toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sobrino Fernandez, M.M.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title AA-stacked bilayer square ice between graphene layers Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 245428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Water confined between two graphene layers with a separation of a few A forms a layered two-dimensional ice structure. Using large scale molecular dynamics simulations with the adoptable ReaxFF interatomic potential we found that flat monolayer ice with a rhombic-square structure nucleates between the graphene layers which is nonpolar and nonferroelectric. We provide different energetic considerations and H-bonding results that explain the interlayer and intralayer properties of two-dimensional ice. The controversial AA stacking found experimentally [Algara-Siller et al., Nature (London) 519, 443 (2015)] is consistent with our minimum-energy crystal structure of bilayer ice. Furthermore, we predict that an odd number of layers of ice has the same lattice structure as monolayer ice, while an even number of ice layers exhibits the square ice AA stacking of bilayer ice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000366731800004 Publication Date 2015-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:130203 Serial 4127  
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.L.; Verhulst, A.S.; Sorée, B.; Magnus, W.; Dabral, A.; Thean, A.; Groeseneken, G. url  doi
openurl 
  Title 15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors Type P1 Proceeding
  Year (up) 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract A carefully chosen heterostructure can significantly boost the performance of tunnel field-effect transistors (TFET). Modelling of these hetero-TFETs requires a quantum mechanical (QM) approach with an accurate band structure to allow for a correct description of band-to-band-tunneling. We have therefore developed a fully QM 2D solver, combining for the first time a full zone 15-band envelope function formalism with a spectral approach, including a heterostructure basis set transformation. Simulations of GaSb/InAs broken gap TFETs illustrate the wide body capabilities and transparant transmission analysis of the formalism.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos 000380398200055 Publication Date 2015-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:134998 Serial 4131  
Permanent link to this record
 

 
Author Arsoski, V.V.; Čukarić, N.A.; Tadic, M.Z.; Peeters, F.M. pdf  url
doi  openurl
  Title An efficient finite-difference scheme for computation of electron states in free-standing and core-shell quantum wires Type A1 Journal article
  Year (up) 2015 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 197 Issue 197 Pages 17-26  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electron states in axially symmetric quantum wires are computed by means of the effective-mass Schrodinger equation, which is written in cylindrical coordinates phi, rho, and z. We show that a direct discretization of the Schrodinger equation by central finite differences leads to a non-symmetric Hamiltonian matrix. Because diagonalization of such matrices is more complex it is advantageous to transform it in a symmetric form. This can be done by the Liouville-like transformation proposed by Rizea et al. (2008), which replaces the wave function psi(rho) with the function F(rho) = psi(rho)root rho and transforms the Hamiltonian accordingly. Even though a symmetric Hamiltonian matrix is produced by this procedure, the computed wave functions are found to be inaccurate near the origin, and the accuracy of the energy levels is not very high. In order to improve on this, we devised a finite-difference scheme which discretizes the Schrodinger equation in the first step, and then applies the Liouville-like transformation to the difference equation. Such a procedure gives a symmetric Hamiltonian matrix, resulting in an accuracy comparable to the one obtained with the finite element method. The superior efficiency of the new finite-difference scheme (FDM) is demonstrated for a few p-dependent one-dimensional potentials which are usually employed to model the electron states in free-standing and core shell quantum wires. The new scheme is compared with the other FDM schemes for solving the effective-mass Schrodinger equation, and is found to deliver energy levels with much smaller numerical error for all the analyzed potentials. It also gives more accurate results than the scheme of Rizea et al., except for the ground state of an infinite rectangular potential in freestanding quantum wires. Moreover, the PT symmetry is invoked to explain similarities and differences between the considered FDM schemes. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000362919500003 Publication Date 2015-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 4 Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia (project III 45003) and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved Most recent IF: 3.936; 2015 IF: 3.112  
  Call Number UA @ lucian @ c:irua:129412 Serial 4139  
Permanent link to this record
 

