|   | 
Details
   web
Records
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguig, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L.
Title BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
Year (down) 2016 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue 205 Pages 121-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393931000013 Publication Date 2016-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 52 Open Access OpenAccess
Notes Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 9.446
Call Number EMAT @ emat @ Serial 4323
Permanent link to this record
 

 
Author Yao, X.; Amin-Ahmadi, B.; Li, Y.; Cao, S.; Ma, X.; Zhang, X.-P.; Schryvers, D.
Title Optimization of Automated Crystal Orientation Mapping in a TEM for Ni4Ti3 Precipitation in All-Round SMA Type A1 Journal article
Year (down) 2016 Publication Shape memory and superelasticity Abbreviated Journal Shap Mem Superelasticity
Volume 2 Issue 2 Pages 286-297
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Automated crystal orientation and phase mapping in TEM are applied to the quantification of Ni4Ti3 precipitates in Ni–Ti shape memory alloys which will be used for the implantation of artificial sphincters operating using the all-round shape memory effect. This paper focuses on the optimization process of the technique to obtain best values for all major parameters in the acquisition of electron diffraction patterns as well as template generation. With the obtained settings, vast statistical data on nano- and microstructures essential to the operation of these shape memory devices become available.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000408743700001 Publication Date 2016-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes X. Yao gratefully acknowledges the Chinese Scholarship Council (CSC) for providing a PhD scholarship. Research support was also provided by the Key Project of the Natural Science Foundation of Guangdong Province (S2013020012805) and the Natural Science Foundation of China under Grant No. 51401081. Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:138600 Serial 4324
Permanent link to this record
 

 
Author Bladt, E.; van Dijk-Moes, R.J.A.; Peters, J.; Montanarella, F.; de Mello Donega, C.; Vanmaekelbergh, D.; Bals, S.
Title Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth Type A1 Journal article
Year (down) 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue 138 Pages 14288-14293
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hetero-nanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) study of CdSe (core) / CdS (giant shell) hetero-nanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387095000026 Publication Date 2016-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 28 Open Access OpenAccess
Notes S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). D.V. wishes to acknowledge the Dutch Foundation for Fundamental Research on Matter (FOM) in the programme ‘Designing Dirac Carriers in Semiconductor Superstructures’. E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:138251 Serial 4325
Permanent link to this record
 

 
Author Jacobs, W.; Reynaerts, C.; Andries, S.; van den Akker, S.; Moonen, N.; Lamoen, D.
Title Analyzing the dispersion of cargo vapors around a ship’s superstructure by means of wind tunnel experiments Type A1 Journal article
Year (down) 2016 Publication Journal of marine science and technology Abbreviated Journal J Mar Sci Tech-Japan
Volume 21 Issue 21 Pages 758-766
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In a previous study, it was found that cargo tank operations like cleaning and venting, lead to higher cargo vapor concentrations around the ship’s superstructure. Can wind tunnel experiments confirm these findings? Is there an improvement when using higher outlets at high velocities compared to lower outlets with a low outlet velocity? Is there a relation between relative wind speed and measured concentration? These questions were investigated in the Peutz wind tunnel. By using a tracer gas for the wind tunnel experiments, concentration coefficients have been calculated for various settings. The study shows that using high-velocity outlets is an efficient way to keep concentrations as low as possible. The only exception is for relative wind directions from the bow. In this last case using a manhole as ventilation outlet leads to lower concentrations. With increasing wind speeds the building downwash effect resulted in higher concentration coefficients near the main deck. This study confirms our on-board measurements and suggests the lowering of the ventilation inlet of the accommodation, so that the high-velocity outlet can be used safely at all times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388260200015 Publication Date 2016-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0948-4280 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.838 Times cited 2 Open Access
Notes The authors would like to thank Peutz bv. at Molenhoek, the Netherlands, for providing the wind tunnel facilities and their assistance during the various stages of this research. Approved Most recent IF: 0.838
Call Number EMAT @ emat @ c:irua:138728 Serial 4326
Permanent link to this record
 

