfavorable in vacuum. Buckled hexagonal arrangement of Si atoms similar to freestanding silicene is observed for large clusters, which, in contrast to Si atoms on metallic surfaces, is only very weakly van der Waals coupled to the graphene layers. These clusters are found to be stable well above room temperature. Our findings, which are supported by density-functional tight-binding calculations, show that intercalating bilayer graphene with Si is a favorable route to realize silicene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332226200002 Publication Date 2014-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 43 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. One of us (F. M. P.) acknowledges discussions with Professor Hongjun Gao. G. R. B acknowledges the support of the King Fahd University of Petroleum and Minerals, Saudi Arabia, under the TPRG131-CS-15 DSR project. A.C.T.vD acknowledges funding from AFOSR Grants No. FA9550-10-1-0563 and No. FA9550-11-1-0158. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115829 Serial 3140
Permanent link to this record
 

 
Author Singh, S.K.; Costamagna, S.; Neek-Amal, M.; Peeters, F.M.
Title Melting of partially fluorinated graphene : from detachment of fluorine atoms to large defects and random coils Type A1 Journal article
Year (down) 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 8 Pages 4460-4464
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermomechanically more stable than graphene but at T-m approximate to 2800 K FFG transits to random coils which is almost 2 times lower than the melting temperature of graphene, i.e., 5300 K. For fluorinated graphene up to 30% ripples causes detachment of individual F-atoms around 2000 K, while for 40%-60% fluorination large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000332188100069 Publication Date 2014-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 16 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-VI). Financial support from the Collaborative program MINCyT (Argentina)-FWO(Belgium) is also acknowledged. ; Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:128874 Serial 4600
Permanent link to this record
 

 
Author de Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Topological confinement in trilayer graphene Type A1 Journal article
Year (down) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 3 Pages 035420-35425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We calculate the spectrum of states that are localized at the interface between two regions of opposite bias in trilayer graphene (TLG). These potential profiles, also known as potential kinks, have been predicted to support two different branches of localized states for the case of bilayer graphene, and show similarities to the surface states of topological insulators. On the other hand, we found that ABC stacked TLG exhibits three different unidimensional branches of states in each valley that are confined to the kink interface. They have the property E(k(y)) = -E(-k(y)) when belonging to the same valley and E-K(k(y)) = -E-K' (-k(y)). A kink-antikink potential profile opens a gap in the spectrum of these one-dimensional states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332220800005 Publication Date 2014-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Brazilian Council for Research (CNPq-PRONEX), the Flemish Science Foundation (FWO-Vl), and the Bilateral project between CNPq and FWO-Vl and the Brazilian program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115830 Serial 3676
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.
Title Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study Type A1 Journal article
Year (down) 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 3 Pages 1133-1137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of vacancy defects on the structural properties and the thermal stability of free standing silicene – a buckled structure of hexagonally arranged silicon atoms – is studied using reactive molecular dynamics simulations. Pristine silicene is found to be stable up to 1500 K, above which the system transits to a three-dimensional amorphous configuration. Vacancy defects result in local structural changes in the system and considerably reduce the thermal stability of silicene: depending on the size of the vacancy defect, the critical temperature decreases by more than 30%. However, the system is still found to be stable well above room temperature within our simulation time of 500 ps. We found that the, stability of silicene can be increased by saturating the dangling bonds at the defect edges by foreign atoms (e.g., hydrogen).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327868400015 Publication Date 2013-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 62 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. The authors are grateful to Prof. Adri van Duin for his support with the ReaxFF force field. ; Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:112829 Serial 1658
Permanent link to this record
 