 
Author Chaves, A.; Low, T.; Avouris, P.; Çakir, D.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic exciton Stark shift in black phosphorus Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 155311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the excitonic spectrum of few-layer black phosphorus by direct diagonalization of the effective mass Hamiltonian in the presence of an applied in-plane electric field. The strong attractive interaction between electrons and holes in this system allows one to investigate the Stark effect up to very high ionizing fields, including also the excited states. Our results show that the band anisotropy in black phosphorus becomes evident in the direction-dependent field-induced polarizability of the exciton.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000353459200005 Publication Date 2015-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 88 Open Access  
  Notes ; Discussions with J. M. Pereira Jr. and J. S. de Souza are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq) through the PQ and Science Without Borders programs, the Flemish Science Foundation (FWO-Vl), the Methusalem programme of the Flemish government, and the Bilateral program (CNPq-FWO) between Flanders and Brazil. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132506 Serial 4141  
Permanent link to this record
 

 
Author Kurttepeli, M. url  openurl
  Title Carbon based materials and hybrid nanostructures investigated by advanced transmission electron microscopy Type Doctoral thesis
  Year (up) 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:130502 Serial 4145  
Permanent link to this record
 

 
Author Van Aelst, J.; Verboekend, D.; Philippaerts, A.; Nuttens, N.; Kurttepeli, M.; Gobechiya, E.; Haouas, M.; Sree, S.P.; Denayer, J.F.M.; Martens, J.A.; Kirschhock, C.E.A.; Taulelle, F.; Bals, S.; Baron, G.V.; Jacobs, P.A.; Sels, B.F. pdf  url
doi  openurl
  Title Catalyst design by NH4OH treatment of USY zeolite Type A1 Journal article
  Year (up) 2015 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 25 Issue 25 Pages 7130-7144  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hierarchical zeolites are a class of superior catalysts which couples the intrinsic zeolitic properties to enhanced accessibility and intracrystalline mass transport to and from the active sites. The design of hierarchical USY (Ultra-Stable Y) catalysts is achieved using a sustainable postsynthetic room temperature treatment with mildly alkaline NH4OH ( 0.02(M)) solutions. Starting from a commercial dealuminated USY zeolite (Si/Al = 47), a hierarchical material is obtained by selective and tuneable creation of interconnected and accessible small mesopores (2- 6 nm). In addition, the treatment immediately yields the NH4+ form without the need for additional ion exchange. After NH4OH modification, the crystal morphology is retained, whereas the microporosity and relative crystallinity are decreased. The gradual formation of dense amorphous phases throughout the crystal without significant framework atom leaching rationalizes the very high material yields (>90%). The superior catalytic performance of the developed hierarchical zeolites is demonstrated in the acid-catalyzed isomerization of alpha-pinene and the metal-catalyzed conjugation of safflower oil. Significant improvements in activity and selectivity are attained, as well as a lowered susceptibility to deactivation. The catalytic performance is intimately related to the introduced mesopores, hence enhanced mass transport capacity, and the retained intrinsic zeolitic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000366503700003 Publication Date 2015-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 64 Open Access OpenAccess  
  Notes ; The authors thank Dr. M. Thommes and Dr. K. Cychosz for numerous and helpful discussions on the correct evaluation of the Ar isotherms. I. Cuppens is acknowledged for ICP-AES analyses. Research was funded through a PhD grant to J.V.A. of the Agency for Innovation by Science and Technology in Flanders (IWT). D.V. and A.P. acknowledge F.W.O.-Vlaanderen (Research Foundation Flanders) for a postdoctoral fellowship. N.N. thanks the KU Leuven for financial support (FLOF). E.G., C.K., and J.M. acknowledge the long-term structural funding by the Flemish Government (Methusalem). S.B. acknowledges the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 335078-COLOURATOMS. The authors are grateful for financial support by the Belgian government through Interuniversity Attraction Poles (IAP-PAI). They also thank Oleon NV for supplying safflower oil. ; ecas_Sara Approved Most recent IF: 12.124; 2015 IF: 11.805  
  Call Number UA @ lucian @ c:irua:130214 Serial 4147  
Permanent link to this record
 