 
Author Tong, Y.; Bladt, E.; Aygüler, M.F.; Manzi, A.; Milowska, K.Z.; Hintermayr, V.A.; Docampo, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J.
Title Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication Type A1 Journal article
Year (down) 2016 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 55 Issue 55 Pages 13887-13892
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387024200040 Publication Date 2016-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 549 Open Access Not_Open_Access
Notes This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T.) and by the Alexander von Humboldt-Stiftung (L.P.). P.D. acknowledges support from the European Union through the award of a Marie Curie Intra-European Fellowship. M.A. acknowledges the Scientific and Technological Research Council of Turkey. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994
Call Number EMAT @ emat @ c:irua:138215 Serial 4327
Permanent link to this record
 

 
Author Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M.
Title Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles Type A1 Journal article
Year (down) 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue 138 Pages 11453-11456
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core−shell NPs (nanorods and nanocubes) into octahedral nanorattles via roomtemperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383410700008 Publication Date 2016-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 75 Open Access OpenAccess
Notes This work has been funded by the European Research Council (ERC Advanced Grant No. 267867- PLASMAQUO, ERC Starting Grant No. 335078-COLOURATOMS) and Spanish MINECO (Grants MAT2013-45168-R and MAT2013-46101-R); ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:137123 Serial 4329
Permanent link to this record
 

 
Author Schalm, O.; Crabbé, A.; Storme, P.; Wiesinger, R.; Gambirasi, A.; Grieten, E.; Tack, P.; Bauters, S.; Kleber, C.; Favaro, M.; Schryvers, D.; Vincze, L.; Terryn, H.; Patelli, A.
Title The corrosion process of sterling silver exposed to a Na2S solution: monitoring and characterizing the complex surface evolution using a multi-analytical approach Type A1 Journal article
Year (down) 2016 Publication Applied Physics A-Materials Science & Processing Abbreviated Journal Appl Phys A-Mater
Volume 122 Issue 122 Pages 903
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract Many historical ‘silver’ objects are composed of sterling silver, a silver alloy containing small amounts of copper. Besides the dramatic impact of copper on the corrosion process, the chemical composition of the corrosion layer evolves continuously. The evolution of the surface during the exposure to a Na2S solution was monitored by means of visual observation at macroscopic level, chemical analysis at microscopic level and analysis at the nanoscopic level. The corrosion process starts with the preferential oxidation of copper, forming mixtures of oxides and sulphides while voids are being created beneath the corrosion layer. Only at a later stage, the silver below the corrosion layer is consumed. This results in the formation of jalpaite and at a later stage of acanthite. The acanthite is found inside the corrosion layer at the boundaries of jalpaite grains and as individual grains between the jalpaite grains but also as a thin film on top of the corrosion layer. The corrosion process could be described as a sequence of 5 subsequent surface states with transitions between these states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384753800033 Publication Date 2016-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links
Impact Factor 1.455 Times cited 9 Open Access
Notes The authors are grateful for the financial support by the EU-FP7 Grant PANNA No. 282998 and for the opportunity to perform SR-XPS measurements at the NanoESCA beamline of the Elettra storage ring, under the approval of the advisory Committee (Proposal No. 20135164), as well as the opportunity to perform XANES measurements at the DUBBLE beamline of the ESRF storage ring (Proposal No. 26-01-990). The authors are grateful for the financial support by the STIMPRO Project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. Grant of the Agency for Innovation by Science and Technology (IWT). We would also like to thank Peter Van den Haute for the XRD measurements that were performed at the University of Ghent. Approved Most recent IF: 1.455
Call Number EMAT @ emat @ Serial 4331
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year (down) 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D.
Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
Year (down) 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 118 Issue 118 Pages 352-362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383292000042 Publication Date 2016-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714
Call Number EMAT @ emat @ c:irua:137171 Serial 4334
Permanent link to this record
 