 
Author Ghosh, S.; Tongay, S.; Hebard, A.F.; Sahin, H.; Peeters, F.M.
Title Ferromagnetism in stacked bilayers of Pd/C60 Type A1 Journal article
Year (down) 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 349 Issue Pages 128-134
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We provide experimental evidence for the existence of ferromagnetism in bilayers of Pd/C-60 which is supported by theoretical calculations based on density functional theory (DFT). The observed ferromagnetism is surprising as C-60 and Pd films are both non-ferromagnetic in the non-interacting limit. Magnetization (M) versus applied field (H) data acquired at different temperatures (T) show magnetic hysteresis with typical coercive fields (H-c) on the order of 50 Oe. From the temperature-dependent magnetization M(T) we extract a Curie temperature (T-c >= 550 K) using Bloch-like power law extrapolations to high temperatures. Using DFT calculations we investigated all plausible scenarios for the interaction between the C-60 molecules and the Pd slabs, Pd single atoms and Pd clusters. DFT shows that while the C-60 molecules are nonmagnetic, Pd films have a degenerate ground state that subject to a weak perturbation, can become ferromagnetic. Calculations also show that the interaction of C-60 molecules with excess Pd atoms and with sharp edges of a Pd slab is the most likely configuration that render the system ferromagnetic Interestingly, the calculated charge transfer (0.016 e per surface Pd atom, 0.064 e per Pd for intimate contact region) between C-60 and Pd does not appear to play an important role. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000326037600022 Publication Date 2013-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 8 Open Access
Notes ; We thank Prof. Amlan Biswas and Daniel Grant for Atomic Force Microscopy measurements. This work is supported by the National Science Foundation (NSF) under Contract Number 1005301 (AFH). The authors also thank S. Ciraci for fruitful discussions. All the computational resources have been provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. Sahin is also supported by a FWO Pegasus Marie Curie Long Fellowship during the study. ; Approved Most recent IF: 2.63; 2014 IF: 1.970
Call Number UA @ lucian @ c:irua:112214 Serial 1184
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Foeldi, P.; Peeters, F.M.
Title Oscillating spin-orbit interaction as a source of spin-polarized wavepackets in two-terminal nanoscale devices Type A1 Journal article
Year (down) 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 13 Pages 135302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ballistic transport through nanoscale devices with time-dependent Rashba-type spin- orbit interaction (SOI) can lead to spin-polarized wavepackets that appear even for completely unpolarized input. The SOI that oscillates in a finite domain generates density and spin polarization fluctuations that leave the region as propagating waves. In particular, spin polarization has space and time dependence even in regions without SOI. Our results are based on an analytical solution of the time-dependent Schrodinger equation. The relevant Floquet quasi-energies that are obtained appear in the energy spectrum of both the transmitted and the reflected waves.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited Open Access
Notes Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:116844 Serial 2533
Permanent link to this record
 

 
Author Zarenia, M.; Partoens, B.; Chakraborty, T.; Peeters, F.M.
Title Electron-electron interactions in bilayer graphene quantum dots Type A1 Journal article
Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245432-245435
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A parabolic quantum dot (QD) as realized by biasing nanostructured gates on bilayer graphene is investigated in the presence of electron-electron interaction. The energy spectrum and the phase diagram reveal unexpected transitions as a function of a magnetic field. For example, in contrast to semiconductor QDs, we find a valley transition rather than only the usual singlet-triplet transition in the ground state of the interacting system. The origin of these features can be traced to the valley degree of freedom in bilayer graphene. These transitions have important consequences for cyclotron resonance experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328688600010 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), and the Methusalem foundation of the Flemish Government. T. C. is supported by the Canada Research Chairs program of the Government of Canada. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113698 Serial 926
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field Type A1 Journal article
Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245429-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of layers and the type of stacking. Here we analyze how those properties change when we vary the number of layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic quantities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328686900006 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; The authors would like to thank C. De Beule for enlightening discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B.V.D., and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113700 Serial 3635
Permanent link to this record
 

 
Author Zarenia, M.; Vasilopoulos, P.; Pourtolami, N.; Peeters, F.M.
Title Landau-level dispersion and the quantum Hall plateaus in bilayer graphene Type P1 Proceeding
Year (down) 2013 Publication AIP conference proceedings Abbreviated Journal
Volume 1566 Issue Pages 275-276
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We study the quantum Hall effect (QHE) in bilayer graphene using the Kubo-Greenwood formula. At zero temperature the Hall conductivity sigma(yx) is given by sigma(yx) – 4(N + 1)e(2)/h with N the index of the highest occupied Landau level (LL). Including the dispersion of the LLs and their width, due to e. g. scattering by impurities, produces the plateau of the n = 0 LL in agreement with experimental results on doped samples and similar theoretical results on single-layer graphene plateaus widen with impurity concentration. Further, the evaluated resistivity rho(xx) exhibits a strong, oscillatory dependence on the electron concentration. Explicit results are obtained for delta-function impurities.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000331793000137 Publication Date 2014-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (project CONGRAN) and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:115871 Serial 1770
Permanent link to this record
 