 
Author Galvan-Moya; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Chainlike transitions in Wigner crystals : sequential versus nonsequential Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 064112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural transitions of the ground state of a system of repulsively interacting particles confined in a quasi-one-dimensional channel, and the effect of the interparticle interaction as well as the functional form of the confinement potential on those transitions are investigated. Although the nonsequential ordering of transitions (non-SOT), i.e., the 1 – 2 – 4 – 3 – 4 – 5 – 6 – ... sequence of chain configurations with increasing density, is widely robust as predicted in a number of theoretical studies, the sequential ordering of transitions (SOT), i.e., the 1 – 2 – 3 – 4 – 5 – 6 – ... chain, is found as the ground state for long-ranged interparticle interaction and hard-wall-like confinement potentials. We found an energy barrier between every two different phases around its transition point, which plays an important role in the preference of the system to follow either a SOT or a non-SOT. However, that preferential transition requires also the stability of the phases during the transition. Additionally, we analyze the effect of a small structural disorder on the transition between the two phases around its transition point. Our results show that a small deformation of the triangular structure changes dramatically the picture of the transition between two phases, removing in a considerable region the non-SOT in the system. This feature could explain the fact that the non-SOT is, up to now, not observed in experimental systems, and suggests a more advanced experimental setup to detect the non-SOT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000359859400003 Publication Date 2015-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:127753 Serial 4148  
Permanent link to this record
 

 
Author Homm, P.; Dillemans, L.; Menghini, M.; Van Bilzen, B.; Bakalov, P.; Su, C.Y.; Lieten, R.; Houssa, M.; Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.; Seo, J.W.; Locquet, J.P.; url  doi
openurl 
  Title Collapse of the low temperature insulating state in Cr-doped V2O3 thin films Type A1 Journal article
  Year (up) 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 107 Issue 107 Pages 111904  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have grown epitaxial Cr-doped V2O3 thin films with Cr concentrations between 0% and 20% on (0001)-Al2O3 by oxygen-assisted molecular beam epitaxy. For the highly doped samples (>3%), a regular and monotonous increase of the resistance with decreasing temperature is measured. Strikingly, in the low doping samples (between 1% and 3%), a collapse of the insulating state is observed with a reduction of the low temperature resistivity by up to 5 orders of magnitude. A vacuum annealing at high temperature of the films recovers the low temperature insulating state for doping levels below 3% and increases the room temperature resistivity towards the values of Cr-doped V2O3 single crystals. It is well-know that oxygen excess stabilizes a metallic state in V2O3 single crystals. Hence, we propose that Cr doping promotes oxygen excess in our films during deposition, leading to the collapse of the low temperature insulating state at low Cr concentrations. These results suggest that slightly Cr-doped V2O3 films can be interesting candidates for field effect devices. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000361639200020 Publication Date 2015-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes ; The authors acknowledge financial support from the FWO Project No. G052010N10 as well as the EU-FP7 SITOGA Project. P.H. acknowledges support from Becas Chile-CONICYT. ; Approved Most recent IF: 3.411; 2015 IF: 3.302  
  Call Number UA @ lucian @ c:irua:128728 Serial 4149  
Permanent link to this record
 

 
Author Semkina, A.; Abakumov, M.; Grinenko, N.; Abakumov, A.; Skorikov, A.; Mironova, E.; Davydova, G.; Majouga, A.G.; Nukolova, N.; Kabanov, A.; Chekhonin, V.; pdf  doi
openurl 
  Title Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics Type A1 Journal article
  Year (up) 2015 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B  
  Volume 136 Issue 136 Pages 1073-1080  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000367408100131 Publication Date 2015-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.887 Times cited 37 Open Access  
  Notes Approved Most recent IF: 3.887; 2015 IF: 4.152  
  Call Number UA @ lucian @ c:irua:131075 Serial 4157  
Permanent link to this record
 

 
Author Sadeghi, A.; Neek-Amal, M.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Diffusion of fluorine on and between graphene layers Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 014304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations and reactive force field molecular dynamics simulations, we study the structural properties and dynamics of a fluorine (F) atom, either adsorbed on the surface of single layer graphene (F/GE) or between the layers of AB stacked bilayer graphene (F@ bilayer graphene). It is found that the diffusion of the F atom is very different in those cases, and that the mobility of the F atom increases by about an order of magnitude when inserted between two graphene layers. The obtained diffusion constant for F/GE is twice larger than that experimentally found for gold adatom and theoretically found for C-60 molecule on graphene. Our study provides important physical insights into the dynamics of fluorine atoms between and on graphene layers and explains the mechanism behind the separation of graphite layers due to intercalation of F atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000349125800002 Publication Date 2015-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132561 Serial 4161  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.; Kusmartsev, F.V.; Peeters, F.M. url  doi
openurl 
  Title Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current Type A1 Journal article
  Year (up) 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 88 Issue 88 Pages 286  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a “superradiant” vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000363960900002 Publication Date 2015-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 1 Open Access  
  Notes ; This work was supported by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 1.461; 2015 IF: 1.345  
  Call Number UA @ lucian @ c:irua:129509 Serial 4166  
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T. pdf  doi
openurl 
  Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
  Year (up) 2015 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 2 Issue 2 Pages 044002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000368936600005 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 20 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 6.937; 2015 IF: NA  
  Call Number UA @ lucian @ c:irua:131602 Serial 4169  
Permanent link to this record
 

 
Author Pavlović, S.; Peeters, F.M. url  doi
openurl 
  Title Electronic properties of triangular and hexagonal MoS2 quantum dots Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 155410  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we calculate the electronic structure of triangular and hexagonal MoS2 quantum dots. Due to the orbital asymmetry we show that it is possible to form quantum dots with the same shape but having different electronic properties. The electronic states of triangular and hexagonal quantum dots are explored, as well as the local and total density of states and the convergence towards the bulk spectrum with dot size is investigated. Our calculations show that: (1) edge states appear in the band gap, (2) that there are a larger number of electronic states in the conduction band as compared to the valence band, and (3) the relative number of edge states decreases with increasing dot size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000352591200005 Publication Date 2015-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. Stefan Pavlovic is supported by JoinEU-SEE IV, Erasmus Mundus Action 2 programme. We thank J. M. Pereira for interesting discussions. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132516 Serial 4170  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Energy levels of bilayer graphene quantum dots Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 115437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB-(Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000361663700003 Publication Date 2015-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128726 Serial 4173  
Permanent link to this record
 

 
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.; doi  openurl
  Title Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
  Year (up) 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 17109-17115  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number UA @ lucian @ c:irua:129434 Serial 4175  
Permanent link to this record
 

 
Author Ao, Z.; Jiang, Q.; Li, S.; Liu, H.; Peeters, F.M.; Li, S.; Wang, G. url  doi
openurl 
  Title Enhancement of the stability of fluorine atoms on defective graphene and at graphene/fluorographene interface Type A1 Journal article
  Year (up) 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 19659-19665  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361252400018 Publication Date 2015-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 35 Open Access  
  Notes ; We acknowledge the financial supports from the Chancellor's Research Fellowship Program of the University of Technology Sydney, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish Government. This research was also supported by the National Computational Infrastructure (NCI) through the merit allocation scheme and used the NCI resources and facilities in Canberra, Australia. ; Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number UA @ lucian @ c:irua:128703 Serial 4177  
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M. pdf  url
doi  openurl
  Title Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
  Year (up) 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 27636-27641  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000363193800043 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number UA @ lucian @ c:irua:129477 Serial 4182  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.; Sorée, B.; Magnus, W.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors Type A1 Journal article
  Year (up) 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 134502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In0.53Ga0.47As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362668400025 Publication Date 2015-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128765 Serial 4183  
Permanent link to this record
 

 
Author Li, M.R.; Retuerto, M.; Deng, Z.; Stephens, P.W.; Croft, M.; Huang, Q.; Wu, H.; Deng, X.; Kotliar, G.; Sánchez-Benítez, J.; Hadermann, J.; Walker, D.; Greenblatt, M.; pdf  doi
openurl 
  Title Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6 Type A1 Journal article
  Year (up) 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 12069-12073  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The first transition-metal-only double perovskite compound, Mn2+ Fe-2(3+) Re5+ O-6, with 17 unpaired d electrons displays ferrimagnetic ordering up to 520K and a giant positive magnetoresistance of up to 220% at 5K and 8 T. These properties result from the ferrimagnetically coupled Fe and Re sublattice and are affected by a two-to-one magnetic-structure transition of the Mn sublattice when a magnetic field is applied. Theoretical calculations indicate that the half-metallic state can be mainly attributed to the spin polarization of the Fe and Re sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363396000031 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited Open Access  
  Notes Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ lucian @ c:irua:129457 Serial 4186  
Permanent link to this record
 

 
Author Peymanirad, F.; Neek Amal, M.; Beheshtian, J.; Peeters, F.M. url  doi
openurl 
  Title Graphene-silicene bilayer : a nanocapacitor with permanent dipole and piezoelectricity effect Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 155113  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory, we study the electronic properties of a graphene-silicene bilayer (GSB). A single layer of silicene binds to the graphene layer with adhesion energy of about 25 meV/atom. This adhesion energy between the two layers follows accurately the well-known -1/z(2) dispersion energy as found between two infinite parallel plates. In small flakes of GSB with hydrogenated edges, negative charge is transferred from the graphene layer to the silicene layer, producing a permanent and a switchable polar bilayer, while in an infinite GSB, the negative charge is transferred from the silicene layer to the graphene layer. The graphene-silicene bilayer is a good candidate for a nanocapacitor with piezoelectric capabilities. We found that the permanent dipole of the bilayer can be tuned by an external perpendicular electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362493400002 Publication Date 2015-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128762 Serial 4188  
Permanent link to this record
 

 
Author Kang, J.; Horzum, S.; Peeters, F.M. url  doi
openurl 
  Title Heterostructures of graphene and nitrogenated holey graphene: Moire pattern and Dirac ring Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 195419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nitrogenated holey graphene (NHG) is a recently synthesized two-dimensional material. In this paper the structural and electronic properties of heterostructures of graphene and NHG are investigated using first-principles and tight-binding calculations. Due to the lattice mismatch between NHG and graphene, the formation of a moire pattern is preferred in the graphene/NHG heterostructure, instead of a lattice-coherent structure. In moire-patterned graphene/NHG, the band gap opening at the K point is negligible, and the linear band dispersion of graphene survives. Applying an electric field modifies the coupling strength between the two atomic layers. The Fermi velocity upsilon(F) is reduced as compared to the one of pristine graphene, and its magnitude depends on the twist angle theta between graphene and NHG: For theta = 0 degrees, upsilon(F) is 30% of that of graphene, and it increases rapidly to a value of 80% with increasing theta. The heterostructure exhibits electron-hole asymmetry in upsilon(F), which is large for small theta. In NHG encapsulated between two graphene layers, a “Dirac ring” appears around the K point. Its presence is robust with respect to the relative stacking of the two graphene layers. These findings can be useful for future applications of graphene/NHG heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000364998000006 Publication Date 2015-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:130266 Serial 4189  
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Fantini, A.; Goux, L.; Degraeve, R.; Govoreanu, B.; Pourtois, G.; Jurczak, M. doi  openurl
  Title Intrinsic tailing of resistive states distributions in amorphous <tex>HfOx </tex> and TaOx based resistive random access memories Type A1 Journal article
  Year (up) 2015 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 36 Issue 36 Pages 769-771  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We report on the ineffectiveness of programming oxide-based resistive random access memory (OxRAM) at low current with a program and verify algorithm due to intrinsic relaxation of the verified distribution to the natural state distribution obtained by single-pulse programming without verify process. Based on oxygen defect formation thermodynamics and on their diffusion barriers in amorphous HfOx and TaOx, we describe the intrinsic nature of tailing of the verified low resistive state and high resistive state distributions. We introduce different scenarios to explain fast distribution widening phenomenon, which is a fundamental limitation for OxRAM current scaling and device reliability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000358570300011 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited 33 Open Access  
  Notes Approved Most recent IF: 3.048; 2015 IF: 2.754  
  Call Number UA @ lucian @ c:irua:134412 Serial 4200  
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Majorana zero-energy modes and spin current evolution in mesoscopic superconducting loop systems with spin-orbit interaction Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 094516  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Majorana zero modes and persistent spin current in mesoscopic d-wave-superconducting loops with spin-orbit (SO) interaction are investigated by numerically solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. For some appropriate strength of the SO coupling, Majorana zero-energy states and sharp jumps of the spin-polarized currents can be observed when the highest energy levels cross the Fermi energy in the spectrum, leading to spin currents with opposite chirality flowing near the inner and outer edges of the sample. When the threaded magnetic flux turns on, four flux-dependent patterns of the persistent spin current with step-like features show up, accompanied by Majorana edge modes at flux values where the energy gap closes. Moreover, the Majorana zero mode is highly influenced by the direction of the Zeeman field. A finite in-plane field can lead to the gap opening since the inversion symmetry is broken. Remarkably, multiple Majorana zero-energy states occur in the presence of an out-of-plane field h(z), and the number of steps in the spin current evolution can be effectively tuned by the field strength due to the shift of Majorana zero modes. Finally, when the loop sample contains surface indentation defects, zero-energy modes can always show up in the presence of an appropriate h(z). Interestingly, multiple Majorana states may be present in the system with a corner defect even if h(z) = 0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362081000002 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020, No. 61271163, and No. 61571277, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132467 Serial 4203  
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M. pdf  url
doi  openurl
  Title Mechanical properties of monolayer sulphides : a comparative study between MoS2, HfS2 and TiS3 Type A1 Journal article
  Year (up) 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 27742-27749  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The in-plane stiffness (C), Poisson's ratio (nu), Young's modulus and ultimate strength (sigma) along two different crystallographic orientations are calculated for the single layer crystals: MoS2, HfS2 and TiS3 in 1H, 1T and monoclinic phases. We find that MoS2 and HfS2 have isotropic in-plane stiffnesses of 124.24 N m(-1) and 79.86 N m(-1), respectively. While for TiS3 the in-plane stiffness is highly anisotropic due to its monoclinic structure, with C-x = 83.33 N m(-1) and C-y = 133.56 N m(-1) (x and y are parallel to its longer and shorter in-plane lattice vectors.). HfS2 which is in the 1T phase has the smallest anisotropy in its ultimate strength, whereas TiS3 in the monoclinic phase has the largest. Along the armchair direction MoS2 has the largest sigma of 23.48 GPa, whereas along y TiS3 has the largest sigma of 18.32 GPa. We have further analyzed the band gap response of these materials under uniaxial tensile strain, and find that they exhibit different behavior. Along both armchair and zigzag directions, the band gap of MoS2 (HfS2) decreases (increases) as strain increases, and the response is almost isotropic. For TiS3, the band gap decreases when strain is along x, while if strain is along y, the band gap increases first and then decreases beyond a threshold strain value. The different characteristics observed in these sulphides with different structures shed light on the relationship between the structure and properties, which is useful for applications in nanotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000363193800055 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 83 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Super-computer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number UA @ lucian @ c:irua:129478 Serial 4204  
Permanent link to this record
 

 
Author Van de Put, M.L.; Vandenberghe, W.G.; Magnus, W.; Sorée, B.; Fischetti, M.V. url  openurl
  Title Modeling of inter-ribbon tunneling in graphene Type P1 Proceeding
  Year (up) 2015 Publication 18th International Workshop On Computational Electronics (iwce 2015) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (similar to nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-0-692-51523-5 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:134997 Serial 4206  
Permanent link to this record
 

 
Author Sun, Z.; Madej, E.; Wiktor; Sinev, I.; Fischer, R.A.; Van Tendeloo, G.; Muhler, M.; Schuhmann, W.; Ventosa, E. pdf  doi
openurl 
  Title One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries Type A1 Journal article
  Year (up) 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 21 Issue 21 Pages 16154-16161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li-ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene through high-pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon-coated iron oxide, while the graphene acts as a high-surface-area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative-electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000363890700036 Publication Date 2015-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 8 Open Access  
  Notes Approved Most recent IF: 5.317; 2015 IF: 5.731  
  Call Number UA @ lucian @ c:irua:129510 Serial 4218  
Permanent link to this record
 

 
Author Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K. pdf  doi
openurl 
  Title Optical and photoelectrical properties of nanocrystalline indium oxide with small grains Type A1 Journal article
  Year (up) 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 595 Issue 595 Pages 25-31  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Optical properties, spectral dependence of photoconductivity and photoconductivity decay in nanocrystalline indium oxide In2O3 are studied. A number of nanostructured In2O3 samples with various nanocrystals size are prepared by sol-gel method and characterized using various techniques. The mean nanocrystals size varies from 7 to 8 nm to 39-41 nm depending on the preparation conditions. Structural characterization of the In2O3 samples is performed by means of transmission electron microscopy and X-ray powder diffraction. The combined analysis of ultraviolet-visible absorption spectroscopy and diffuse reflectance spectroscopy shows that nanostructuring leads to the change in optical band gap: optical band gap of the In2O3 samples (with an average nanocrystal size from 7 to 41 nm) is equal to 2.8 eV. We find out the correlation between spectral dependence of photoconductivity and optical properties of nanocrystalline In2O3: sharp increase in photoconductivity was observed to begin at 2.8 eV that is equal to the optical bandgap in the In2O3 samples, and reached its maximum at 3.2-3.3 eV. The combined analysis of the slow photoconductivity decay in air, vacuum and argon, that was accurately fitted by a stretched-exponential function, and electron paramagnetic resonance (EPR) measurements shows that the kinetics of photoconductivity decay is strongly depended on the presence of oxygen molecules in the ambient of In2O3 nanocrystals. There is the quantitative correlation between EPR and photoconductivity data. Based on the obtained data we propose the model clearing up the phenomenon of permanent photoconductivity decay in nanocrystalline In2O3. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000365812400005 Publication Date 2015-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 18 Open Access  
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number UA @ lucian @ c:irua:130254 Serial 4219  
Permanent link to this record
 

 
Author Neek-Amal, M; Peeters, F.M. url  doi
openurl 
  Title Partially hydrogenated and fluorinated graphene : structure, roughness, and negative thermal expansion Type A1 Journal article
  Year (up) 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 155430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural properties of partially hydrogenated and fluorinated graphene with different percentages of H/F atoms are investigated using molecular dynamics simulations based on reactive force field (ReaxFF) potentials. We found that the roughness of graphene varies with the percentage (p) of H or F and in both cases is maximal around p = 50%. Similar results were obtained for partially oxidized graphene. The two-dimensional area size of partially fluorinated and hydrogenated graphene exhibits a local minimum around p = 35% coverage. The lattice thermal contraction in partially functionalized graphene is found to be one order of magnitude larger than that of fully covered graphene. We also show that the armchair structure for graphene oxide (similar to the structure of fully hydrogenated and fluorinated graphene) is unstable. Our results show that the structure of partially functionalized graphene changes nontrivially with the C : H and C : F ratio as well as with temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000363294100005 Publication Date 2015-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:129448 Serial 4221  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F.M.; Senger, R.T. doi  openurl
  Title Pentagonal monolayer crystals of carbon, boron nitride, and silver azide Type A1 Journal article
  Year (up) 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 104303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B2N4 and p-B4N2), and silver azide (p-AgN3) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN3 are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B2N4 and p-B4N2 have negative Poisson's ratio values. On the other hand, the p-AgN3 has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B2N4 are stable, but p-AgN3 and p-B4N2 are vulnerable against vibrational excitations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000361636900028 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 79 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. H.S. and R.T.S. acknowledge the support from TUBITAK through Project No. 114F397. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128415 Serial 4223  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Phonon limited superconducting correlations in metallic nanograins Type A1 Journal article
  Year (up) 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 16515  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electronphonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest T-c achievable by quantum confinement.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000364647700001 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 9 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Research Foundation Flanders (FWO), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO. M.D.C. acknowledges fruitful discussions with V. Z. Kresin, S. N. Klimin and V. N. Gladilin. ; Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number UA @ lucian @ c:irua:129543 Serial 4224  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: