toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.  
  Volume 2 Issue 2 Pages 4067-4074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000477917700006 Publication Date 2019-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access OpenAccess  
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184  
Permanent link to this record
 

 
Author Vanrompay, H.; Béché, A.; Verbeeck, J.; Bals, S. pdf  doi
openurl 
  Title Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles Type A1 Journal article
  Year 2019 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 36 Issue 36 Pages 1900096  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract One of the emerging challenges in the field of 3D characterization of nanoparticles by electron tomography is to avoid degradation and deformation of the samples during the acquisition of a tilt series. In order to reduce the required electron dose, various undersampling approaches have been proposed. These methods include lowering the number of 2D projection images, reducing the probe current during the acquisition, and scanning a smaller number of pixels in the 2D images. A comparison is made between these approaches based on tilt series acquired for a gold nanoparticle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000477679400014 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 12 Open Access Not_Open_Access  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO Grant No. 1S32617N). A.B. and J.V. acknowledge FWO project 6093417N “Compressed sensing enabling low dose imaging in STEM.” The authors thank G. González-Rubio, A. Sánchez-Iglesias, and L.M. Liz-Marzán for provision of the samples. Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159986 Serial 5175  
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. pdf  url
doi  openurl
  Title Stabilization of the perovskite phase in the Y-Bi-O system by using a BaBiO₃ buffer layer Type A1 Journal article
  Year 2019 Publication Physica status solidi: rapid research letters Abbreviated Journal  
  Volume 13 Issue 7 Pages 1800679  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch of 12% with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y-Bi-O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000477671800005 Publication Date 2019-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved no  
  Call Number UA @ admin @ c:irua:181236 Serial 6889  
Permanent link to this record
 

 
Author Smolders, S.; Willhammar, T.; Krajnc, A.; Şentosun, K.; Wharmby, M.T.; Lomachenko, K.A.; Bals, S.; Mali, G.; Roeffaers, M.B.J.; De Vos, D.E.; Bueken, B. pdf  doi
openurl 
  Title A titanium(IV)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst Type A1 Journal article
  Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 58 Issue 58 Pages 9160-9165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract While titanium-based metal-organic frameworks (MOFs) have been widely studied for their (photo) catalytic potential, only a few Ti-IV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK-47 is now presented, the first Ti carboxylate MOF based on sheets of (TiO6)-O-IV octahedra, which can be synthesized with a range of different linkers. COK-47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X-ray total scattering, EXAFS, and solid-state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000476691200034 Publication Date 2019-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 97 Open Access Not_Open_Access  
  Notes ; S.S., B.B., and D.E.D.V. gratefully acknowledge the FWO for funding (Aspirant grant, postdoctoral grant, project funding). T.W. acknowledges a grant from the Swedish research council (VR, 2014-06948). He acknowledges financial support from the Knut and Alice Wallenberg Foundation through the project grant 3DEM-NATUR (no. 2012.0112) as well as for purchasing the TEMs. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0021 and project No. N1-0079). We thank beamline I15-1 (XPDF), Diamond Light Source, for collection of X-ray total scattering data as part of the in-house research program (M.T.W.). A. Venier and O. Mathon are kindly acknowledged for the help during the XAS experiment at BM23 beamline of ESRF. We thank C. Lamberti and L. Braglia for providing the reference EXAFS spectrum of anatase. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:161932 Serial 5382  
Permanent link to this record
 

 
Author Bae, J.; Cichocka, M.O.; Zhang, Y.; Bacsik, Z.; Bals, S.; Zou, X.; Willhammar, T.; Hong, S.B. pdf  url
doi  openurl
  Title Phase transformation behavior of a two-dimensional zeolite Type A1 Journal article
  Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume 58 Issue 30 Pages 10230-10235  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding the molecular-level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two-dimensional (2D) zeolites, when used as shape-selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure-directing agent (SDA) removal. Herein we report that PST-9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small-pore zeolite EU-12 under its crystallization conditions through the single-layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000476452700030 Publication Date 2019-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes We acknowledge financial support from National Creative Research Initiative Program (2012R1A3A-2048833) through the National Research Foundation of Korea, the National Research Council of Science & Technology (CRC-14-1-KRICT) grant by the Korea government (MSIP), the Swedish Research Council (2017-04321), and the Knut and Alice Wallenberg Foundation (KAW) through the project grant 3DEM-NATUR (2012.0112). T.W. acknowledges an international postdoc grant from the Swedish Research Council (2014-06948). Approved no  
  Call Number UA @ admin @ c:irua:181233 Serial 6878  
Permanent link to this record
 

