|   | 
Details
   web
Records
Author Alvarado-Alvarado, A.A.; Smets, W.; Irga, P.; Denys, S.
Title Engineering green wall botanical biofiltration to abate indoor volatile organic compounds : a review on mechanisms, phyllosphere bioaugmentation, and modeling Type A1 Journal article
Year 2024 Publication Journal of hazardous materials Abbreviated Journal
Volume 465 Issue Pages 133491-16
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Indoor air pollution affects the global population, especially in developed countries where people spend around 90% of their time indoors. The recent pandemic exacerbated the exposure by relying on indoor spaces and a teleworking lifestyle. VOCs are a group of indoor air pollutants with harmful effects on human health at low concentrations. It is widespread that plants can remove indoor VOCs. To this day, research has combined principles of phytoremediation, biofiltration, and bioremediation into a holistic and sustainable technology called botanical biofiltration. Overall, it is sustained that its main advantage is the capacity to break down and biodegrade pollutants using low energy input. This differs from traditional systems that transfer VOCs to another phase. Furthermore, it offers additional benefits like decreased indoor air health costs, enhanced work productivity, and well-being. However, many disparities exist within the field regarding the role of plants, substrate, and phyllosphere bacteria. Yet their role has been theorized; its stability is poorly known for an engineering approach. Previous research has not addressed the bioaugmentation of the phyllosphere to increase the performance, which could boost the system. Moreover, most experiments have studied passive potted plant systems at a lab scale using small chambers, making it difficult to extrapolate findings into tangible parameters to engineer the technology. Active systems are believed to be more efficient yet require more maintenance and knowledge expertise; besides, the impact of the active flow on the long term is not fully understood. Besides, modeling the system has been oversimplified, limiting the understanding and optimization. This review sheds light on the field’s gains and gaps, like concepts, experiments, and modeling. We believe that embracing a multidisciplinary approach encompassing experiments, multiphysics modeling, microbial community analysis, and coworking with the indoor air sector will enable the optimization of the technology and facilitate its adoption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2024-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record
Impact Factor 13.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 13.6; 2024 IF: 6.065
Call Number UA @ admin @ c:irua:202311 Serial 9030
Permanent link to this record
 

 
Author Kollarahithlu, S.C.; Sathiyamoorthy, S.; Thiruvottriyur Shanmugam, S.; De Wael, K.; Das, J.; Veluswamy, P.
Title Foodborne outbreaks : sources and mode of transmission of foodborne pathogenic microorganisms Type H1 Book chapter
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 93-104 T2 - Global food safety : microbial interve
Keywords H1 Book chapter; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The foodborne pathogens and microorganisms have played a prevalent role in the ebb and flow of the economy worldwide. The increasing population has strained the food processing industry to produce food in large quantity, which in turn has affected the quality of food. To curb this issue, there is immense pressure to produce and maintain quality food within a short time frame. Hence, high throughput technology is used to determine and timely assess the safety and hygiene of food. Further, the revolution of the food industry has also seen an upsurge of new pathogens and microorganisms, thereby increasing the risk of exposure towards rarest diseases to a larger population. This chapter sheds light on the different types of foodborne pathogens affecting the food industry and its social impact. It further emphasizes the safety measures to be taken on the prevention of the disease from the farm to the processing industries and in turn to the household.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-003-28314-0 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200591 Serial 9039
Permanent link to this record
 

 
Author Zhang, Z.; Lobato, I.; Brown, H.; Jannis, D.; Verbeeck, J.; Van Aert, S.; Nellist, P.
Title Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Inelastic excitation as exploited in Electron Energy Loss Spectroscopy (EELS) contains a rich source of information that is revealed in the scattering process. To accurately quantify core-loss EELS, it is common practice to fit the observed spectrum with scattering cross-sections calculated using experimental parameters and a Generalized Oscillator Strength (GOS) database [1].   The GOS is computed using Fermi’s Golden Rule and orbitals of bound and excited states. Previously, the GOS was based on Hartree-Fock solutions [2], but more recently Density Functional Theory (DFT) has been used [3]. In this work, we have chosen to use the Dirac equation to incorporate relativistic effects and have performed calculations using Flexible Atomic Code (FAC) [4]. This repository contains a tabulated GOS database based on Dirac solutions for computing double differential cross-sections under experimental conditions.   We hope the Dirac-based GOS database can benefit the EELS community for both academic use and industry integration.   Database Details: – Covers all elements (Z: 1-108) and all edges – Large energy range: 0.01 – 4000 eV – Large momentum range: 0.05 -50 Å-1 – Fine log sampling: 128 points for energy and 256 points for momentum – Data format: GOSH [3]   Calculation Details: – Single atoms only; solid-state effects are not considered – Unoccupied states before continuum states of ionization are not considered; no fine structure – Plane Wave Born Approximation – Frozen Core Approximation is employed; electrostatic potential remains unchanged for orthogonal states when – core-shell electron is excited – Self-consistent Dirac–Fock–Slater iteration is used for Dirac calculations; Local Density Approximation is assumed for electron exchange interactions; continuum states are normalized against asymptotic form at large distances – Both large and small component contributions of Dirac solutions are included in GOS – Final state contributions are included until the contribution of the previous three states falls below 0.1%. A convergence log is provided for reference.   Version 1.1 release note: – Update to be consistent with GOSH data format [3], all the edges are now within a single hdf5 file. A notable change in particular, the sampling in momentum is in 1/m, instead of previously in 1/Å. Great thanks to Gulio Guzzinati for his suggestions and sending conversion script.  Version 1.2 release note: – Add “File Type / File version” information [1] Verbeeck, J., and S. Van Aert. Ultramicroscopy 101.2-4 (2004): 207-224. [2] Leapman, R. D., P. Rez, and D. F. Mayers. The Journal of Chemical Physics 72.2 (1980): 1232-1243. [3] Segger, L, Guzzinati, G, & Kohl, H. Zenodo (2023). doi:10.5281/zenodo.7645765 [4] Gu, M. F. Canadian Journal of Physics 86(5) (2008): 675-689.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203392 Serial 9042
Permanent link to this record
 

 
Author Faust, V.; Vlaeminck, S.E.; Ganigué, R.; Udert, K.M.
Title Influence of pH on urine nitrification : community shifts of ammonia-oxidizing bacteria and inhibition of nitrite-oxidizing bacteria Type A1 Journal article
Year 2024 Publication ACS ES&T engineering Abbreviated Journal
Volume 4 Issue 2 Pages 342-353
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urine nitrification is pH-sensitive due to limited alkalinity and high residual ammonium concentrations. This study aimed to investigate how the pH affects nitrogen conversion and the microbial community of urine nitrification with a pH-based feeding strategy. First, kinetic parameters for NH3, HNO2, and NO2– limitation and inhibition were determined for nitrifiers from a urine nitrification reactor. The turning point for ammonia-oxidizing bacteria (AOB), i.e., the substrate concentration at which a further increase would lead to a decrease in activity due to inhibitory effects, was at an NH3 concentration of 12 mg-N L–1, which was reached only at pH values above 7. The total nitrite turning point for nitrite-oxidizing bacteria (NOB) was pH-dependent, e.g., 18 mg-N L–1 at pH 6.3. Second, four years of data from two 120 L reactors were analyzed, showing that stable nitrification with low nitrite was most likely between pH 5.8 and 6.7. And third, six 12 L urine nitrification reactors were operated at total nitrogen concentrations of 1300 and 3600 mg-N L–1 and pH values between 2.5 and 8.5. At pH 6, the AOB Nitrosomonas europaea was found, and the NOB belonged to the genus Nitrobacter. At pH 7, nitrite accumulated, and Nitrosomonas halophila was the dominant AOB. NOB were inhibited by HNO2 accumulation. At pH 8.5, the AOB Nitrosomonas stercoris became dominant, and NH3 inhibited NOB. Without influent, the pH dropped to 2.5 due to the growth of the acid-tolerant AOB “Candidatus Nitrosacidococcus urinae”. In conclusion, pH is a decisive process control parameter for urine nitrification by influencing the selection and kinetics of nitrifiers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2023-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203306 Serial 9048
Permanent link to this record
 

 
Author Koch, K.; Wuyts, K.; Denys, S.; Samson, R.
Title The influence of plant species, leaf morphology, height and season on PM capture efficiency in living wall systems Type A1 Journal article
Year 2023 Publication The science of the total environment Abbreviated Journal
Volume 905 Issue Pages 167808-167811
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Green infrastructure (GI) is already known to be a suitable way to enhance air quality in urban environments. Living wall systems (LWS) can be implemented in locations where other forms of GI, such as trees or hedges, are not suitable. However, much debate remains about the variables that influence their particulate matter (PM) accumulation efficiency. This study attempts to clarify which plant species are relatively the most efficient in capturing PM and which traits are decisive when it comes to the implementation of a LWS. We investigated 11 plant species commonly used on living walls, located close to train tracks and roads. PM accumulation on leaves was quantified by magnetic analysis (Saturation Isothermal Remanent Magnetization (SIRM)). Several leaf morphological variables that could potentially influence PM capture were assessed, as well as the Wall Leaf Area Index. A wide range in SIRM values (2.74–417 μA) was found between all species. Differences in SIRM could be attributed to one of the morphological parameters, namely SLA (specific leaf area). This suggest that by just assessing SLA, one can estimate the PM capture efficiency of a plant species, which is extremely interesting for urban greeners. Regarding temporal variation, some species accumulated PM over the growing season, while others actually decreased in PM levels. This decrease can be attributed to rapid leaf expansion and variations in meteorology. Correct assessment of leaf age is important here; we suggest individual labeling of leaves for further studies. Highest SIRM values were found close to ground level. This suggests that, when traffic is the main pollution source, it is most effective when LWS are applied at ground level. We conclude that LWS can act as local sinks for PM, provided that species are selected correctly and systems are applied according to the state of the art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2023-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record
Impact Factor 9.8 Times cited Open Access
Notes Approved Most recent IF: 9.8; 2023 IF: 4.9
Call Number UA @ admin @ c:irua:201033 Serial 9049
Permanent link to this record
 

 
Author Van Echelpoel, R.
Title Making an impact with voltammetric illicit drug sensors : bridging the gap between fundamental lab research and on-site application Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages xxviii, 194 p.
Keywords Doctoral thesis; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drugs are harmful substances, posing a threat to the health and safety of society. Policies, such as supply reduction and harm reduction, are in place to combat the illicit drug problem. Science can play a substantial role in this fight, by providing tools that enable these policies to be successfully enforced. One example are on-site detection tools, i.e. sensors that allow the on-site identification of an illicit drug in a sample of interest. Several technologies, such as color tests and portable spectroscopic techniques, are currently employed for this goal. Although these are valuable techniques, there is an opportunity for voltammetry, an electrochemical technique, to make an impactful addition to this repertoire of on-site detection tools. Despite its attractive features (low-cost, portable, short analysis time, indifference to color,...), voltammetric illicit drug sensor have failed to make an impact in real scenarios. The work outlined in this PhD thesis aims to change this by bringing the technology from the lab to the field. Strategic choices, fueled by feedback from end-users, were made to further develop those specific aspects of the technology that previously haltered the technology to fulfill its potential. A detection algorithm was introduced that converts the voltammetric output into a clear-cut interpretation thereof, opening up the technology to end-users without prior knowledge of the technology. A sensor that allows qualitative and quantitative detection of the psychoactive drug MDMA was introduced, and importantly, validated on a large set of 212 confiscated samples. A state-of-the art mobile application and adequate sampling methodology were developed, alongside other, often more practical studies and product developments, to evolve the technology into a product that truly creates value for end-users. Important steps towards multidrug detection were made with a festival sensor and a flowchart based on visual appearance that ties together a variety of voltammetric single sensors into a single multidrug sensing approach. Last but not least, multiple valorization aspects were researched, including a market study and an analysis to determine the optimal commercialization strategy. Overall, this PhD thesis has facilitated the transition of the voltammetric illicit drug sensing technology from lab to on-site application. The final application creates value for end-users, and is ready to make an impact in real on-site scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 987-90-5728-534-7 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200601 Serial 9055
Permanent link to this record
 

 
Author Kumar, M.; Sengupta, A.; Kummamuru, N.B.
Title Molecular simulations for carbon dioxide capture in silica slit pores Type A3 Journal article
Year 2023 Publication Materials Today: Proceedings Abbreviated Journal
Volume Issue Pages 1-9
Keywords A3 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In present work, we have performed the Grand Canonical Monte Carlo (GCMC) simulations to quantify CO2 capture inside porous silica at high operating temperatures of 673.15 K and 873.15 K; and over a operating pressure range of 500 kPa – 4000 kPa that are methane steam reforming process parameters. Related chemical potential values at these thermodynamic conditions are obtained from the bulk phase simulations in the Canonical ensemble in conjunction with Widom’s insertion technique, where the CO2 has been accurately represented by TraPPE force field. Present structure of the porous silica is a single slit pore geometry of various heights (H = 20 Å, 31.6 Å, 63.2 Å and 126.5 Å), dimensions in which possible vapour-liquid equilibria for generic square well fluids has been reported in literature. Estimation of the pore-fluid interactions show a higher interaction between silica pore and adsorbed CO2 compared to the reported pore-fluid interactions between homogeneous carbon slit pore and adsorbed CO2; thus resulting in an enhancement of adsorption inside silica pores of H = 20 Å and H = 126.5 Å, which are respectively 3.5 times and 1.5 times higher than that in homogeneous carbon slit pores of same dimensions and at 673.15 K and 500 kPa. Estimated local density plots indicate the presence of structured layers due to more molecular packing, which confirms possible liquid-like and vapour-like phase coexistence of the supercritical bulk phase CO2 under confinement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2023-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7853 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200944 Serial 9058
Permanent link to this record
 

 
Author Reijniers, J.; Partoens, B.; Peremans, H.
Title Noise-resistant correlation-based alignment of head-related transfer functions for high-fidelity spherical harmonics representation Type P3 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT)
Abstract It is standard practice in virtual reality applications to synthesize binaural audio based on a discrete set of directionally-dependent head-related impulse responses (HRIRs). This set of HRIRs is often time-aligned in a pre-processing step, to allow for high-fidelity interpolation between HRIRs corresponding with neighbouring directions. The fidelity of this operation depends on the similarity of neighbouring aligned HRIRs. The pairwise quality of similarity makes it a difficult criterion to optimize globally and consequently one often resorts to alignment methods based on a specific feature that can be extracted for each HRIR separately, e.g., the first-onset of the peak or the group delay. However, such proxies for similarity are very sensitive to noise and therefore require a high signal-to-noise ratio, which makes them less suitable for processing HRIRs acquired outside an anechoic room. In this paper, we advance a novel alignment method, which maximizes the similarity – defined as the correlation between the full-length HRIRs – between neighbouring aligned HRIRs for all directions at once. We show that this correlation-based alignment procedure outperforms the first-onset alignment with regards to the fidelity of the spherical harmonics representation of both the spectral and interaural time difference (ITD) information, when tested on the KEMAR HRIR and six human HRIRs. Finally, we show that the correlation-based alignment is more robust to noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199714 Serial 9062
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I.
Title A note on Generalized Möbius-Listing Bodies Type P1 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 31-39 T2 - Proceedings of the 1st International Sy
Keywords P1 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Generalized Möbius-Listing surfaces and bodies generalize Möbius bands, and this research was motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-90-833839-0-3 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201047 Serial 9063
Permanent link to this record
 

 
Author Yu, C.-P.
Title Novel imaging methods of transmission electron microscopy based on electron beam scattering and modulation Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages x, 154 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy (TEM) is a technique that uses an electron beam to analyze materials. This analysis is based on the interaction between the electron beam and the sample, such as photon emission and electron diffraction pattern, to name a few. Sample damage, however, also occurs when such interaction alters the structure of the sample. To ensure information from the undamaged material can be acquired, the electron expense to probe the material is thus limited. In this work, we propose efficient methods for acquiring and processing the information originating from the electron-sample interaction so that the study of the material and the conducting of the TEM experiment can be less hindered by the limited dose usage. In the first part of the work, the relationship between the scattering of the electron and the local physical property of the sample is studied. Based on this relationship, two reconstruction schemes are proposed capable of producing high-resolution images at low-dose conditions. Besides, the proposed reconstructions are not restricted to complete datasets but instead work on pieces of data, therefore allowing live feedback during data acquisition. Such feature of the methods allows the whole TEM experiment to be carried out under low dose conditions and thus further reduces possible beam damage on the studied material. In the second part of the work, we discuss our approach to modulating the electron beam and its benefits. An electrostatic device that can alter the wavefront of the passing electron wave is introduced and characterized. The beam-modulation ability is demonstrated by creating orthogonal beam sets, and applications that exploit the adaptability of the wave modulator are demonstrated with both simulation and experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 987-90-5728-534-7 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200885 Serial 9064
Permanent link to this record
 

 
Author Gao, J.; Huang, W.; Gielis, J.; Shi, P.
Title Plant morphology and function, geometric morphometrics, and modelling : decoding the mathematical secrets of plants Type ME3 Book as editor
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 224 p.
Keywords ME3 Book as editor; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Delve into the diverse aspects of plant morphology, their responses to global climate change, and the spatiotemporal dynamics of forest productivity. Join us on a journey through the intricate web of plant characteristics and their impact on the environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2024-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-0365-9422-4; 978-3-0365-9423-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201545 Serial 9073
Permanent link to this record
 

 
Author Xu, W.
Title Plasma-catalytic DRM : study of LDH derived catalyst for DRM in a GAP plasma system Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 350 p.
Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is considered one of the promising technologies to solve greenhouse gas problems, as it can activate CO2 and CH4 at relatively low temperatures. Among the various types of plasmas, the gliding arc plasmatron (GAP) is promising, as it has a high level of non-equilibrium and high electron density. Nevertheless, the conversion of CO2 and CH4 in the GAP reactor is limited. Therefore, combining the GAP reactor with catalysts and making use of the heat produced by the plasma to provide thermal energy to the catalyst, forming a post-plasma catalytic (PPC) system, is hypothesized to improve its performance. Therefore, in this PhD research, we investigate important aspects of the PPC concept towards the use of the heat produced by GAP plasma to heat the plasma bed, without additional energy input. Aiming at this, based on a literature study (chapter 1), Ni-loaded layered double hydroxide (LDH) derived catalyst with good thermal catalytic DRM performance were chosen as the catalyst material. Before applying the LDH as a support material, the rehydration property of calcined LDH in moist and liquid environment was studied as part of chapter 2. The data indicated that after high temperatures calcination (600-900 C), the obtained layered double oxides (LDOs) can rehydrate into LDH, although, the rehydrated LDH were different from the original LDH. In chapter 3, different operating conditions, such as gas flow rate, gas compositions (e.g. CH4/CO2 ratio and nitrogen dilution), and addition of H2O were studied to investigate optimal conditions for PPC DRM, identifying possible differences in temperature profiles and exhaust gas compositions that might influence the catalytic performance. Subsequently, the impact of different PPC configurations, making use of the heat and exhaust gas composition produced by the GAP plasma, is shown in Chapter 4. Experiments studying the impact of adjusting the catalyst bed distance to the post-plasma, the catalyst amount, the influence of external heating (below 250 C) and the addition of H2O are discussed. As only limited improvement in the performance was achieved, a new type of catalyst bed was designed and utilized, as described in chapter 5. This improved configuration can realize better heat and mass transfer by directly connecting to the GAP device. The performance was improved and became comparable to the traditional thermal catalytic DRM results obtained at 800 C, although obtained by a fully electrically driven plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201534 Serial 9074
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S.
Title Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) Type ME3 Book as editor
Year 2023 Publication Abbreviated Journal
Volume Issue Pages xi, 175 p.
Keywords ME3 Book as editor; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-833839-0-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201049 Serial 9077
Permanent link to this record
 

 
Author Derks, K.; Youchaeva, M.; Van der Snickt, G.; Van der Stighelen, K.; Janssens, K.
Title Reconstructing Sweerts : practical insights into the historical dark halo technique based on paint reconstructions Type P1 Proceeding
Year 2024 Publication Abbreviated Journal
Volume Issue Pages 259-271 T2 - Alla maniera : technical art history
Keywords P1 Proceeding; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-90-429-5216-4 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203062 Serial 9082
Permanent link to this record
 

 
Author Van Tendeloo, M.; Baptista, M.C.; Van Winckel, T.; Vlaeminck, S.E.
Title Recurrent multi-stressor floc treatments with sulphide and free ammonia enabled mainstream partial nitritation/anammox Type A1 Journal article
Year 2024 Publication The science of the total environment Abbreviated Journal
Volume 912 Issue Pages 169449-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Selective suppression of nitrite-oxidising bacteria (NOB) over aerobic and anoxic ammonium-oxidising bacteria (AerAOB and AnAOB) remains a major challenge for mainstream partial nitritation/anammox implementation, a resource-efficient nitrogen removal pathway. A unique multi-stressor floc treatment was therefore designed and validated for the first time under lab-scale conditions while staying true to full-scale design principles. Two hybrid (suspended + biofilm growth) reactors were operated continuously at 20.2 ± 0.6 °C. Recurrent multi-stressor floc treatments were applied, consisting of a sulphide-spiked deoxygenated starvation followed by a free ammonia shock. A good microbial activity balance with high AnAOB (71 ± 21 mg N L−1 d−1) and low NOB (4 ± 17 % of AerAOB) activity was achieved by combining multiple operational strategies: recurrent multi-stressor floc treatments, hybrid sludge (flocs & biofilm), short floc age control, intermittent aeration, and residual ammonium control. The multi-stressor treatment was shown to be the most important control tool and should be continuously applied to maintain this balance. Excessive NOB growth on the biofilm was avoided despite only treating the flocs to safeguard the AnAOB activity on the biofilm. Additionally, no signs of NOB adaptation were observed over 142 days. Elevated effluent ammonium concentrations (25 ± 6 mg N L−1) limited the TN removal efficiency to 39 ± 9 %, complicating a future full-scale implementation. Operating at higher sludge concentrations or reducing the volumetric loading rate could overcome this issue. The obtained results ease the implementation of mainstream PN/A by providing and additional control tool to steer the microbial activity with the multi-stressor treatment, thus advancing the concept of energy neutrality in sewage treatment plants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2023-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record
Impact Factor 9.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.8; 2024 IF: 4.9
Call Number UA @ admin @ c:irua:202286 Serial 9083
Permanent link to this record
 

 
Author Poppe, R.
Title Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages iv, 150 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200610 Serial 9084
Permanent link to this record
 

 
Author Broos, W.; Wittner, N.; Dries, J.; Vlaeminck, S.E.; Gunde-Cimerman, N.; Cornet, I.
Title Rhodotorula kratochvilovae outperforms Cutaneotrichosporon oleaginosum in the valorisation of lignocellulosic wastewater to microbial oil Type A1 Journal article
Year 2024 Publication Process biochemistry (1991) Abbreviated Journal
Volume 137 Issue Pages 229-238
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Rhodotorula kratochvilovae has shown to be a promising species for microbial oil production from lignin-derived compounds. Yet, information on R. kratochvilovae’s detoxification and microbial oil production is scarce. This study investigated the growth and microbial oil production on the phenolic-containing effluent from poplar steam explosion and its detoxification with five R. kratochvilovae strains (EXF11626, EXF9590, EXF7516, EXF3697, EXF3471) and compared them with Cutaneotrichosporon oleaginosum. The R. kratochvilovae strains reached a maximum growth rate up to four times higher than C. oleaginosum. Furthermore, all R. kratochvilovae strains generally degraded phenolics more rapidly and to a larger extent than C. oleaginosum. However, the diluted substrate limited the lipid production by all strains as the maximum lipid content and titre were 10.5% CDW and 0.40 g/L, respectively. Therefore, future work should focus on increasing lipid production by using advanced fermentation strategies and stimulating the enzyme excretion by the yeasts for complex substrate breakdown.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2024-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-5113 ISBN Additional Links UA library record
Impact Factor 4.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.4; 2024 IF: 2.497
Call Number UA @ admin @ c:irua:202365 Serial 9087
Permanent link to this record
 

 
Author Vervloessem, E.
Title The role of pulsing and humidity in plasma-based nitrogen fixation : a combined experimental and modeling study Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 358 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nitrogen (N) is an indispensable building block for all living organisms as well as for pharmaceutical and chemical industry. In a nutshell, N is needed for plants to grow and beings to live and nitrogen fixation (NF) is the process that makes N available for plants as food by converting N2 into a reactive form, such as ammonia (NH3) or nitrogen oxides (NOx), upon reacting with O2 and H2. The aim of this thesis is to elucidate (wet) plasma-based nitrogen fixation with a focus on (1) the role of pulsing in achieving low energy consumption, (2) the role of H2O as a hydrogen source in nitrogen fixation and (3) elucidation of nitrogen fixation pathways in humid air and humid N2 plasma in a combined experimental and computational study. Furthermore, this thesis aims to take into account the knowledge-gaps and challenges identified in the discussion of the state of the art. Specifically, (1) we put our focus on branching out to another way of introducing water into the plasma system, i.e. H2O vapor, (2) we de-couple the problem for pathway elucidation by starting with characterization of the chosen plasma, next a simpler gas mixture and building up from there, (3) we include modelling, though not under wet conditions and (4) we focus on also analyzing species and performance outside liquid H2O. Firstly, based on the reaction analysis of a validated quasi-1D model, we can conclude that pulsing is indeed the key factor for energy-efficient NOx- formation, due to the strong temperature drop it causes. Secondly, the thesis shows that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. Related to this, we discuss how the selectivity of plasma-based NF in humid air and humid N2 can be controlled by changing the humidity in the feed gas. Interestingly, NH3 production can be achieved in both N2 and air plasmas using H2O as a H source. Lastly, we identified a significant loss mechanism for NH3 and HNO2 that occurs in systems where these species are synthesized simultaneously, i.e. downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which decomposes into N2 and H2O. This reduces the effective NF when not properly addressed, and should therefore be considered in future works aimed at optimizing plasma-based NF. In conclusion, this thesis adds further to the current state of the art of plasma-based NF both in the presence of H2O and in dry systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:197038 Serial 9088
Permanent link to this record
 

 
Author Jorissen, B.; Fernandes, L.
Title Simple systems, complicated physics : an interview with Nir Navon Type Editorial
Year 2023 Publication Belgian journal of physics Abbreviated Journal
Volume 1 Issue 6 Pages 4-5
Keywords Editorial; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract The EPS Antwerp Young Minds (AYM) invited Prof. Nir Navon (Yale University) to hold a colloquium for the physics department. For an audience of students and researchers, Prof. Navon presented recent advances in ultracold quantum matter and research from his own lab. His experimental work paves the way to make toy models used by theorists a reality. We sat down afterwards to discuss ultracold physics, box traps and setting up a lab from scratch.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202673 Serial 9090
Permanent link to this record
 

 
Author Peeters, H.
Title Solar active photocatalytic self-cleaning coatings based on plasmon-embedded titania Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages XX, 125 p.
Keywords Doctoral thesis; Engineering sciences. Technology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201390 Serial 9093
Permanent link to this record
 

 
Author Dingenen, F.
Title Solar-driven H2 production from seawater using stabilized plasmon-enhanced photocatalysts Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages XXXVIII, 210 p.
Keywords Doctoral thesis; Engineering sciences. Technology
Abstract As natural gas prices proved to be very volatile, sustainable alternatives are highly needed. Water-derived H2 was revealed as a promising substitute, allowing to produce a green energy carrier with a minimum of harmful emissions. Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues due to the presence of salts.Photocatalytic seawater splitting is particularly promising for this purpose, as it seems less affected by adversary seawater effects and might rely on free and renewable solar power. Unfortunately, the benchmark photocatalyst, TiO2, still suffers from its low solar light activity. It is only actived upon illumination with energetic ultraviolet light (<5% of the sunlight). In order to broaden the activity window to the visible light, the concept of the 'plasmonic rainbow' was explored. Here, TiO2 is modified with various gold-silver composites that possess the unique optical phenomenon of Surface Plasmon Resonance (SPR). This phenomenon enables the absorption of light at very specific wavelengths, depending on the metal type, size, shape and dielectric environment. The light energy might then be converted into hot carriers, strong local electromagnetic fields and/or heat. By combining multiple composites with various sizes and compositions, a broadband absorption could be obtained, resulting in significantly enhanced activity in photocatalytic model reactions under simulated sunlight. The major disadvantage of these plasmonic nanoparticles is their tendency to oxidize and deactivate. To overcome this, polymer shell stabilization strategies were found to be effective to protect the metal cores. Both conductive and non-conductive polymers were studied. For the former, a mix-and-wait strategy generating polyaniline shells of 2-5 nm was used, whille the latter was based on a Layer-by-Layer approach, allowing (sub) nanometer thickness control. For the actual H2 production experiments, the plasmonic loading was optimized in a pure water:methanol scavenger (7:1) mixture and initially the stabilization strategies proofed to be effective for simulated seawater (0.5M NaCl), even after 2 years. However, in real seawater, the activity decreased drastically due to aggregation of the photocatalyst in the presence of multivalent cations. Finally, facile immobilization strategies using 3D printing showed to be able to yield stable, solar active photocatalyst for real seawater splitting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203196 Serial 9094
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203389 Serial 9100
Permanent link to this record
 

 
Author Xiao, H.; Zhang, Z.; Xu, W.; Wang, Q.; Xiao, Y.; Ding, L.; Huang, J.; Li, H.; He, B.; Peeters, F.M.
Title Terahertz optoelectronic properties of synthetic single crystal diamond Type A1 Journal article
Year 2023 Publication Diamond and related materials Abbreviated Journal
Volume 139 Issue Pages 110266-110268
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A systematic investigation is undertaken for studying the optoelectronic properties of single crystal diamond (SCD) grown by microwave plasma chemical vapor deposition (MPCVD). It is indicated that, without intentional doping and surface treatment during the sample growth, the terahertz (THz) optical conduction in SCD is mainly affected by surface H-terminations, -OH-, O- and N-based functional groups. By using THz time-domain spectroscopy (TDS), we measure the transmittance, the complex dielectric constant and optical conductivity σ(ω) of SCD. We find that SCD does not show typical semiconductor characteristics in THz regime, where σ(ω) cannot be described rightly by the conventional Drude formula. Via fitting the real and imaginary parts of σ(ω) to the Drude-Smith formula, the ratio of the average carrier density to the effective electron mass γ = ne/m*, the electronic relaxation time τ and the electronic backscattering or localization factor can be determined optically. The temperature dependence of these parameters is examined. From the temperature dependence of γ, a metallic to semiconductor transition is observed at about T = 10 K. The temperature dependence of τ is mainly induced by electron coupling with acoustic-phonons and there is a significant effect of photon-induced electron backscattering or localization in SCD. This work demonstrates that THz TDS is a powerful technique in studying SCD which contains H-, N- and O-based bonds and has low electron density and high dc resistivity. The results obtained from this study can benefit us to gain an in-depth understanding of SCD and may provide new guidance for the application of SCD as electronic, optical and optoelectronic materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2023-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record
Impact Factor 4.1 Times cited Open Access
Notes Approved Most recent IF: 4.1; 2023 IF: 2.561
Call Number UA @ admin @ c:irua:200920 Serial 9103
Permanent link to this record
 

 
Author Biondo, O.
Title Towards a fundamental understanding of energy-efficient, plasma-based CO<sub>2</sub> conversion Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 221 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based CO2 conversion is worldwide gaining increasing interest. The aim of this work is to find potential pathways to improve the energy efficiency of plasma-based CO2 conversion beyond what is feasible for thermal chemistry. To do so, we use a combination of modeling and experiments to better understand the underlying mechanisms of CO2 conversion, ranging from non-thermal to thermal equilibrium conditions. Zero-dimensional (0D) chemical kinetics modelling, describing the detailed plasma chemistry, is developed to explore the vibrational kinetics of CO2, as the latter is known to play a crucial role in the energy efficient CO2 conversion. The 0D model is successfully validated against pulsed CO2 glow discharge experiments, enabling the reconstruction of the complex dynamics underlying gas heating in a pure CO2 discharge, paving the way towards the study of gas heating in more complex gas mixtures, such as CO2 plasmas with high dissociation degrees. Energy-efficient, plasma-based CO2 conversion can also be obtained upon the addition of a reactive carbon bed in the post-discharge region. The reaction between solid carbon and O2 to form CO allows to both reduce the separation costs and increase the selectivity towards CO, thus, increasing the energy efficiency of the overall conversion process. In this regard, a novel 0D model to infer the mechanism underlying the performance of the carbon bed over time is developed. The model outcome indicates that gas temperature and oxygen complexes formed at the surface of solid carbon play a fundamental and interdependent role. These findings open the way towards further optimization of the coupling between plasma and carbon bed. Experimentally, it has been demonstrated that “warm” plasmas (e.g. microwave or gliding arc plasmas) can yield very high energy efficiency for CO2 conversion, but typically only at reduced pressure. For industrial application, it will be important to realize such good energy efficiency at atmospheric pressure as well. However, recent experiments illustrate that the microwave plasma at atmospheric pressure is too close to thermal conditions to achieve a high energy efficiency. Hence, we use a comprehensive set of advanced diagnostics to characterize the plasma and the reactor performance, focusing on CO2 and CO2/CH4 microwave discharges. The results lead to a deeper understanding of the mechanism of power concentration with increasing pressure, typical of plasmas in most gases, which is of great importance for model validation and understanding of reactor performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:197213 Serial 9108
Permanent link to this record
 

 
Author De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A.
Title Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 488 Issue Pages 150838
Keywords A1 Journal Article; Gas conversion Dry reforming of methane Ammonia Microdischarges Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2024-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record
Impact Factor 15.1 Times cited Open Access
Notes This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:205154 Serial 9115
Permanent link to this record
 

 
Author Ahmadi Eshtehardi, H.
Title Combined computational-experimental study on plasma and plasma catalysis for N2 fixation Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages 160 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Humanity feels the urge of shifting to a sustainable society more than at any other time in its history. Electrification of chemical industry plays a key role in this transition. The possibility of producing fertilizers from air using renewable electricity, and simultaneously, no greenhouse gas emission, resulted in an increasing interest toward plasma technology as a solution for electrification of a part of the chemical industry in the past few years. Additionally, the activation of nitrogen molecules by vibrational and electronic excitation reactions in plasma can lead to an energy-efficient process. Last but not least, the modularity (fast on/off characteristic) of plasma technology makes it capable of using intermittent renewable electricity on site for the production of fertilizers using air. All these advantages offered by plasma technology make it a potential solution for the on-site production of fertilizers in small and decentralized plants using air and renewable electricity, which leads to a considerable reduction in fertilizer production and transportation costs. However, industrialization of plasma-based NF suffers from several challenges, including challenges of plasma catalysis for the selective production of desired species, the high energy cost of plasma-based NF compared to current industrial processes, and the design and development of scaled up and energy-efficient plasma reactors for industrial purposes. In the framework of this thesis we have tried to add to the state-of-the-art (SOTA) in plasma-based NOx production and deal with its limitations using a combination of experimental and modelling work.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2024-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205246 Serial 9139
Permanent link to this record
 

 
Author Cioni, M.; Delle Piane, M.; Polino, D.; Rapetti, D.; Crippa, M.; Arslan Irmak, E.; Pavan, G.M.; Van Aert, S.; Bals, S.
Title Data for Sampling Real‐Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine Learning Type Dataset
Year 2024 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic‐resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state‐of‐the‐art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark‐field scanning transmission electron microscopy enables the acquisition of ten high‐resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allows resolving the real‐time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205843 Serial 9143
Permanent link to this record
 

 
Author De Luca, F.; Abate, S.; Bogaerts, A.; Centi, G.
Title Electrified CO2 conversion : integrating experimental, computational, and process simulation methods for sustainable chemical synthesis Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages xv, 152 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nowadays, the burning of fossil fuels, particularly petroleum, natural gas, and coal, meets the rising need for power and fuels for automobiles and industries. This has given rise to ecological and climate challenges. This thesis explores these issues from three distinct perspectives: (i) experimental, (ii) computational, and (iii) process simulation, with a focus on studying CO2 as an alternative and economically viable raw material. Firstly, the experimental study is focused on the synthesis, characterization, and testing of novel catalysts for electroreduction of CO2 and oxalic acid, an intermediate product of CO2. Electrocatalysts based on Cu supported by citrus (orange and lemon) peel biomass are prepared. These catalysts exhibit activity in the electrochemical reduction of CO2, emphasizing the effectiveness of biomasses, particularly orange peels, as environmentally friendly precursors for sustainable and efficient electrocatalysts. In addition, graphitic carbon nitrides/TiO2 nanotubes (g-C3N4/TiNT) composites are prepared for the electrocatalytic reduction of oxalic acid to glycolic acid, revealing superior electrocatalytic properties compared to pristine TiNT. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electronic microscopy were performed for all the prepared electrocatalysts. Delving into the reduction of CO2 on Cu catalysts, a computational study about the synthesis of methanol on Cu(111) surface is performed by using the Vienna Ab initio Simulation Package. A systematic study is carried out to define the activation energies of the elementary reactions by using mGGA DF. Consequently, it is shown that the rate-controlling step is CH3O* hydrogenation and the formate pathway on Cu(111) proceeds through the HCOOH* intermediate. Finally, the process simulation, performed by using the software Aspen Plus 11 from AspenTech Inc., is based on the comparison of a catalytic (oxidation of ethylene glycol) and an electrocatalytic process (CO2 electroreduction chain) to synthesize glycolic acid. An economic analysis of the operational and investment costs reveals that the catalytic process is more cost-effective due to the current instability of electrocatalysts and proton exchange membranes, resulting in increased maintenance costs and, consequently, higher prices for the product.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205262 Serial 9147
Permanent link to this record
 

 
Author Vlasov, E.
Title Exploiting secondary electrons in transmission electron microscopy for 3D characterization of nanoparticle morphologies Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages x, 118 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is an indispensable tool for determining the three-dimensional (3D) structure of nanomaterials in (scanning) transmission electron microscopy ((S)TEM). ET enables 3D characterization of a variety of nanomaterials across different fields, including life sciences, chemistry, solid-state physics, and materials science down to atomic resolution. However, the acquisition of a conventional tilt series for ET is a time-consuming process and thus cannot capture fast transformations of materials in realistic conditions. Moreover, only a limited number of nanoparticles (NPs) can be investigated, hampering a general understanding of the average properties of the material. Therefore, alternative characterization techniques that allow for high-resolution characterization of the surface structure without the need to acquire a full tilt series in ET are required which would enable a more time-efficient investigation with better statistical value. In the first part of this work, an alternative technique for the characterization of the morphology of NPs to improve the throughput and temporal resolution of ET is presented. The proposed technique exploits surface-sensitive secondary electron (SE) imaging in STEM employed using a modification of electron beam-induced current (EBIC) setup. The time- and dose efficiency of SEEBIC are tested in comparison with ET and superior spatial resolution is shown compared to conventional scanning electron microscopy. Finally, contrast artefacts arising in SEEBIC images are described, and their origin is discussed. The second part of my thesis focuses on real applications of the proposed technique and introduces a high-throughput methodology that combines images acquired by SEEBIC with quantitative image analysis to retrieve information about the helicity of gold nanorods. It shows that SEEBIC imaging overcomes the limitation of ET providing a general understanding of the connection between structure and chiroptical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2024-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204905 Serial 9149
Permanent link to this record
 

 
Author Kummamuru, N.B.
Title Methane and hydrogen storage in clathrate hydrates Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages XXV, 260 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract In a world increasingly reliant on alternative energy sources, the quest for efficient and secure storage solutions is paramount. This doctoral thesis explores the exciting potential of a familiar material – water – to act as a vault for next-generation energy sources like hydrogen (H2) and methane (CH4). Nature offers a solution in the form of clathrate hydrates, fascinating cage-like structures formed from water molecules that can trap these gas molecules within their framework. This research investigates on improving the formation kinetics and gas storage capabilities of clathrate hydrates utilizing porous materials and the interstitial space between non-porous materials to augment the contact between gas and water thereby catalysing the growth of hydrates and unlocking their full potential as efficient and secure energy storage reservoirs. A key outcome of this research is the formulation of an empirical correlation, offering predictive insights into CH4 hydrate phase equilibrium conditions. Innovative approaches utilizing thermally conductive beads have yielded substantial enhancements in CH4 uptake. Furthermore, the identification of optimal water content within porous materials showcases a pathway to maximize CH4 storage capacity and hydrate growth kinetics. In the domain of hydrogen storage, attention is also directed towards unstirred systems, where the integration of functionalized porous materials has demonstrated a significant improvement in the rate of hydrate formation and the overall H2 storage capacity. A noteworthy achievement of this research lies in the successful storage of H2 within confined CH4 hydrates through a gas exchange process and the preliminary results show the potential for safer and more sustainable method for H2 storage at mild thermodynamic conditions, offering promising prospects for future energy systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:206258 Serial 9160
Permanent link to this record