 
Author Van Aelst, J.; Philippaerts, A.; Bartholomeeusen, E.; Fayad, E.; Thibault-Starzyk, F.; Lu, J.; Schryvers, D.; Ooms, R.; Verboekend, D.; Jacobs, P.; Sels, B.
Title Towards biolubricant compatible vegetable oils by pore mouth hydrogenation with shape-selective Pt/ZSM-5 catalysts Type A1 Journal article
Year (down) 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol
Volume 6 Issue 6 Pages 2820-2828
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pt/ZSM-5 catalysts with various crystal sizes were prepared via competitive ion-exchange, followed by a slow activation procedure. Even when using very large ZSM-5 crystals, highly dispersed Pt nano-clusters were contained within the zeolite crystal's voids, as ascertained by 2D pressure-jump IR spectroscopy of adsorbed CO and focussed ion-beam transmission electron microscopy. The shape-selective properties of the Pt/ZSM-5 catalysts were evaluated in the partial hydrogenation of soybean oil. Unique hydrogenation selectivities were observed, as the fatty acids located at the central position of the triacylglycerol (TAG) molecules were preferentially hydrogenated. The resulting oil has therefore high levels of intermediately melting TAGs, which are compatible with biolubricants due to their improved oxidative stability and still appropriate low-temperature fluidity. The TAG distribution in the partially hydrogenated soybean oil samples was independent from the zeolite crystal size, while the hydrogenation activity linearly increases with the crystal's external surface area. This trend was confirmed with a Pt loaded mesoporous ZSM-5 zeolite, obtained via a mild alkaline treatment. These observations imply and confirm a genuine pore mouth catalysis mechanism, in which only one fatty acid chain of the TAG is able to enter the micropores of ZSM-5, where the double bonds are hydrogenated by the crystal encapsulated Pt-clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374790200031 Publication Date 2016-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.773 Times cited 5 Open Access
Notes The research was funded through a PhD grant to J. V. A. of the Agency for Innovation by Science and Technology in Flanders (IWT). A. P. and D. V. acknowledge the F. W. O.-Vlaanderen (Research Foundation Flanders) for a post-doctoral fellowship. E. B. was kindly funded by an F. W. O.-Vlaanderen project. This work was performed in the framework of an Associated International Laboratory between FWO and CNRS. Approved Most recent IF: 5.773
Call Number EMAT @ emat @ c:irua:138981 Serial 4335
Permanent link to this record
 

 
Author Schouteden, K.; Amin-Ahmadi, B.; Li, Z.; Muzychenko, D.; Schryvers, D.; Van Haesendonck, C.
Title Electronically decoupled stacking fault tetrahedra embedded in Au(111) films Type A1 Journal article
Year (down) 2016 Publication Nature communications Abbreviated Journal Nat Commun
Volume 7 Issue 7 Pages 14001
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defects, i.e., stacking fault tetrahedra (SFTs), exhibits quantized, particle-in-a-box electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000390367700001 Publication Date 2016-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 7 Open Access
Notes The research in Leuven has been supported by the Research Foundation – Flanders (FWO, Belgium), and by the Flemish Concerted Research Action program (BOF KU Leuven, Project No. GOA/14/007). Z.L. acknowledges the support from the China Scholarship Council (No. 2011624021) and from Internal Funds KU Leuven. K.S. acknowledges additional support from the FWO. The research in Moscow has been supported by grants of the Russian Foundation for Basic Research (RFBR). Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:138983 Serial 4336
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M.
Title High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning Type A1 Journal article
Year (down) 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 139 Issue 139 Pages 107-110
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000392036900025 Publication Date 2016-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 267 Open Access OpenAccess
Notes Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858
Call Number EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 Serial 4339
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D.M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J.M.; Obelleiro, F.; Bals, S.; Pérez-Juste, J.; Pastoriza-Santos, I.
Title Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions Type A1 Journal article
Year (down) 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 9169-9180
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Palladium nanoparticles (NPs) have received tremendous attention over the years due to their high catalytic activity for various chemical reactions. However, unlike other noble metal nanoparticles such as Au and Ag NPs, they exhibit poor plasmonic properties with broad extinction spectra and less scattering efficiency, and thus limiting their applications in the field of plasmonics. Therefore, it has been challenging to integrate tunable and strong plasmonic properties into catalytic Pd nanoparticles. Here we show that plasmonic Au@Pd nanorods (NRs) with relatively narrow and remarkably tunable optical responses in the NIR region can be obtained by directional growth of Pd on penta-twinned Au NR seeds. We found the presence of bromide ions facilitates the stabilization of facets for the directional growth of Pd shell to obtain Au@Pd nanorods (NR) with controlled length scales. Interestingly, it turns out the Au NR supported Pd NRs exhibit much narrow extinction compared to pure Pd NRs, which makes them suitable for plasmonic sensing applications. Moreover, these nanostructures display, to the best of our knowledge, one of the highest ensemble refractive index sensitivity values reported to date (1067 nm per refractive index unit, RIU). Additionally, we showed the application of such plasmonic Au@Pd NRs for localized surface plasmon resonance (LSPR)-based sensing of hydrogen both in solution as well as on substrate. Finally, we demonstrate the integration of excellent plasmonic properties in catalytic palladium enables the in situ monitoring of a reaction progress by surface-enhanced Raman scattering. We postulate the proposed approach to boost the plasmonic properties of Pd nanoparticles will ignite the design of complex shaped plasmonic Pd NPs to be used in various plasmonic applications such as sensing and in situ monitoring of various chemical reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000391080900036 Publication Date 2016-12-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 80 Open Access OpenAccess
Notes Funding from Spanish Ministerio de Economía y Competitividad (Grants MAT2013-45168-R and MAT2016-77809-R) is gratefully acknowledge. A.L.P. and S.B. acknowledge support by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). L. P. acknowledges the financial support from by the Alexander von Humboldt-Stiftung. V. M.-G. acknowledges the financial support from FPU scholarship from the Spanish MINECO. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:139513 Serial 4344
Permanent link to this record
 

 
Author Van Tendeloo, G.
Title Art, science and sustainability = Kunst, wetenschap en duurzaamheid Type H2 Book chapter
Year (down) 2016 Publication Abbreviated Journal
Volume Issue Pages 24-39
Keywords H2 Book chapter; Art; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Vrienden van het M HKA Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-824885-0-0 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:139519 Serial 4369
Permanent link to this record
 

 
Author Clark, L.
Title The creation and quantication of electron vortex beams, towards their application Type Doctoral thesis
Year (down) 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135946 Serial 4373
Permanent link to this record
 

 
Author Hu, Z.-Y.
Title Electron microscopy of hierarchically structured nanomaterials : linking structure to properties and synthesis Type Doctoral thesis
Year (down) 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138754 Serial 4377
Permanent link to this record
 

 
Author Van Aelst, J.; Philippaerts, A.; Turner, S.; Van Tendeloo, G.; Jacobs, P.; Sels, B.
Title Heterogeneous conjugation of vegetable oil with alkaline treated highly dispersed Ru/USY catalysts Type A1 Journal article
Year (down) 2016 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen
Volume 526 Issue 526 Pages 172-182
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Heterogeneous metal catalysts enable the direct conjugation of linoleic acid tails in vegetable oil to their conjugated linoleic acid (CIA) isomers. CIA-enriched oils are useful as renewable feedstock for the chemical industry and as nutraceutical. Up to now, a solvent-free process for conjugated oils without significant formation of undesired hydrogenation products was not existing. This work shows the design of Ru/USY catalysts able to directly conjugate highly unsaturated vegetable oils such as safflower oil in absence of solvent and hydrogen. Key is fast molecular transport of the bulky reagent and reactive product triglycerides in the zeolite crystal. A two-step zeolite post-synthetic treatment (with NH4OH and acetate salt) was applied to create the necessary mesoporosity. More open zeolite structures allow for a faster conjugation reaction, while securing a fast removal of the reactive conjugated triglycerides, otherwise rapidly deactivating through fouling and pore blockage by polymers. The best Ru/USY catalyst in this contribution is capable of producing exceptionally high yields of conjugated oils, containing up to almost 30 wt% conjugated fatty acid tails in safflower oil, at an initial production rate of 328 g(CLA) mL(-1) h(-1) per gram metal catalyst. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000384865600021 Publication Date 2016-09-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.339 Times cited 1 Open Access
Notes Approved Most recent IF: 4.339
Call Number UA @ lucian @ c:irua:137242 Serial 4383
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Toniato, E.; Gombac, V.; Sada, C.; Turner, S.; Van Tendeloo, G.; Fornasiero, P.;
Title Iron-titanium oxide nanocomposites functionalized with gold particles : from design to solar hydrogen production Type A1 Journal article
Year (down) 2016 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 3 Issue 3 Pages 1600348
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hematite-titania nanocomposites, eventually functionalized with gold nanoparticles (NPs), are designed and developed by a plasma-assisted strategy, consisting in: (i) the plasma enhanced-chemical vapor deposition of -Fe2O3 on fluorine-doped tin oxide substrates; the radio frequency-sputtering of (ii) TiO2, and (iii) Au in controlled amounts. A detailed chemicophysical characterization, carried out through a multitechnique approach, reveals that the target materials are composed by interwoven -Fe2O3 dendritic structures, possessing a high porosity and active area. TiO2 introduction results in the formation of an ultrathin titania layer uniformly covering Fe2O3, whereas Au sputtering yields a homogeneous dispersion of low-sized gold NPs. Due to the intimate and tailored interaction between the single constituents and their optical properties, the resulting composite materials are successfully exploited for solar-driven applications. In particular, promising photocatalytic performances in H-2 production by reforming of water-ethanol solutions under simulated solar illumination are obtained. The related insights, presented and discussed in this work, can yield useful guidelines to boost the performances of nanostructured photocatalysts for energy-related applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383783200021 Publication Date 2016-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 15 Open Access
Notes Approved Most recent IF: 4.279
Call Number UA @ lucian @ c:irua:137154 Serial 4389
Permanent link to this record
 

 
Author Al-Jamal, K.T.; Bai, J.; Wang, J.T.W.; Protti, A.; Southern, P.; Bogart, L.; Heidari, H.; Li, X.; Cakebread, A.; Asker, D.; Al-Jamal, W.T.; Shah, A.; Bals, S.; Sosabowski, J.; Pankhurst, Q.A.;
Title Magnetic drug targeting : preclinical in vivo studies, mathematical modeling, and extrapolation to humans Type A1 Journal article
Year (down) 2016 Publication Nano letters Abbreviated Journal Nano Lett
Volume 16 Issue 16 Pages 5652-5660
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A sound theoretical rationale for the design of a magnetic nanocarrier capable of magnetic capture in vivo after intravenous administration could help elucidate the parameters necessary for in vivo magnetic tumor targeting. In this work, we utilized our long-circulating polymeric magnetic nano carriers, encapsulating increasing amounts of superparamagnetic iron oxide nanoparticles (SPIONs) in a biocompatible oil carrier, to study the effects of SPION loading and of applied magnetic field strength on magnetic tumor targeting in CT26 tumor-bearing mice. Under controlled conditions, the in vivo magnetic targeting was quantified and found to be directly proportional to SPION loading and magnetic field strength. Highest SPION loading, however, resulted in a reduced blood circulation time and a plateauing of the magnetic targeting. Mathematical modeling was undertaken to compute the in vivo magnetic, viscoelastic, convective, and diffusive forces acting on the nanocapsules (NCs) in accordance with the Nacev-Shapiro construct, and this was then used to extrapolate to the expected behavior in humans. The model predicted that in the latter case, the NCs and magnetic forces applied here would have been sufficient to achieve successful targeting in humans. Lastly, an in vivo murine tumor growth delay study was performed using docetaxel (DTX)-encapsulated NCs. Magnetic targeting was found to offer enhanced therapeutic efficacy, and improve mice survival compared to passive targeting at drug doses of ca. 5-8 mg, of DTX/kg. This is,, to our knowledge, the first study that truly bridges the gap between preclinical experiments and clinical translation in the field of magnetic drug targeting.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000383412100050 Publication Date 2016-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 128 Open Access OpenAccess
Notes ; J.B. acknowledges funding from the King's-China Scholarship Council (CSC). Funding from the Biotechnology and Biological Sciences Research Council (BB/ J008656/1), Worldwide Cancer Research (12-1054), and EU FP7-ITN Marie-Curie Network programme RADDEL (290023) is acknowledged. Q.P. is grateful to A. Nacev (Weinberg Medical Physics, Rockville, MD) and to B. Shapiro (University of Maryland, College Park, MD) for their useful advice during the preparation of this manuscript. ; Approved Most recent IF: 12.712
Call Number UA @ lucian @ c:irua:137136 Serial 4391
Permanent link to this record
 

 
Author Grieten, E.
Title Modifications to the nano-texture of old photographs & daguerreotypes by degradation and atmospheric plasma treatment Type Doctoral thesis
Year (down) 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Art; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Universiteit Antwerpen, Faculteit Ontwerpwetenschappen, Opleiding Conservatie-Restauratie Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135932 Serial 4393
Permanent link to this record
 

 
Author Juchtmans, R.
Title Novel applications of vortex beams and spiral phase plates in transmission electron microscopy Type Doctoral thesis
Year (down) 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135836 Serial 4394
Permanent link to this record
 

 
Author Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J.
Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
Year (down) 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages 12790-12798
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000382015100012 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 26 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:137188 Serial 4395
Permanent link to this record
 

 
Author Juchtmans, R.; Clark, L.; Lubk, A.; Verbeeck, J.
Title Spiral phase plate contrast in optical and electron microscopy Type A1 Journal article
Year (down) 2016 Publication Physical review A Abbreviated Journal Phys Rev A
Volume 94 Issue 94 Pages 023838
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The use of phase plates in the back focal plane of a microscope is a well-established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, which adds an angularly dependent phase of the form exp(iℓϕk) to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of l=+-1

SPP filtered images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. We discuss the difference between a clockwise-anticlockwise pair of SPP filtered images and derive conditions under which the modulus of the wave's gradient can be seen directly from one SPP filtered image. This work provides the theoretical background to interpret images obtained with a SPP, thereby opening new perspectives for new experiments to study, for example, magnetic materials in an electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381882800011 Publication Date 2016-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 10 Open Access
Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_ Approved Most recent IF: 2.925
Call Number EMAT @ emat @ c:irua:140086 Serial 4418
Permanent link to this record
 

 
Author Lubk, A.; Vogel, K.; Wolf, D.; Krehl, J.; Röder, F.; Clark, L.; Guzzinati, G.; Verbeeck, J.
Title Fundamentals of Focal Series Inline Electron Holography Type H1 Book chapter
Year (down) 2016 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics / Hawkes, P.W. [edit.] Abbreviated Journal
Volume Issue Pages 105-147
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier BV Place of Publication Editor
Language Wos Publication Date 2016-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1076-5670; http://id.crossref.org/isbn/9780128048115 ISBN 9780128048115 Additional Links UA library record
Impact Factor Times cited Open Access
Notes L.C., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant no. 278510 VORTEX. A.L., K.V., J. K., D.W., and F.R. acknowledge funding from the DIP of the Deutsche Forschungsgesellschaft.; ECASJO_; Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:140097UA @ admin @ c:irua:140097 Serial 4419
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J.-L.
Title Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope Type A1 Journal article
Year (down) 2016 Publication Micron Abbreviated Journal Micron
Volume 80 Issue 80 Pages 145-165
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000366770100018 Publication Date 2015-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 50 Open Access
Notes Approved Most recent IF: 1.98
Call Number UA @ lucian @ c:irua:136446 Serial 4401
Permanent link to this record
 

 
Author Sena, R.P.; Hadermann, J.; Chin, C.-M.; Hunter, E.C.; Battle, P.D.
Title Structural chemistry and magnetic properties of the perovskite SrLa2Ni2TeO9 Type A1 Journal article
Year (down) 2016 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 243 Issue 243 Pages 304-311
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of SrLa2Ni2TeO9 has been synthesized using a standard ceramic method and characterized by neutron diffraction, magnetometry and electron microscopy. The compound adopts a monoclinic, perovskite-like structure with space group P2(1)/n in and unit cell parameters a=5.6008(1), b = 5.5872(1), c=7.9018(2) angstrom, p=90.021(6)degrees at room temperature. The two crystallographically-distinct B sites are occupied by Ni2+ and Te6+ in ratios of 83:17 and 50:50. Both ac and dc magnetometry suggest that the compound is a spin glass below 35 K but the neutron diffraction data show that some regions of the sample are antiferromagnetic. Electron microscopy revealed twinning on a nanoscale and local variations in composition. These defects are thought to be responsible for the presence of two distinct types of antiferromagnetic ordering. (C) 2016 The Authors. Published by Elsevier Inc.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000384874100041 Publication Date 2016-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 6 Open Access
Notes Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:137232 Serial 4403
Permanent link to this record
 

 
Author Kurttepeli, M.; Locus, R.; Verboekend, D.; de Clippel, F.; Breynaert, E.; Martens, J.; Sels, B.; Bals, S.
Title Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly Type A1 Journal article
Year (down) 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 234 Issue 234 Pages 186-195
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The incorporation of aluminum into the silica columns of hierarchical mesoporous materials (HMMs) was studied. The HMMs were synthesized by a combination of hard and soft templating methods, forming mesoporous SBA-15-type silica columns inside the pores of anodic aluminum oxide membranes via evaporation induced self-assembly (EISA). By adding Al-isopropoxide to the EISA-mixture a full tetrahedral incorporation of Al and thus the creation of acid sites was achieved, which was proved by nuclear magnetic resonance spectroscopy. Electron microscopy showed that the use of Al-isopropoxide as an Al source for the HMMs led to a change in the mesopore ordering of silica material from circular hexagonal (donut-like) to columnar hexagonal and a 37% increase in specific surface (BET surface). These results were confirmed by a combination of nitrogen physisorption and small-angle X-ray scattering experiments and can be attributed to a swelling of the P123 micelles with isopropanol. The columnar mesopore ordering of silica is advantageous towards the pore accessibility and therefore preferential for many possible applications including catalysis and adsorption on the acid tetrahedral Al-sites. (C) 2016 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000383291400020 Publication Date 2016-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access OpenAccess
Notes ; The Belgian government (Belgian Science Policy Office, Belspo) is acknowledged for financing the Interuniversity Attraction Poles (IAP-PAI). S. B. acknowledges the financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). D. V. acknowledges the Flanders Research Foundation (FWO). ; ecas_Sara Approved Most recent IF: 3.615
Call Number UA @ lucian @ c:irua:137108 Serial 4404
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Marx, N.; Van Tendeloo, G.
Title The mechanical behavior during (de)lithiation of coated silicon nanoparticles as anode material for lithium-ion batteries studied by InSitu transmission electron microscopy Type A1 Journal article
Year (down) 2016 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 4 Issue 4 Pages 1005-1012
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract One approach to cope with the continuous irreversible capacity loss in Si-based electrodes, attributed to lithiation-induced volume changes and the formation of a solid-electrolyte interface (SEI), is by coating silicon nanoparticles. A coating can improve the conductivity of the electrode, form a chemical shield against the electrolyte, or provide mechanical confinement to reduce the volume increase. The influence of such a coating on the mechanical behavior of silicon nanoparticles during Li insertion and Li extraction was investigated by insitu transmission electron microscopy. The type of coating was shown to influence the size of the unreacted core that remains after reaction of silicon with lithium. Furthermore, two mechanisms to relieve the stress generated during volume expansion are reported: the initiation of cracks and the formation of nanovoids. Both result in a full reaction of the silicon nanoparticles, whereas with the formation of cracks, additional surface area is created, on which an SEI can be formed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382549500012 Publication Date 2016-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited 6 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:137167 Serial 4406
Permanent link to this record
 

 
Author Balasubramaniam, Y.; Pobedinskas, P.; Janssens, S.D.; Sakr, G.; Jomard, F.; Turner, S.; Lu, Y.G.; Dexters, W.; Soltani, A.; Verbeeck, J.; Barjon, J.; Nesládek, M.; Haenen, K.;
Title Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond Type A1 Journal article
Year (down) 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 109 Issue 109 Pages 062105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 mu m thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 mu m h(-1). A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 x 10(16) cm(-3) phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates for future use in high-power electronic applications. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000383183600025 Publication Date 2016-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes This work was financially supported by the EU through the FP7 Collaborative Project “DIAMANT,” the “H2020 Research and Innovation Action Project” “GreenDiamond” (No. 640947), and the Research Foundation-Flanders (FWO) (Nos. G.0C02.15N and VS.024.16N). J.V. acknowledges funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. The TEM instrument was partly funded by the Hercules fund from the Flemish Government. We particularly thank Dr. J. E. Butler (Naval Research Laboratory, USA) for the sample preparation by laser slicing for TEM analysis, Dr. J. Pernot (Universite Grenoble Alpes/CNRS-Institut Neel, France) for helpful discussions, Ms. C. Vilar (Universite de Versailles St. Quentin en Yvelines, France) for technical help on SEM-CL experiments, and Dr. S. S. Nicley (Hasselt University, Belgium) for improving the language of the text. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:137160 Serial 4407
Permanent link to this record
 

 
Author Cui, J.; Faria, M.; Bjornmalm, M.; Ju, Y.; Suma, T.; Gunawan, S.T.; Richardson, J.J.; Heidar, H.; Bals, S.; Crampin, E.J.; Caruso, F.
Title A framework to account for sedimentation and diffusion in particle-cell interactions Type A1 Journal article
Year (down) 2016 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
Volume 32 Issue 32 Pages 12394-12402
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In vitro experiments provide a solid basis for understanding the interactions between particles and biological systems. An important confounding variable for these studies is the difference between the amount of particles administered and that which reaches the surface of cells. Here, we engineer a hydrogel-based nanoparticle system and combine in situ characterization techniques, 3D-printed cell cultures, and computational modeling to evaluate and study particle cell interactions of advanced particle systems. The framework presented demonstrates how sedimentation and diffusion can explain differences in particle cell association, and provides a means to account for these effects. Finally, using in silico modeling, we predict the proportion of particles that reaches the cell surface using common experimental conditions for a wide range of inorganic and organic micro- and nanoparticles. This work can assist in the understanding and control of sedimentation and diffusion when investigating cellular interactions of engineered particles.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000389117600017 Publication Date 2016-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.833 Times cited 40 Open Access Not_Open_Access
Notes ; This work was supported by the Australian Research Council (ARC) under the Australian Laureate Fellowship scheme (F.C., FL120100030), the Australian Government through an Australian Postgraduate Award (M.B.), and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (Project Number CE140100036). This work was performed in part at the Materials Characterization and Fabrication Platform (MCFP) at the University of Melbourne and the Victorian Node of the Australian National Fabrication Facility (ANFF). ; Approved Most recent IF: 3.833
Call Number UA @ lucian @ c:irua:139210 Serial 4438
Permanent link to this record