 
Author Neek-Amal, M.; Sadeghi, A.; Berdiyorov, G.R.; Peeters, F.M.
Title Realization of free-standing silicene using bilayer graphene Type A1 Journal article
Year (down) 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 26 Pages 261904-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e. g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 angstrom and without any lattice distortion. We found that these stacked layers are stable well above room temperature. (C) 2013 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000329977400022 Publication Date 2013-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 74 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:114849 Serial 2837
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Braess paradox at the mesoscopic scale Type A1 Journal article
Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245417-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically demonstrate that the transport inefficiency recently found experimentally for branched-out mesoscopic networks can also be observed in a quantum ring of finite width with an attached central horizontal branch. This is done by investigating the time evolution of an electron wave packet in such a system. Our numerical results show that the conductivity of the ring does not necessary improve if one adds an extra channel. This ensures that there exists a quantum analog of the Braess paradox, originating from quantum scattering and interference.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328680500011 Publication Date 2013-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes ; This work was financially supported by PRONEX/CNPq/FUNCAP and the bilateral project CNPq-FWO. Discussions with J. S. Andrade, Jr. are gratefully acknowledged. A. A. S. has been financially supported by CAPES, under PDSE Contract No. BEX 7177/13-5. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113705 Serial 253
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Spectroscopy of snake states using a graphene Hall bar Type A1 Journal article
Year (down) 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue 23 Pages 233502-233504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore, depending on the value of the magnetic field and applied potential, we can control the lead in which the electrons will end up and hence control the response of the system.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000328634900090 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:113710 Serial 3074
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Superconducting current and proximity effect in ABA and ABC multilayer graphene Josephson junctions Type A1 Journal article
Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 88 Pages 214502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a numerical tight-binding approach based on the Chebyshev–Bogoliubov–de Gennes method we describe Josephson junctions made of multilayer graphene contacted by top superconducting gates. Both Bernal (ABA) and rhombohedral (ABC) stacking are considered and we find that the type of stacking has a strong effect on the proximity effect and the supercurrent flow. For both cases the pair amplitude shows a polarization between dimer and nondimer atoms, being more pronounced for rhombohedral stacking. Even though the proximity effect in nondimer sites is enhanced when compared to single-layer graphene, we find that the supercurrent is suppressed. The spatial distribution of the supercurrent shows that for Bernal stacking the current flows only in the topmost layers while for rhombohedral stacking the current flows throughout the whole structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328569900004 Publication Date 2013-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number CMT @ cmt @ c:irua:128896 Serial 3962
Permanent link to this record
 

 
Author Krstajić, P.M.; Van Duppen, B.; Peeters, F.M.
Title Plasmons and their interaction with electrons in trilayer graphene Type A1 Journal article
Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 19 Pages 195423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interaction between electrons and plasmons in trilayer graphene is investigated within the Overhauser approach resulting in the “plasmaron” quasiparticle. This interaction is cast into a field theoretical problem, and its effect on the energy spectrum is calculated using improved Wigner-Brillouin perturbation theory. The plasmaron spectrum is shifted with respect to the bare electron spectrum by ΔE(k)∼150−200meV for ABC stacked trilayer graphene and for ABA trilayer graphene by ΔE(k)∼30−150 meV[ ΔE(k) ∼1 −5meV] for the hyperbolic (linear) part of the spectrum. The shift in general increases with the electron concentration and electron momentum. The dispersion of plasmarons is more pronounced in ABC stacked than in ABA stacked trilayer graphene, because of the different energy band structure and their different plasmon dispersion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327239200003 Publication Date 2013-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number CMT @ cmt @ c:irua:112702 Serial 4489
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M.
Title 30-band k\cdot p model of electron and hole states in silicon quantum wells Type A1 Journal article
Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 20 Pages 205306
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We modeled the electron and hole states in Si/SiO2 quantum wells within a basis of standing waves using the 30-band k . p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions) and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is found to improve the accuracy of the computed hole states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327161500007 Publication Date 2013-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Belgian Science Policy (IAP), the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112704 Serial 18
Permanent link to this record
 

 
Author Arsoski, V.; Tadic, M.; Peeters, F.M.
Title Electric field tuning of the optical excitonic Aharonov-Bohm effect in nanodots grown by droplet epitaxy Type A1 Journal article
Year (down) 2013 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume T157 Issue Pages 014002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Neutral excitons in axially symmetric GaAs nanodots embedded in an (Al, Ga) As matrix, which are formed by the droplet epitaxy technique, are investigated theoretically. An electric field perpendicular to the nanodot base results in both a vertical and an in-plane exciton polarization, which is beneficial for the appearance of the excitonic Aharonov-Bohm effect. In the range of low magnetic fields (below 5 Tesla), we found that the bright and dark exciton states can cross twice. This results in oscillations of the photoluminescence intensity with magnetic field, which are a striking manifestation of the optical excitonic Aharonov-Bohm effect.
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000332504600003 Publication Date 2013-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.28 Times cited Open Access
Notes ; This work was supported by the EU Network of Excellence: SANDiE, the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 1.28; 2013 IF: 1.296
Call Number UA @ lucian @ c:irua:128901 Serial 4594
Permanent link to this record
 

 
Author Shakouri, K.; Badalyan, S.M.; Peeters, F.M.
Title Helical liquid of snake states Type A1 Journal article
Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 19 Pages 195404-195405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We derive an exact solution to the problem of spin snake states induced in a nonhomogeneous magnetic field by a combined action of the Rashba spin-orbit and Zeeman fields. The electron spin behavior as a function of the cyclotron orbit center position and an external homogeneous magnetic field was obtained. It is shown that in an antisymmetric magnetic field the electron spin in the snake states has only an in-plane projection, perpendicular to the magnetic interface, which vanishes at large positive momenta. Applying an external homogeneous magnetic field adds a finite out-of-plane spin component and simultaneously gaps out the spectral branches, which results in regular beating patterns of the spin current components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326820200007 Publication Date 2013-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112712 Serial 1416
Permanent link to this record