 
Author Zhang, Z.; Rosalie, J.M.; Medhekar, N.V.; Bourgeois, L. pdf  doi
openurl 
  Title Resolving the FCC/HCP interfaces of the \gamma'(Ag2Al) precipitate phase in aluminium Type A1 Journal article
  Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 174 Issue 174 Pages 116-130  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The gamma'(Ag2Al) phase in the Al-Ag alloy system has served as a textbook example for understanding phase transformations, precipitating hexagonal close-packed (HCP) crystals in the face-centred cubic (FCC) aluminium matrix. The gamma' precipitates display fully coherent interfaces at their broad facets and semicoherent interfaces at their edges. Shockley partial dislocations are expected to decorate the semicoherent interface due to the FCC-HCP structural transformation. Determining the exact locations and core structures of interfacial dislocations, however, remains challenging. In this study, we used aberration-corrected scanning transmission electron microscopy and atomistic simulations to re-visit this classical system. We characterised and explained the Ag segregation at coherent interfaces in the early stage of precipitation. For semicoherent interfaces, interfacial dislocations and reconstructions were revealed by bridging advanced microstructure characterisation and atomistic simulations. In particular, we discovered a new FCC/HCP interfacial structure that displays a unique combination of Shockley partial, Lomer-Cottrell and Hirth dislocations that evolve from the known interfacial structure purely composed by Shockley partial dislocations. Our findings show that the FCC-HCP transformation is more complex than hitherto considered, due to the interplay between structure and composition confined at interfaces. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000474501300011 Publication Date 2019-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 3 Open Access  
  Notes ; The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. LB and NM acknowledge the financial support of the Australian Research Council (DP150100558). The authors also gratefully acknowledge the computational support from Monash Advanced Research Computing Hybrid, the National Computational Infrastructure and Pawsey Supercomputing Centre. ZZ is thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship and a Monash Centre for Electron Microscopy Postgraduate Scholarship. ZZ is indebted to Matthew Weyland for his training in aberration-corrected electron microscopy, Scott Findlay for his help on image simulations, Xiang Gao for alloy casting and Ian Polmear for discussions. ; Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:161192 Serial 5395  
Permanent link to this record
 

 
Author Piorra, A.; Hrkac, V.; Wolff, N.; Zamponi, C.; Duppel, V.; Hadermann, J.; Kienle, L.; Quandt, E. pdf  url
doi  openurl
  Title (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 thin films prepared by PLD : relaxor properties and complex microstructure Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 24 Pages 244103  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ferroelectric lead-free thin films of the composition (Ba0.85Ca0.15)(Ti0.9Zr0.1)O-3 (BCZT) were deposited by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates using a ceramic BCZT target prepared by a conventional solid state reaction. The target material itself shows a piezoelectric coefficient of d(33)=640pm/V. The (111) textured thin films possess a thickness of up to 1.1 mu m and exhibit a clamped piezoelectric response f of up to 190pm/V, a dielectric coefficient of (r)=2000 at room temperature, and a pronounced relaxor behavior. As indicated by transmission electron microscopy, the thin films are composed of longitudinal micrometersized columns with similar to 100nm lateral dimension that are separated at twin- and antiphase boundaries. The superposition phenomena according to this columnar growth were simulated based on suitable supercells. The major structural component is described as a tetragonal distorted variant of the perovskite parent type; however, frequently coherently intergrown nanodomains were observed indicating a much more complex structure that is characterized by a 7-layer modulation along the growth direction of the films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000474439600002 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access  
  Notes ; The authors want to thank Dr. Martina Luysberg and Dr. Lothar Houben from the Ernst Ruska Centre in Julich for discussion and CS-corrected microscopy. Funding of this work via the DFG (No. CRC1261) “Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics” and the PAK902 is gratefully acknowledged. ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:161310 Serial 5399  
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Stabilisation of magnetic ordering in La3Ni2-xCuxB'O9(B'=Sb,Ta,Nb) by the introduction of Cu2+ Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 276 Issue 276 Pages 164-172  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La3Ni2-xCuxB'O-9 (x = 0.25; B' = Sb, Ta, Nb: x = 0.5; B' = Nb) have been synthesized and characterised by transmission electron microscopy, neutron diffraction and magnetometry. Each adopts a perovskite-like structure (space group P2(1)/n) with two crystallographically-distinct six-coordinate sites, one occupied by a disordered arrangement of Ni2+ and Cu2+ and the other by a disordered similar to 1:2 distribution of Ni2+ and B'(5+), although some Cu2+ is found on the latter site when x = 0.5. Each composition undergoes a magnetic transition in the range 90 <= T/K <= 130 and shows a spontaneous magnetisation at 5 K; the transition temperature always exceeds that of the x = 0 composition by >= 30 K. A long-range ordered G-type ferrimagnetic structure is present in each composition, but small relaxor domains are also present. This contrasts with the pure relaxor and spin-glass behaviour of x = 0, B' = Ta, Nb, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000473372400023 Publication Date 2019-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 2 Open Access  
  Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. ; Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:161199 Serial 5396  
Permanent link to this record
 

 
Author Albrecht, W.; Bladt, E.; Vanrompay, H.; Smith, J.D.; Skrabalak, S.E.; Bals, S. url  doi
openurl 
  Title Thermal Stability of Gold/Palladium Octopods Studied in Situ in 3D: Understanding Design Rules for Thermally Stable Metal Nanoparticles Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 6522-6530  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multifunctional metal nanoparticles (NPs) such as anisotropic multimetallic NPs are crucial for boosting nanomaterial based applications. Advanced synthetic protocols exist to make a large variety of such nanostructures. However, a major limiting factor for the usability of them in real life applications is their stability. Here, we show that Au/Pd octopods, 8-branched nanocrystals with Oh symmetry, with only a low amount of Pd exhibited a high thermal stability and maintained strong plasmon resonances up to 600 ◦C. Furthermore, we study the influence of the composition, morphology and environment on the thermal stability and define key parameters for the design of thermally stable multifunctional NPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000473248300038 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 46 Open Access OpenAccess  
  Notes W. A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. H. V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E. B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). J. D. S. and S.E.S acknowledge funding from the US National Science Foundation (award number: CHE-1602476). The authors acknowledge funding from the European Commission Grant (EUSMI E180600101 to S. B. and S. E. S.) and European Research Council (ERC Starting Grant #335078-COLOURATOMS). Realnano 815128; sygma Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:161356 Serial 5285  
Permanent link to this record
 

 
Author He, L.; Wang, H.; Chen, L.; Wang, X.; Xie, H.; Jiang, C.; Li, C.; Elibol, K.; Meyer, J.; Watanabe, K.; Taniguchi, T.; Wu, Z.; Wang, W.; Ni, Z.; Miao, X.; Zhang, C.; Zhang, D.; Wang, H.; Xie, X. url  doi
openurl 
  Title Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment Type A1 Journal article
  Year 2019 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 10 Issue 1 Pages 2815  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Atomically thin hexagonal boron nitride (h-BN) is often regarded as an elastic film that is impermeable to gases. The high stabilities in thermal and chemical properties allow h-BN to serve as a gas barrier under extreme conditions. Here, we demonstrate the isolation of hydrogen in bubbles of h-BN via plasma treatment. Detailed characterizations reveal that the substrates do not show chemical change after treatment. The bubbles are found to withstand thermal treatment in air, even at 800°C. Scanning transmission electron microscopy investigation shows that the h-BN multilayer has a unique aligned porous stacking nature, which is essential for the character of being transparent to atomic hydrogen but impermeable to hydrogen molecules. In addition, we successfully demonstrated the extraction of hydrogen gases from gaseous compounds or mixtures containing hydrogen element. The successful production of hydrogen bubbles on h-BN flakes has potential for further application in nano/ micro-electromechanical systems and hydrogen storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000473002500004 Publication Date 2019-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access Not_Open_Access  
  Notes The work was partially supported by the National Key R&D program (Grant No. 2017YFF0206106), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), the National Science Foundation of China (Grant Nos. 51772317, 51302096), the Science and Technology Commission of Shanghai Municipality (Grant No. 16ZR1442700), the Hubei Provincial Natural Science Foundation of China (Grant No. ZRMS2017000370), and the Fundamental Research Funds of Wuhan City (No. 2016060101010075). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Numbers JP15K21722. C.L. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grants No. 656378—Interfacial Reactions. L.H. acknowledges financial support from the program of China Scholarships Council (No. 201706160037). H.W. and D.Z. thank Y. Gu, Y. Ma, X. Chen (Shanghai Institute of Technical Physics, Chinese Academy of Sciences) for FTIR spectra measurement. L.C. and L.H. thank Q. Liu and Z. Liu (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) for measurement in XPS spectra and mass spectra. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:160714 Serial 5191  
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Samaee, V.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D. pdf  url
doi  openurl
  Title In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires Type A1 Journal article
  Year 2019 Publication Shape memory and superelasticity Abbreviated Journal Shap. Mem. Superelasticity  
  Volume 5 Issue 2 Pages 154-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In-situ transmission electron microscopy tensile straining is used to study the stress induced martensitic transformation in Ni50.8Ti49.2. Two microwire samples with different heat treatment are investigated from which one single crystal and three polycrystalline TEM specimens, the latter with micro- and nano-size grains, have been produced. The measured Young’s modulus for all TEM specimens is around 70 GPa, considerably higher than the averaged 55 GPa of the original microwire sample. The height of the superelastic stress plateau shows an inverse relationship with the specimen thickness for the polycrystalline specimens. Martensite starts nucleating within the elastic region of the stress–strain curve and on the edges of the specimens while also grain boundaries act as nucleation sites in the polycrystalline specimens. When a martensite plate reaches a grain boundary in the polycrystalline specimen, it initiates the transformation in the neighboring grain at the other side of the grain boundary. In later stages martensite plates coalesce at higher loads in the stress plateau. In highly strained specimens, residual martensite remains after release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000472940200002 Publication Date 2019-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Saeid Pourbabak likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. This work was also made possible through the AUHA13009 Grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159989 Serial 5177  
Permanent link to this record
 

 
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K. pdf  url
doi  openurl
  Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 153 Issue Pages 366-371  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000472696900040 Publication Date 2019-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 2 Open Access Not_Open_Access  
  Notes S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178  
Permanent link to this record
 

 
Author De Beule, C.; Saniz, R.; Partoens, B. pdf  doi
openurl 
  Title Crystalline topological states at a topological insulator junction Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 128 Issue 128 Pages 144-151  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We consider an interface between two strong time-reversal invariant topological insulators having surface states with opposite spin chirality, or equivalently, opposite mirror Chern number. We show that such an interface supports gapless modes that are protected by mirror symmetry. The interface states are investigated with a continuum model for the Bi2Se3 class of topological insulators that takes into account terms up to third order in the crystal momentum, which ensures that the model has the correct symmetry. The model parameters are obtained from ab initio calculations. Finally, we consider the effect of rotational mismatch at the interface, which breaks the mirror symmetry and opens a gap in the interface spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000472693100013 Publication Date 2018-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.059 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 2.059  
  Call Number UA @ admin @ c:irua:161391 Serial 5385  
Permanent link to this record
 

 
Author Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M.T.; Croft, M.; Gopalakrishnan, J.; Pena, M.A.; Hadermann, J.; Greenblatt, M.; Rojas, S. pdf  doi
openurl 
  Title La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity Type A1 Journal article
  Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 11 Issue 24 Pages 21454-21464  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Perovskites (ABO(3)) with transition metals in active B sites are considered alternative catalysts for the water oxidation to oxygen through the oxygen evolution reaction (OER) and for the oxygen reduction through the oxygen reduction reaction (ORR) back to water. We have synthesized a double perovskite (A(2)BB'O-6) with different cations in A, B, and B' sites, namely, ((La15Sr0.5)-Sr-.)(A)(Ni0.5Mn0.5)(B)(Ni0.5Ru0.5)(B)O-6 (LSNMR), which displays an outstanding OER/ORR bifunctional performance. The composition and structure of the oxide has been determined by powder X-ray diffraction, powder neutron diffraction, and transmission electron microscopy to be monoclinic with the space group P2(1)/n and with cationic ordering between the ions in the B and B' sites. X-ray absorption near-edge spectroscopy suggests that LSNMR presents a configuration of similar to Ni2+, similar to Mn4+, and similar to Ru5+. This bifunctional catalyst is endowed with high ORR and OER activities in alkaline media, with a remarkable bifunctional index value of similar to 0.83 V (the difference between the potentials measured at -1 mA cm(-2) for the ORR and +10 mA cm(-2) for the OER). The ORR onset potential (E-onset) of 0.94 V is among the best reported to date in alkaline media for ORR-active perovskites. The ORR mass activity of LSNMR is 1.1 A g(-1) at 0.9 V and 7.3 A g(-1) at 0.8 V. Furthermore, LSNMR is stable in a wide potential window down to 0.05 V. The OER potential to achieve a current density of 10 mA cm(-2) is 1.66 V. Density functional theory calculations demonstrate that the high ORR/OER activity of LSNMR is related to the presence of active Mn sites for the ORR- and Ru-active sites for the OER by virtue of the high symmetry of the respective reaction steps on those sites. In addition, the material is stable to ORR cycling and also considerably stable to OER cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000472683300019 Publication Date 2019-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 12 Open Access  
  Notes ; This work was supported by the ENE2016-77055-C3-3-R project from the Spanish Ministry of Economy and Competitiveness (MINECO) and PIE 201480E122 from CSIC. M.R. thanks MINECO's Juan de la Cierva program for a grant (FPDI-2013-17582). F.C.-V. thanks the Spanish MEC for a Ramon y Cajal research contract (RYC-2015-18996). M.G. acknowledges the support from NSF-DMR-1507252 grant, NJ, USA. ; Approved Most recent IF: 7.504  
  Call Number UA @ admin @ c:irua:161320 Serial 5400  
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J. url  doi
openurl 
  Title Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 24 Pages 243501  
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)  
  Abstract Strain has a strong effect on the properties of materials and the performance of electronic devices. Their ever shrinking size translates into a constant demand for accurate and precise measurement methods with a very high spatial resolution. In this regard, transmission electron microscopes are key instruments thanks to their ability to map strain with a subnanometer resolution. Here, we present a method to measure strain at the nanometer scale based on the diffraction of electron Bessel beams. We demonstrate that our method offers a strain sensitivity better than 2.5 × 10−4 and an accuracy of 1.5 × 10−3, competing with, or outperforming, the best existing methods with a simple and easy to use experimental setup.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000472599100019 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 17 Open Access OpenAccess  
  Notes Deutsche Forschungsgemeinschaft, RO2057/12-2 ; Fonds Wetenschappelijk Onderzoek, G.0934.17N ; Approved Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160119 Serial 5181  
Permanent link to this record
 

 
Author Liu, P.; Wu, T.; Madsen, J.; Schiotz, J.; Wagner, J.B.; Hansen, T.W. pdf  doi
openurl 
  Title Transformations of supported gold nanoparticles observed by in situ electron microscopy Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 11 Issue 24 Pages 11885-11891  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxide supported metal nanoparticles play an important role in heterogeneous catalysis. However, understanding the metal/oxide interface and their evolution under reaction conditions remains challenging. Herein, we investigate the interface between Au nanoparticles and a CeO2 substrate by environmental transmission electron microscopy with atomic resolution. We find that the Au nanoparticles have two preferential epitaxial relationships with the substrate, i.e. Type I (111)[-110]CeO2//(111)[-110]Au and Type II (111)[-110]CeO2//(111)[1-10]Au orientation relationships, where Type I is preferred. In situ observations in the presence of O-2 show that the gas can stimulate the supported Au nanoparticles to transform between these two orientations even at room temperature. Moreover, when increasing the temperature to 973 K, the transformation of an Au nanoparticle between the two orientation states and a non-crystalline state in the presence of O-2 is also observed. DFT calculations of the binding between Au and CeO2 in the two relationships are strongly influenced by the presence of oxygen vacancies. For a given position of a vacancy, there is a significant energy difference between the energy of the two types. However, for some positions, Type I is preferred, and for others, Type II, but the most favourable position of the vacancy for the two types has a very similar energy. This is consistent with the observation of both types of adhesion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000472559800049 Publication Date 2019-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:161313 Serial 5402  
Permanent link to this record
 

 
Author Wang, J.; Shin, Y.; Gauquelin, N.; Yang, Y.; Lee, C.; Jannis, D.; Verbeeck, J.; Rondinelli, J.M.; May, S.J. url  doi
openurl 
  Title Physical properties of epitaxial SrMnO2.5−δFγoxyfluoride films Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 36 Pages 365602  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recently, topotactic fluorination has become an alternative way of doping epitaxial perovskite oxides through anion substitution to engineer their electronic properties instead of the more commonly used cation substitution. In this work, epitaxial oxyfluoride SrMnO2.5−δ F γ films were synthesized via topotactic fluorination of SrMnO2.5 films using polytetrafluoroethylene as the fluorine source. Oxidized SrMnO3 films were also prepared for comparison with the fluorinated samples. The F content, probed by x-ray photoemission spectroscopy, was systematically controlled by adjusting fluorination conditions. Electronic transport measurements reveal that increased F content (up to γ  =  0.14) systematically increases the electrical resistivity, despite the nominal electron-doping induced by F substitution for O in these films. In contrast, oxidized SrMnO3 exhibits a decreased resistivity and conduction activation energy. A blue-shift of optical absorption features occurs with increasing F content. Density functional theory calculations indicate that F acts as a scattering center for electronic transport, controls the observed weak ferromagnetic behavior of the films, and reduces the inter-band optical transitions in the manganite films. These results stand in contrast to bulk electron-doped La1−x Ce x MnO3, illustrating how aliovalent anionic substitutions can yield physical behavior distinct from A-site substituted perovskites with the same nominal B-site oxidation states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000472232000002 Publication Date 2019-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 5 Open Access  
  Notes Work at Drexel was supported by the National Science Foundation (NSF), grant number CMMI-1562223. Thin film synthesis utilized deposition instrumentation acquired through an Army Research Office DURIP grant (W911NF-14-1-0493). Y.S and J.M.R. were supported by NSF (Grant No. DMR-1454688). Calculations were performed using the QUEST HPC Facility at Northwestern, the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. ACI-1053575, and the Center for Nanoscale Materials (Carbon Cluster). Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.V. and N. G. acknowledge funding from a GOA project “Solarpaint” of the University of Antwerp. D.J. acknowledges funding from FWO project G093417N from the Flemish fund for scientific research. Approved Most recent IF: 2.649  
  Call Number EMAT @ emat @UA @ admin @ c:irua:161174 Serial 5293  
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 132 Issue Pages 172-181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000472124700023 Publication Date 2019-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021  
  Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170  
Permanent link to this record
 

 
Author Jishkariani, D.; Elbert, K.C.; Wu, Y.; Lee, J.D.; Hermes, M.; Wang, D.; van Blaaderen, A.; Murray, C.B. pdf  doi
openurl 
  Title Nanocrystal Core Size and Shape Substitutional Doping and Underlying Crystalline Order in Nanocrystal Superlattices Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 5 Pages 5712-5719  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Substitutional doping is a potentially powerful technique to control the properties of nanocrystal (NC) superlattices (SLs). However, not every NC can be substituted into any lattice, as the NCs have to be close in size and shape, limiting the application of substitutional doping. Here we show that this limitation can be overcome by employing ligands of various size. We show that small NCs with long ligands can be substituted into SLs of big NCs with short ligands. Furthermore, we show that shape differences can also be overcome and that cubes can substitute spheres when both are coated with long ligands. Finally, we use the NC effective ligand size, softness, and effective overall size ratio to explain observed doping behaviors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000469886300078 Publication Date 2019-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 6 Open Access Not_Open_Access  
  Notes ; This work was supported by the University of Pennsylvania's NSF MRSEC under award no. DMR-112090 and the CNRS-UPENN-SOLVAY through the Complex Assemblies of Soft Matter Laboratory (COMPASS). K.C.E. acknowledges support from the NSF Graduate Research Fellowship Program under grant no. DGE-1321851. C.B.M. acknowledges the Richard Perry University Professorship at the University of Pennsylvania. D.W. and A.v.B. acknowledge partial funding from the European Research Council under the European Union's Seventh Framework Programme (FP -2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. M.H. was supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. The authors thank EM square in Utrecht University for the access to the microscopes. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160344 Serial 5256  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Delville, R.; Neuville, D.R.; Hennet, L.; Thiaudiere, D.; Ouisse, T.; Hadermann, J.; Vleugels, J.; Lambrinou, K. pdf  doi
openurl 
  Title Synthesis and Characterization of Double Solid Solution (Zr,Ti)(2)(Al,Sn)C MAX Phase Ceramics Type A1 Journal article
  Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 58 Issue 10 Pages 6669-6683  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (ZryTi)(2)(Al-0.5,Sn-0.5)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH2, TiH2, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)(2)AlC system was the key to achieve phase purity. Its effect on the crystal structure of a 211-type MAX phase was assessed by calculating the distortions of the octahedral M6C and trigonal M(6)A prisms due to steric effects. The M(6)A prismatic distortion values were found to be smaller in Sn-containing double solid solutions than in the (Zr,Ti)(2)AlC MAX phases. The coefficients of thermal expansion along the < a > and < c > directions were measured by means of Rietveld refinement of high-temperature synchrotron X-ray diffraction data of (Zr1-x,Ti-x)(2)(Al-0.5,Sn-0.5)C MAX phase solid solutions with x = 0, 0.3, 0.7, and 1. The thermal expansion coefficient data of the Ti-2(Al-0.5,Sn-0.5)C solid solution were compared with those of the Ti2AlC and Ti2SnC ternary compounds. The thermal expansion anisotropy increased in the (Zr,Ti)(2)(Al-0.5,Sn-0.5)C double solid solution MAX phases as compared to the Zr-2(Al-0.5,Sn-0.5)C and Ti-2(Al-0.5,Sn-0.5)C end-members.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000469304700014 Publication Date 2019-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes ; H. Roussel and D. Pinek are acknowledged for the Ti<INF>2</INF>SnC single-crystal production and high-temperature XRD measurements performed at Grenoble INP-LMGP-CMTC. This research was funded partly by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 604862 (FP7MatISSE), and partly by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). T.L. thanks the Agency for Innovation by Science and Technology (IWT), Flanders, Belgium, for Ph.D. Grant No. 131081. B.T. acknowledges the financial support of the SCK.CEN Academy for Nuclear Science and Technology. All authors gratefully acknowledge Synchrotron SOLEIL for the allocated time at the DIFFABS beamline in association with Project 20161410 entitled “Investigation of (Zr-Ti)-Al-C MAX phases with in-situ high-temperature XRD” and the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM). ; Approved Most recent IF: 4.857  
  Call Number UA @ admin @ c:irua:160318 Serial 5261  
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H. pdf  doi
openurl 
  Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
  Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000469200401163 Publication Date 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160468 Serial 5365  
Permanent link to this record
 

 
Author Kontogiannidou, E.; Karavasili, C.; Kouskoura, M.G.; Filippousi, M.; Van Tendeloo, G.; Andreadis, I.I.; Eleftheriadis, G.K.; Kontopoulou, I.; Markopoulou, C.K.; Bouropoulos, N.; Fatouros, D.G. pdf  url
doi  openurl
  Title In vitro and ex vivo assessment of microporous Faujasite zeolite (NaX-FAU) as a carrier for the oral delivery of danazol Type A1 Journal article
  Year 2019 Publication Journal of drug delivery science and technology Abbreviated Journal J Drug Deliv Sci Tec  
  Volume 51 Issue 51 Pages 177-184  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Microporous zeolite NaX-FAU has been systemically evaluated for the oral delivery of the poorly water-soluble compound danazol. For this purpose, danazol-loaded zeolitic particles were prepared by the incipient wetness method and were characterized by means of N-2 physisorption, X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and high-resolution transmission electron microscopy (HRTEM). The zeolitic formulation shows a high drug payload and drug stability over a period of six months under accelerated storage conditions. The dissolution profile of danazol-loaded zeolitic particles was assessed in simulated gastric fluid (SGF) pH 1.2; fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) showing a gradual and increasing drug dissolution in the different media. Ex vivo studies using the everted gut sac model show an increased drug transport across rat intestinal epithelium when loaded in the zeolitic particles. Our results suggest that microporous Faujasite zeolite (NaX-FAU) could be used as a drug delivery system to facilitate the oral delivery of poorly water soluble compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000468750300018 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1773-2247; 2588-8943 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.194 Times cited 3 Open Access Not_Open_Access: Available from 27.08.2020  
  Notes ; This research was supported by General Secretariat for Research and Technology, Greece – Research Program “Excellence II, 4766”. The authors acknowledge financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI). ; Approved Most recent IF: 1.194  
  Call Number UA @ admin @ c:irua:160279 Serial 5252  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Cautaerts, N.; Van der Donck, T.; Schryvers, D.; Lambrinou, K.; Delville, R. pdf  doi
openurl 
  Title Orientation relationship of the austenite-to-ferrite transformation in austenitic stainless steels due to dissolution corrosion in contact with liquid Pb-Bi eutectic Type A1 Journal article
  Year 2019 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 167 Issue 167 Pages 66-70  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The orientation relationship of an austenite-to-ferrite phase transformation in 316L stainless steels induced by the loss of austenite stabilizers resulting from the steel dissolution corrosion in liquid Pb-Bi eutectic was studied by means of electron backscatter diffraction. The misorientations at the austenite/ferrite interface were compared to the prevailing orientation relationship models in steels. The Pitsch orientation relationship model was found to be predominant, which is unusual for austenite-to-ferrite bulk transformations in steels. The nature of this particular transformation, which involves loss of steel alloying elements and the presence of an interfacial liquid metal layer, is discussed to explain this finding. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000468720000014 Publication Date 2019-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 3 Open Access Not_Open_Access  
  Notes ; The authors would like to thank J. Joris (SCK center dot CEN) for technical support during corrosion testing, J. Lim (SCK center dot CEN) for the manufacture and calibration of the oxygen sensors used in this work and W. Van Renterghem (SCK center dot CEN) for his valuable help with the EBSD measurements. The steel suppliers were: Industeel, ArcelorMittal Group, for the 316L-SA plate, and Panchmahal Steel Ltd., India, for the 316L-CWrod. The authors gratefully acknowledge the financial support provided within the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). ; Approved Most recent IF: 3.747  
  Call Number UA @ admin @ c:irua:160228 Serial 5257  
Permanent link to this record
 

 
Author Scarabelli, L.; Schumacher, M.; Jimenez de Aberasturi, D.; Merkl, J.‐P.; Henriksen‐Lacey, M.; Milagres de Oliveira, T.; Janschel, M.; Schmidtke, C.; Bals, S.; Weller, H.; Liz‐Marzán, L.M. pdf  url
doi  openurl
  Title Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 29 Issue 29 Pages 1809071  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The implementation of plasmonic nanoparticles in vivo remains hindered by important limitations such as biocompatibility, solubility in biological fluids, and physiological stability. A general and versatile protocol is presented, based on seeded emulsion polymerization, for the controlled encapsulation of gold and silver nanoparticles. This procedure enables the encapsulation of single nanoparticles as well as nanoparticle clusters inside a protecting polymer shell. Specifically, the efficient coating of nanoparticles of both metals is demonstrated, with final dimensions ranging between 50 and 200 nm, i.e., sizes of interest for bio-applications. Such hybrid nanocomposites display extraordinary stability in high ionic strength and oxidizing environments, along with high cellular uptake, and low cytotoxicity. Overall, the prepared nanostructures are promising candidates for plasmonic applications under biologically relevant conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000467109100024 Publication Date 2019-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 19 Open Access OpenAccess  
  Notes L.S. and M.S. contributed equally to this work. This work was supported by the Spanish MINECO (Grant MAT2017-86659-R), by the German Research Foundation (DFG, Grant LA 2901/1-1) and by the European Research Council (Grant 335078 COLOURATOM to S.B). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M). L.S. acknowledges funding from the American-Italian Cancer Foundation through a Post-Doctoral Research Fellowship. D.J.d.A. thanks MINECO for a Juan de la Cierva fellowship (IJCI-2015-24264). J.P.M. was financed by Verband der Chemischen Industrie e.V. (VCI). The authors thank Dr. Artur Feld, Dr. Andreas Kornowski and Stefan Werner (Institute of Physical Chemistry, University of Hamburg) for their support. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160710 Serial 5190  
Permanent link to this record
 

 
Author Gasparotto, A.; Maccato, C.; Carraro, G.; Sada, C.; Štangar, U.L.; Alessi, B.; Rocks, C.; Mariotti, D.; La Porta, A.; Altantzis, T.; Barreca, D. url  doi
openurl 
  Title Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications Type A1 Journal Article
  Year 2019 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 11 Issue 17 Pages 15881-15890  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We report on a combined chemical vapor deposition (CVD)/radio frequency (RF) sputtering synthetic strategy for the controlled surface modification of ZnO nanostructures by Ti-containing species. Specifically, the proposed approach consists in the CVD of grown-on-tip ZnO nanopyramids, followed by titanium RF sputtering under mild conditions. The results obtained by a thorough characterization demonstrate the successful ZnO surface functionalization with dispersed Ti-containing species in low amounts. This phenomenon, in turn, yields a remarkable enhancement of photoactivated superhydrophilic behavior, self-cleaning ability, and photocatalytic performances in comparison to bare ZnO. The reasons accounting for such an improvement are unravelled by a multitechnique analysis, elucidating the interplay between material chemico-physical properties and the corresponding functional behavior. Overall, the proposed strategy stands as an amenable tool for the mastering of semiconductor-based functional nanoarchitectures through ad hoc engineering of the system surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000466988800078 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links  
  Impact Factor 7.504 Times cited 1 Open Access Not_Open_Access  
  Notes The research leading to these results has received financial support from Padova University ACTION postdoc fellowship, DOR 2016-2018, P-DiSC #03BIRD2016-UNIPD projects, and HERALD COST Action MP1402-37831. The support from EPSRC (awards EP/R008841/1 and EP/M024938/1) as well as from the Slovenian Research Agency (research core funding No. P1-0134) is also recognized. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors are grateful to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ Serial 5185  
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
  Year 2019 Publication MRS advances Abbreviated Journal MRS Adv.  
  Volume 4 Issue 14 Pages 813-820  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000466846700004 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020  
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179  
Permanent link to this record
 

 
Author Fatermans, J.; Van Aert, S.; den Dekker, A.J. url  doi
openurl 
  Title The maximum a posteriori probability rule for atom column detection from HAADF STEM images Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 201 Issue Pages 81-91  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Recently, the maximum a posteriori (MAP) probability rule has been proposed as an objective and quantitative method to detect atom columns and even single atoms from high-resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images. The method combines statistical parameter estimation and model-order selection using a Bayesian framework and has been shown to be especially useful for the analysis of the structure of beam-sensitive nanomaterials. In order to avoid beam damage, images of such materials are usually acquired using a limited incoming electron dose resulting in a low contrast-to-noise ratio (CNR) which makes visual inspection unreliable. This creates a need for an objective and quantitative approach. The present paper describes the methodology of the MAP probability rule, gives its step-by-step derivation and discusses its algorithmic implementation for atom column detection. In addition, simulation results are presented showing that the performance of the MAP probability rule to detect the correct number of atomic columns from HAADF STEM images is superior to that of other model-order selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, the MAP probability rule is used as a tool to evaluate the relation between STEM image quality measures and atom detectability resulting in the introduction of the so-called integrated CNR (ICNR) as a new image quality measure that better correlates with atom detectability than conventional measures such as signal-to-noise ratio (SNR) and CNR.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000466343800009 Publication Date 2019-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157176 Serial 5153  
Permanent link to this record
 

 
Author Chin, C.–M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. pdf  url
doi  openurl
  Title Magnetic properties of La3Ni2Sb Ta Nb1––O9; from relaxor to spin glass Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry (Print) Abbreviated Journal Journal of Solid State Chemistry  
  Volume 273 Issue Pages 175-185  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Neutron diffraction experiments conducted at 5 K in a magnetic field 0 < H/kOe < 50 have shown that the monoclinic perovskite La3Ni2TaO9 behaves as a relaxor ferromagnet. Compositions in the series La3Ni2SbxTayNb1–x–yO9 have been synthesized in polycrystalline form. Electron microscopy, X–ray diffraction and neutron diffraction have shown that the solid solutions are largely homogeneous and monophasic. Magnetometry and neutron diffraction have shown that the relaxor magnetisation persists in low fields when x + y = 1 but is rapidly diminished by the introduction of niobium. This change in magnetic behaviour is ascribed to the differences in the d–orbital energies of Sb5+, Nb5+ and Ta5+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000466261100026 Publication Date 2019-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. Approved no  
  Call Number EMAT @ emat @c:irua:166445 Serial 6346  
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Kumar, V.; Llombart, P.; Diaz-Nunez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Noya, E.G.; MacDowell, L.G.; Guerrero-Martinez, A.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 4424-4435  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract One of the major difficulties hindering the widespread application of colloidal anisotropic plasmonic nanoparticles is the limited robustness and reproducibility of multistep synthetic methods. We demonstrate herein that the reproducibility and reliability of colloidal gold nanorod (AuNR) synthesis can be greatly improved by disconnecting the symmetry-breaking event from the seeded growth process. We have used a modified silver-assisted seeded growth method in the presence of the surfactant hexadecyltrimethylammonium bromide and n-decanol as a co-surfactant to prepare small AuNRs in high yield, which were then used as seeds for the growth of high quality AuNR colloids. Whereas the use of n-decanol provides a more-rigid micellar system, the growth on anisotropic seeds avoids sources of irreproducibility during the symmetry breaking step, yielding uniform AuNR colloids with narrow plasmon bands, ranging from 600 to 1270 nm, and allowing the fine-tuning of the final dimensions. This method provides a robust route for the preparation of high quality AuNR colloids with tunable morphology, size, and optical response in a reproducible and scalable manner.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000466052900067 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 100 Open Access OpenAccess  
  Notes ; This work has been funded by the Spanish MINECO (grant nos. FIS2017-89361-C3-2-P and MAT2017-86659-R), the Madrid Regional Government (grant no. P2018/NMT-4389) and the Complutense University of Madrid (grant no. PR75/18-21616). Funding is acknowledged from the European Commission (grant no. EUSMI 731019). G.G.-R. acknowledges receipt of FPI Fellowship from the Spanish MINECO. E.B. and T.A. acknowledge postdoctoral grants from the Research Foundation Flanders (FWO). The authors are indebted to Profs. Justin Gooding, Watson Loh, Nicholas Kotov, Deqing Zhang, Mihaela Delcea, Maurizio Prato, and Krishna Ganesh, for providing milli-Q water samples. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160417 Serial 5246  
Permanent link to this record
 

 
Author Kim, Y.; Che, F.; Jo, J.W.; Choi, J.; de Arquer, F.P.G.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M.-J.; Quintero-Bermudez, R.; Fan, F.; Tan, C.S.; Bladt, E.; Walters, G.; Proppe, A.H.; Zou, C.; Yuan, H.; Bals, S.; Hofkens, J.; Roeffaers, M.B.J.; Hoogland, S.; Sargent, E.H. pdf  url
doi  openurl
  Title A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 31 Issue 31 Pages 1805580  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (approximate to 47 meV) and Urbach tail (approximate to 29 meV). This approach provides a approximate to 50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a approximate to 70% external quantum efficiency at their excitonic peak.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (down) 000465600000001 Publication Date 2019-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 74 Open Access OpenAccess  
  Notes ; Y.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research. ; Approved Most recent IF: 19.791  
  Call Number UA @ admin @ c:irua:160392 Serial 5239  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: